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Abstract

Transfer-based Machine Translation systems re-
quire a procedure for choosing the set of transfer
rules for generating a target language transla-
tion from a given source language sentence. In
an MT system with many competing transfer
rules, choosing the best set of transfer rules for
translation may involve the evaluation of an ex-
plosive number of competing sets. We propose a
solution to this problem based on current best-
�rst chart parsing algorithms.

1 Introduction

Transfer-based Machine Translation systems re-
quire a procedure for choosing the set of trans-
fer rules for generating a target language trans-
lation from a given source language sentence.
This procedure is trivial for a system if, given
a context, one transfer rule can be selected un-
ambiguously. Otherwise, choosing the best set
of transfer rules may involve the evaluation of
numerous competing sets. In fact, the number
of possible transfer rule combinations increas-
es exponentially with the length of the source
language sentence. This situation mirrors the
problem of choosing productions in a nondeter-
ministic parser. In this paper, we describe a
system for choosing transfer rules, based on s-
tatistical chart parsing (Bobrow, 1990; Chitrao
and Grishman, 1990; Caraballo and Charniak,
1997; Charniak et al., 1998).
In our Machine Translation system, transfer

rules are generated automatically from parsed
parallel text along the lines of (Matsumoto et
al., 1993; Meyers et al., 1996; Meyers et al.,
1998b). Our system tends to acquire a large
number of transfer rules, due mainly to alterna-
tive ways of translating the same sequences of
words, non-literal translations in parallel text
and parsing errors. It is therefore crucial that

our system choose the best set of rules eÆcient-
ly. While the technique discussed here obviously
applies to similar such systems, it could also ap-
ply to hand-coded systems in which each word
or group of words is related to more than one
transfer rule. For example, both Multra (Hein,
1996) and the Eurotra system described in (Way
et al., 1997) require components for deciding
which combination of transfer rules to use. The
proposed technique may be used with systems
like these provided that all transfer rules are as-
signed initial scores rating their appropriateness
for translation. These appropriateness ratings
could be dependent or independent of context.1

2 Previous Work

The MT literature describes several techniques
for deriving the appropriate translation. Statis-
tical systems that do not incorporate linguistic
analysis (Brown et al., 1993) typically choose
the most likely translation based on a statis-
tical model, i.e.., translation probability deter-
mines the translation. (Hein, 1996) reports a set
of (hand-coded) feature structure based prefer-
ence rules to choose among alternatives in Mul-
tra. There is some discussion about adding
some transfer rules automatically acquired from
corpora to Multra.2 Assuming that they over-
generate rules (as we did), a system like the one
we propose should be bene�cial. In (Way et al.,
1997), many di�erent criteria are used to choose
transfer rules to execute including: preferences
for speci�c rules over general ones, and complex
rule notation that insures that few rules can ap-
ply to the same set of words.
The Pangloss Mark III system (Nirenburg

1This translation procedure would probably comple-
ment, not replace existing procedures in these systems.

2http://stp.ling.uu.se/�corpora/plug/reports/
ansk last/ is a report on this project for Multra.



and Frederking, 1995) uses a chart-walk algo-
rithm to combine the results of three MT en-
gines: an example-based engine, a knowledge-
based engine, and a lexical-transfer engine.
Each engine contributes its best edges and the
chart-walk algorithm uses dynamic program-
ming to �nd the combination of edges with the
best overall score that covers the input string.
Scores of edges are normalized so that the scores
from the di�erent engines are comparable and
weighted to favor engines which tend to produce
better results. Pangloss's algorithm combines
whole MT systems. In contrast, our algorith-
m combines output of individual transfer rules
within a single MT system. Also, we use a best-
�rst search that incorporates a probabilistic-
based �gure of merit, whereas Pangloss uses an
empirically based weighting scheme and what
appears to be a top-down search.

Best-�rst probabilistic chart parsers (Bo-
brow, 1990; Chitrao and Grishman, 1990; Cara-
ballo and Charniak, 1997; Charniak et al., 1998)
strive to �nd the best parse, without exhaus-
tively trying all possible productions. A proba-
bilistic �gure of merit (Caraballo and Charniak,
1997; Charniak et al., 1998) is devised for rank-
ing edges. The highest ranking edges are pur-
sued �rst and the parser halts after it produces
a complete parse. We propose an algorithm for
choosing and applying transfer rules based on
probability. Each �nal translation is derived
from a speci�c set of transfer rules. If the pro-
cedure immediately selected these transfer rules
and applied them in the correct order, we would
arrive at the �nal translation while creating the
minimum number of edges. Our procedure uses
about 4 times this minimum number of edges.
With respect to chart parsing, (Charniak et al.,
1998) report that their parser can achieve good
results while producing about three times the
minimum number of edges required to produce
the �nal parse.

3 Test Data

We conducted two experiments. For experimen-
t1, we parsed a sentence-aligned pair of Span-
ish and English corpora, each containing 1155
sentences of Microsoft Excel Help Text. These
pairs of parsed sentences were divided into dis-
tinct training and test sets, ninety percent for
training and ten percent for test. The training
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set was used to acquire transfer rules (Meyers
et al., 1998b) which were then used to translate
the sentences in the test set. This paper focus-
es on our technique for applying these transfer
rules in order to translate the test sentences.

The test and training sets in experiment1
were rotated, assigning a di�erent tenth of the
sentences to the test set in each rotation. In this
way we tested the program on the entire corpus.
Only one test set (one tenth of the corpus) was
used for tuning the system during development.
Transfer rules, 1109 on average, were acquired
from each training set and used for translation
of the corresponding test set. For Experiment
2, we parsed 2617 pairs of aligned sentences and
used the same rotation procedure for dividing
test and training corpora. The Experiment 2
corpus included the experiment1 corpus. An av-
erage of 2191 transfer rules were acquired from
a given set of Experiment 2 training sentences.

Experiment1 is orchestrated in a careful man-
ner that may not be practical for extremely
large corpora, and Experiment 2 shows how the
program performs if we scale up and eliminate
some of the �ne-tuning. Apart from corpus size,
there are two main di�erence between the two
experiments: (1) the experiment1 corpus was
aligned completely by hand, whereas the Exper-
iment 2 corpus was aligned automatically using
the system described in (Meyers et al., 1998a);
and (2) the parsers were tuned to the experi-
ment1 sentences, but not the Experiment 2 sen-
tences (that did not overlap with experiment1).
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4 Parses and Transfer Rules

Figure 1 is a pair of \regularized" parses for a
corresponding pair of Spanish and English sen-
tences from Microsoft Excel help text. These
are F-structure-like dependency analyses of sen-
tences that represent predicate argument struc-
ture. This representation serves to neutralize
some di�erences between related sentence types,
e.g., the regularized parse of related active and
passive sentences are identical, except for the
feature value pair fMood, Passiveg. Nodes (val-
ues) are labeled with head words and arcs (fea-
tures) are labeled with grammatical functions
(subject, object), prepositions (in) and subor-
dinate conjunctions (before).3. For demonstra-
tion purposes, the source tree in Figure 1 is the
input to our translation system and the target
tree is the output.
The transfer rules in Figure 2 can be

used to convert the input tree into the out-
put tree. These transfer rules are pairs of
corresponding rooted substructures, where a
substructure (Matsumoto et al., 1993) is a
connected set of arcs and nodes. A rule

3Morphological features and their values (Gram-
Number: plural) are also represented as arcs and nodes.

consists of either a pair of \open" substructures
(rule 4) or a pair of \closed" substructures (rules
1, 2 and 3). Closed substructures consist of s-
ingle nodes (A,A',B,B',C') or subtrees (the left
hand side of rule 3). Open substructures con-
tain one or more open arcs, arcs without heads
(both substructures in rule 4).

5 Simpli�ed Translation with
Tree-based Transfer Rules

The rules in Figure 2 could combine by �lling
in the open arcs in rule 4 with the roots of the
substructures in rules 1, 2 and 3. The result
would be a closed edge which maps the left tree
in Figure 1 into the right tree. Just as edges of a
chart parser are based on the context free rules
used by the chart parser, edges of our trans-
lation system are based on these transfer rules.
Initial edges are identical to transfer rules. Oth-
er edges result from combining one closed edge
with one open edge. Figure 3 lists the sequence
of edges which would result from combining the
initial edges based on Rules 1{4 to replicate the
trees in Figure 1. The translation proceeds by
incrementally matching the left hand sides of
Rules 1{4 with the input tree (and insuring that
the tree is completely covered by these rules).
The right-hand sides of these compatible rules
are also combined to produce the translation.
This is an idealized view of our system in which
each node in the input tree matches the left-
hand side of exactly one transfer rule: there is
no ambiguity and no combinatorial explosion.
The reality is that more than one transfer rules
may be activated for each node, as suggested
in Figure 4.4 If each of the six nodes of the
source tree corresponded to �ve transfer rules,
there are 56 = 15625 possible combinations of
rules to consider. To produce the output in Fig-
ure 3, a minimum of seven edges would be re-
quired: four initial edges derived from the o-
riginal transfer rules plus three additional edges
representing the combination of edges (steps 2,
3 and 4 in Figure 3). The speed of our system is
measured by the number of actual edges divided
by this minimum.

4The third example listed would actually involve two
transfer rules, one translating \volver" to \repeat" and
the second translating \calcular" to \calculate".
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6 Best First Translation Procedure

The following is an outline of our best �rst
search procedure for �nding a single translation:

1. For each node N , �nd TN , the set of com-
patible transfer rules

2. Create initial edges for all TN

3. Repeat until a \�nished" edge is found or
an edge limit is reached:

(a) Find the highest scoring edge E

(b) If complete, combine E with compati-
ble incomplete edges

(c) If incomplete, combine E with com-
patible complete edges

(d) Incomplete edge + complete edge =
new edge

The procedure creates one initial edge
for each matching transfer rule in the
database5 and puts these edges in a

5The left-hand side of a matching transfer rule is com-
patible with a substructure in the input source tree.
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queue prioritized by score. The pro-
cedure iteratively combines the best
scoring edge with some other compatible
edge to produce a new edge and inserts the new
edge in the queue. The score for each new edge
is a function of the scores of the edges used to
produce it. The process continues until either
an edge limit is reached (the system looks like
it will take too long to terminate) or a complete
edge is produced whose left-hand side is the
input tree: we call this edge a \�nished edge".
We use the following technique for calculating

the score for initial edges.6 The score for each
initial edge E rooted at N , based on rule R is
calculated as follows:

1. SCORE1(S) = log2(
Freq(R)

Freq(All Rules at N) )

Where the frequency (Freq) of a rule is the
number of times it matched an example in
the training corpus, during rule acquisition.
The denominator is the combined frequen-
cies of all rules that match N .

6This is somewhat dependent on the way these trans-
fer rules are derived. Other systems would probably have
to use some other scoring system.

Experiment 1: 1155 sentences

Norm No Norm
Total Translations 1153 1127
Over Edge Limit 2 28
Actual Edges 93,719 579,278
Minimum Edges 22,125 20,125
Edge Ratio 3.3 14.8
Accuracy 70.9 70.9

Experiment 2: 2617 sentences

Norm No Norm
Total Translations 2610 2544
Over Edge Limit 7 73
Actual Edges 262,172 1,398,796
Minimum Edges 48,570 42,770
Edge Ratio 4.0 15.5
Accuracy 62.6 61.5

Figure 5: Results

2. Score(S) = Score1(S) �Norm Factor

Where the Norm (normalization) factor is
equal to the highest SCORE1 for any rule
matching N.

Since the log2 of probabilities are necessarily
negative, this has the e�ect of setting the E of
each of the most probable initial edges to zero.
The scores for non-initial edges are calculated
by adding up the scores of the initial edges of
which they are composed.7

Without any normalization (Score(S) =
SCORE1(S)), small trees are favored over large
trees. This slows down the process of �nding the
�nal result. The normalization we use insures
that the most probable set of transfer rules are
considered early on.

7 Results

Figure 5 gives our results for both experiments
1 and 2, both with normalization (Norm) and
without (No Norm). \Total Translations" refer
to the number of sentences which were translat-
ed successfully by the system and \Over Edge
Limit" refers to the number of sentences which
caused the system to exceed the edge limit, i.e.,
once the system produces over 10,000 edges,
translation failure is assumed. The system cur-

7Scoring for special cases is not included in this paper.
These cases include rules for conjunctions and rules for
words that do not match any transfer rules in a given
context (we currently leave the word untranslated.)



rently will only fail to produce some transla-
tion for any input if the edge limit is exceed-
ed. \Actual Edges" refers to the total number
of edges used for attempting to translate every
sentence in the corpus. \Minimum Edges" refer
to the total minimum number of edges required
for successful translations. The \Edge Ratio"
is a ratio between: (1) \Total Edges" less the
number of edges used in failed translations; and
(2) The \Minimum Edges". This ratio, in com-
bination with, the number of \Over Edge Limit"
measures the eÆciency of a given system. \Ac-
curacy" is an assessment of translation quality
which we will discuss in the next section.
Normalization caused signi�cant speed-up for

both experiments. If you compare the total
number of edges used with and without nor-
malization, speed-up is a factor of 6.2 for Ex-
periment 1 and 5.3 for Experiment 2. If you
compare actual edge ratios, speed-up is a factor
of 4.5 for Experiment 1 and 3.9 for Experiment
2. In addition, the number of failed parses went
down by a factor of 10 for both experiments. As
should be expected, accuracy was virtually the
same with and without normalization, although
normalization did cause a slight improvemen-
t. Normalization should produce the essentially
the same result in less time.
These results suggest that we can probably

count on a speed-up of at least 4 and a signif-
icant decline in failed parses by using normal-
ization. The di�erences in performance on the
two corpora are most likely due to the degree of
hand-tuning for Experiment 1.

7.1 Our Accuracy Measure

\Accuracy" in Figure 5 is the average of the
following score for each translated sentence:

jTNY U

T
TMS j

1=2 � (jTNY U j+ jTMS j)

TNY U is the set of words in NYU's translation
and TMS is the set of words in the original Mi-
crosoft translation. If TNY U = \A B C D E"
and TMS = \A B C F", then the intersection
set \A B C" is length 3 (the numerator) and
the average length of TNY U and TMS is 4 1/2
(the denominator). The accuracy score equals
3� 4 1=2 = 2=3. This is a Dice coeÆcient com-
parison of our translation with the original. It is
an inexpensive method of measuring the perfor-

mance of a new version of our system. Improve-
ments in the average accuracy score for our sam-
ple set of sentences usually reect an improve-
ment in overall translation quality. While it is
signi�cant that the accuracy scores in Figure 5
did not go down when we normalized the scores,
the slight improvement in accuracy should not
be given much weight. Our accuracy score is
awed in that it cannot account for the follow-
ing facts: (1) good paraphrases are perfectly ac-
ceptable; (2) some di�erences in word selection
are more signi�cant than others; and (3) errors
in syntax are not directly accounted for.

NYU's system translates the Spanish sen-
tence \1. Seleccion la celda en la que desea
introducir una referencia" as \1. select the cel-
l that you want to enter a reference in". Mi-
crosoft translates this sentence as \1. Select the
cell in which you want to enter the reference".
Our system gives NYU's translation an accu-
racy score of .75 due to the degree of overlap
with Microsoft's translation. A human reviewer
would probably rate NYU's translation as com-
pletely acceptable. In contrast, NYU's system
produced the following unacceptable translation
which also received a score of .75: the Spanish
sentence \Elija la funci�on que desea pegar en la
f�ormula en el cuadro de di�alogo Asistente para
funciones" is translated as \ \Choose the func-
tion that wants to paste Function Wizard in the
formula in the dialog box", in contrast with Mi-
crosoft's translation \Choose the function you
want to paste into the formula from the Func-
tion Wizard dialog box". In fact, some good
translations will get worse scores than some
bad ones, e.g., an acceptable one word trans-
lation can even get a score of 0, e.g.,\SUPR"
was translated as \DEL" by Microsoft and as
\Delete" by NYU. Nevertheless, by averaging
this accuracy score over many examples, it has
proved a valuable measure for comparing di�er-
ent versions of a particular system: better sys-
tems get better results. Similarly, after tweak-
ing the system, a better translation of a partic-
ular sentence will usually yield a better score.

8 Future Work

Future work should address two limitations of
our current system: (1) Bad parses yield bad
transfer rules; and (2) sparse data limits the size
of our transfer rule database and our options for



applying transfer rules selectively. To attack the
\bad parse" problem, we are considering using
our MT system with less-detailed parsers, since
these parsers typically produce less error-prone
output. We will have to conduct experiments
to determine the minimum level of detail that
is needed.8

Previous to the work reported in this paper,
we ran our MT system on bilingual corpora in
which the sentences were aligned manually. The
cost of manual alignment limited the size of the
corpora we could use. A lot of our recent MT
research has been focused on solving this sparse
data problem through our development of a sen-
tence alignment program (Meyers et al., 1998a).
We now have 300,000 automatically aligned sen-
tences in the Microsoft help text domain for fu-
ture experiments. In addition to providing us
with many more transfer rules, this should allow
us to collect transfer rule co-occurrence infor-
mation which we can then use to apply transfer
rules more e�ectively, perhaps improving trans-
lation quality. In a preliminary experiment a-
long these lines using the Experiment 1 corpus,
co-occurrence information had no noticeable ef-
fect. However, we are hopeful that future ex-
periments with 300,000 aligned sentences (300
times as much data) will be more successful.
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