
Coling 2010: Poster Volume, pages 1050–1058,
Beijing, August 2010

Streaming Cross Document Entity Coreference Resolution

Delip Rao and Paul McNamee and Mark Dredze
Human Language Technology Center of Excellence

Center for Language and Speech Processing
Johns Hopkins University

delip,mcnamee,mdredze@jhu.edu

Abstract

Previous research in cross-document en-
tity coreference has generally been re-
stricted to the offline scenario where the
set of documents is provided in advance.
As a consequence, the dominant approach
is based on greedy agglomerative cluster-
ing techniques that utilize pairwise vec-
tor comparisons and thus require O(n2)
space and time. In this paper we ex-
plore identifying coreferent entity men-
tions across documents in high-volume
streaming text, including methods for uti-
lizing orthographic and contextual infor-
mation. We test our methods using several
corpora to quantitatively measure both the
efficacy and scalability of our streaming
approach. We show that our approach
scales to at least an order of magnitude
larger data than previous reported meth-
ods.

1 Introduction

A key capability for successful information ex-
traction, topic detection and tracking, and ques-
tion answering is the ability to identify equiva-
lence classes of entity mentions. An entity is a
real-world person, place, organization, or object,
such as the person who serves as the 44th pres-
ident of the United States. An entity mention is
a string which refers to such an entity, such as
“Barack Hussein Obama”, “Senator Obama” or
“President Obama”. The goal of coreference res-
olution is to identify and connect all textual entity
mentions that refer to the same entity.

The first step towards this goal is to identify all
references within the same document, or within
document coreference resolution. A document of-
ten has a leading canonical reference to the entity

(“Barack Obama”) followed by additional expres-
sions for the same entity (“President Obama.”)
An intra-document coreference system must first
identify each reference, often relying on named
entity recognition, and then decide if these refer-
ences refer to a single individual or multiple enti-
ties, creating a coreference chain for each unique
entity. Feature representations include surface
form similarity, lexical context of mentions, po-
sition in the document and distance between ref-
erences. A variety of statistical learning meth-
ods have been applied to this problem, including
use of decision trees (Soon et al., 2001; Ng and
Cardie, 2002), graph partitioning (Nicolae and
Nicolae, 2006), maximum-entropy models (Luo
et al., 2004), and conditional random fields (Choi
and Cardie, 2007).

Given pre-processed documents, in which enti-
ties have been identified and entity mentions have
been linked into chains, we seek to identify across
an entire document collection all chains that re-
fer to the same entity. This task is called cross
document coreference resolution (CDCR). Sev-
eral of the challenges associated with CDCR dif-
fer from the within document task. For example,
it is unlikely that the same document will discuss
John Phillips the American football player and
John Phillips the musician, but it is quite proba-
ble that documents discussing each will appear in
the same collection. Therefore, while matching
entities with the same mention string can work
well for within document coreference, more so-
phisticated approaches are necessary for the cross
document scenario where a one-entity-per-name
assumption is unreasonable.

One of the most common approaches to both
within document and cross document corefer-
ence resolution has been based on agglomerative
clustering, where vectors might be bag-of-word
contexts (Bagga and Baldwin, 1998; Mann and

1050

Yarowsky, 2003; Gooi and Allan, 2004; Chen
and Martin, 2007). These algorithms creates a
O(n2) dependence in the number of mentions –
for within document – and documents – for cross
document. This is a reasonable limitation for
within document, since the number of references
will certainly be small; we are unlikely to en-
counter a document with millions of references.
In contrast to the small n encountered within a
document, we fully expect to run a CDCR sys-
tem on hundreds of thousands or millions of doc-
uments. Most previous approaches cannot handle
collections of this size.

In this work, we present a new method for
cross document coreference resolution that scales
to very large corpora. Our algorithm operates in
a streaming setting, in which documents are pro-
cessed one at a time and only a single time. This
creates a linear (O(n)) dependence on the num-
ber of documents in the collection, allowing us
to scale to millions of documents and millions
of unique entities. Our algorithm uses stream-
ing clustering with common coreference similar-
ity computations to achieve large scale. Further-
more, our method is designed to support both
name disambiguation and name variation.

In the next section, we give a survey of related
work. In Section 3 we detail our streaming setup,
giving a description of the streaming algorithm
and presenting efficient techniques for represent-
ing clusters over streams and for computing simi-
larity. Section 4 describes the data sets on which
we evaluate our methods and presents results. We
conclude with a discussion and description of on-
going work.

2 Related Work

Traditional approaches to cross document coref-
erence resolution have first constructed a vector
space representation derived from local (or global)
contexts of entity mentions in documents and then
performed some form of clustering on these vec-
tors. This is a simple extension of Firth’s distribu-
tional hypothesis applied to entities (Firth, 1957).
We describe some of the seminal work in this area.

Some of the earliest work in CDCR was by
Bagga and Baldwin (1998). Key contributions
of their research include: promotion of a set-

theoretic evaluation measure, B-CUBED; intro-
duction of a data set based on 197 New York
Times articles which mention a person named
John Smith; and, use of TF/IDF weighted vec-
tors and cosine similarity in single-link greedy ag-
glomerative clustering.

Mann and Yarowsky (2003) extended Bagga
and Baldwin’s work and contributed several inno-
vations, including: use of biographical attributes
(e.g., year of birth, occupation), and evaluation us-
ing pseudonames. Pseudonames are sets of artifi-
cially conflated names that are used as an efficient
method for producing a set of gold-standard dis-
ambiguations.1 Mann and Yarowsky used 4 pairs
of conflated names in their evaluation. Their sys-
tem did not perform as well on named entities with
little available biographic information.

Gooi and Allan (2004) expanded on the use
of pseudonames by semi-automatically creating
a much larger evaluation set, which they called
the ’Person-X’ corpus. They relied on automated
named-entity tagging and domain-focused text re-
trieval. This data consisted of 34,404 documents
where a single person mention in each document
was rewritten as ’Person X’. Besides their novel
construction of a large-scale resource, they in-
vestigated several minor variations in clustering,
namely (a) use of Kullback-Leibler divergence as
a distance measure, (b) use of 55-word snippets
around entity mentions (vs. entire documents or
extracted sentences), and (c) scoring clusters us-
ing average-link instead of single- or complete-
link.

Finally, in more recent work, Chen and Martin
(2007) explore the CDCR task in both English and
Chinese. Their work focuses on use of both lo-
cal, and document-level noun-phrases as features
in their vector-space representation.

There have been a number of open evaluations
of CDCR systems. For example, the Web People
Search (WePS) workshops (Artiles et al., 2008)
have created a task for disambiguating personal
names from HTML pages. A set of ambiguous
names is chosen and each is submitted to a popular
web search engine. The top 100 pages are then
manually clustered.We discuss several other data

1See Sanderson (2000) for use of this technique in word
sense disambiguation.

1051

sets in Section 4.2

All of the papers mentioned above focus on dis-
ambiguating personal names. In contrast, our sys-
tem can also handle organizations and locations.
Also, as was mentioned earlier, we are commit-
ted to a scenario where documents are presented
in sequence and entities must be disambiguated
instantly, without the benefit of observing the en-
tire corpus. We believe that such a system is bet-
ter suited to highly dynamic environments such as
daily news feeds, blogs, and tweets. Additionally,
a streaming system exposes a set of known entity
clusters after each document is processed instead
of waiting until the end of the stream.

3 Approach

Our cross document coreference resolution sys-
tem relies on a streaming clustering algorithm
and efficient calculation of similarity scores. We
assume that we receive a stream of corefer-
ence chains, along with entity types, as they
are extracted from documents. We use SERIF
(Ramshaw and Weischedel, 2005), a state of the
art document analysis system which performs
intra-document coreference resolution. BBN de-
veloped SERIF to address information extraction
tasks in the ACE program and it is further de-
scribed in Pradhan et al. (2007).

Each unique entity is represented by an entity
cluster c, comprised of entity chains from many
documents that refer to the same entity. Given
an entity coreference chain e, we identify the best
known entity cluster c. If a suitable entity cluster
is not found, a new entity cluster is formed.

An entity cluster is selected for a given corefer-
ence chain using several similarity scores, includ-
ing document context, predicted entity type, and
orthographic similarity between the entity men-
tion and previously discovered references in the
entity cluster. An efficient implementation of the
similarity score allows the system to identify the
top k most likely mentions without considering all
m entity clusters. The final output of our sys-
tem is a collection of entity clusters, each con-
taining a list of coreference chains and their doc-
uments. Additionally, due to its streaming nature,

2We preferred other data sets to the WePS data in our
evaluation because it is not easily placed in temporal order.

the system can be examined at any time to produce
this information based on only the documents that
have been processed thus far.

In the next sections, we describe both the clus-
tering algorithm and efficient computation of the
entity similarity scores.

3.1 Clustering Algorithm
We use a streaming clustering algorithm to cre-
ate entity clusters as follows. We observe a set
of points from a potentially infinite set X , one at
a time, and would like to maintain a fixed number
of clusters while minimizing the maximum cluster
radius, defined as the radius of the smallest ball
containing all points of the cluster. This setup is
well known in the theory and information retrieval
community and is referred to as the dynamic clus-
tering problem (Can and Ozkarahan, 1987).

Others have attempted to use an incremen-
tal clustering approach, such as Gooi and Al-
lan (2004) (who eventually prefer a hierarchi-
cal clustering approach), and Luo et al. (2004),
who use a Bell tree approach for incrementally
clustering within document entity mentions. Our
work closely follows the Doubling Algorithm of
Charikar et al. (1997), which has better perfor-
mance guarantees for streaming data. Streaming
clustering means potentially linear performance in
the number of observations since each document
need only be examined a single time, as opposed
to the quadratic cost of agglomerative clustering.3

The Doubling Algorithm consists of two stages:
update and merge. Update adds points to existing
clusters or creates new clusters while merge com-
bines clusters to prevent the clusters from exceed-
ing a fixed limit. New clusters are created accord-
ing to a threshold set using development data. We
selected a threshold of 0.5 since it worked well in
preliminary experiments. Since the number of en-
tities grows with time, we have skipped the merge
step in our initial experiments so as not to limit
cluster growth.

We use a dynamic caching scheme which backs
the actual clusters in a disk based index, but re-

3It is possible to implement hierarchical agglomerative
clustering in O(n logm) time where n is the number of
points and m in the number of clusters. However this is still
superlinear and expensive in situations where m continually
increases like in streaming coreference resolution.

1052

1 2 3 4 5 6

log(Rank)
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
lo

g
(F

re
q
u
e
n
cy

)

PER
LOC
ORG

Figure 1: Frequency vs. rank for 567k people,
136k organizations, and 25k locations in the New
York Times Annotated Corpus (Sandhaus, 2008).

tains basic cluster information in memory (see be-
low). Doing so improves paging performance as
observed in Omiecinski and Scheuermann (1984).
Motivated by the Zipfian distribution of named en-
tities in news sources (Figure 1), we organize our
cluster store using an LRU policy, which facili-
tates easy access to named entities that were ob-
served in the recent past. We obtain additional
performance gains by hashing the clusters based
on the constituent mention string (details below).
This allows us to quickly retrieve a small but re-
lated number of clusters, k. It is always the case
that k << m, the current number of clusters.

3.2 Candidate Cluster Selection

As part of any clustering algorithm, each new item
must be compared against current clusters. As we
see more documents, the number of unique clus-
ters (entities) grows. Therefore, we need efficient
methods to select candidate clusters.

To select the top candidate clusters, we obtain
those that have high orthographic similarity with
the head name mention in the coreference chain e.
We compute this similarity using the dice score on
either word unigrams or character skip bigrams.
For each entity mention string associated with a
cluster c, we generate all possible n-grams using
one of the above two policies. We then index the
cluster by each of its n-grams in a hash maintained
in memory. In addition, we keep the number of n-

grams generated for each cluster.
When given a new head mention e for a coref-

erence chain, we generate all of the n-grams and
look up clusters that contain these n-grams using
the hash. We then compute the dice score:

dice(e, c) =
|{ngram(e)} ∩ {ngram(c)}|
|{ngram(e)} ∪ {ngram(c)}| ,

where {ngram(e)} are the set of n-grams in entity
mention e and {ngram(c)} are the set of n-grams
for all entity mentions in cluster c. Note that we
can calculate the numerator (the intersection) by
looking up the n-grams of e in the hash and count-
ing matches with c. The denominator is equivalent
to the number of n-grams unique to e and to c plus
the number that are shared. The number that are
shared is the intersection. The number unique to
e is the total number of n-grams in e minus the in-
tersection. The final term, the number unique to c,
is computed by taking the total number of n-grams
in c (a single integer stored in memory) minus the
intersection.

Through this strategy, we can select only those
clusters that have the highest orthographic simi-
larity to e without requiring the cluster contents,
which may not be stored in memory. In our exper-
iments, we evaluate settings where we select all
candidates with non-zero score and a pruned set of
the top k dice score candidates. We also include
in the n-gram list known aliases to facilitate or-
thographically dissimilar, but reasonable matches
(e.g., IBM or ‘Big Blue’ for ‘International Busi-
ness Machines, Inc.’).4

For further efficiency, we keep separate caches
for each named entity type.5 We then select the
appropriate cache based on the automatically de-
termined type of the named entity provided by the
named entity tagger, which also prevents spurious
matches of non-matching entity types.

3.3 Similarity Metric

After filtering by orthographic information to
quickly obtain a small set of candidate clusters,
a full similarity score is computed for the current

4We generated alias lists for entities from Freebase.
5Persons (PER), organizations (ORG), and locations

(LOC).

1053

entity coreference chain and each retrieved can-
didate cluster. These computations require infor-
mation about each cluster, so the cluster’s suffi-
cient statistics are loaded using the LRU cache de-
scribed above.

We define several similarity metrics between
coreference chains and clusters to deal with both
name variation and disambiguation. For name
variation, we define an orthographic similarity
metric to match similar entity mention strings. As
before, we use word unigrams and character skip
bigrams. For each of these methods, we compute
a similarity score as dice(e, c) and select the high-
est scoring cluster.

To address name disambiguation, we use two
types of context from the document. First, we use
lexical features represented as TF/IDF weighted
vectors. Second, we consider topic features, in
which each word in a document is replaced with
the topic inferred from a topic model. This yields
a distribution over topics for a given document.
We use an LDA (Blei et al., 2003) model trained
on the New York Times Annotated Corpus (Sand-
haus, 2008). We note that LDA can be computed
over streams (Yao et al., 2009).

To compare context vectors we use cosine sim-
ilarity, where the cluster vector is the average of
all document vectors assigned to the cluster. Note
that the filtering step in Section 3.2 returns only
those candidates with some orthographic similar-
ity with the coreference chain, so a similarity met-
ric that uses context only is still restricted to ortho-
graphically similar entities.

Finally, we consider a combination of ortho-
graphic and context similarity as a linear combi-
nation of the two metrics as:

score(e, c) = α dice(e, c) + (1− α)cosine(e, c) .

We set α = 0.8 based on initial experiments.

4 Evaluation

We used several corpora to evaluate our meth-
ods, including two data sets commonly used in the
coreference community. We also created a new
test set using artificially conflated names. And fi-
nally to test scalability, we ran our algorithm over
a large text collection that, while it did not have

Attribute smith nytac ace08 kbp09
Total Documents 197 1.85M 10k 1.2M
Annotated Docs 197 19,360 415 **

Annotated Entities 35 200 3,943 **

Table 1: Data sets used in our experiments. For
the kbp09 data we did not have annotations.

ground truth entity clusters, was useful for com-
puting other performance statistics. Properties for
each data set are given in Table 1.

4.1 John Smith corpus

Bagga and Baldwin (1998) evaluated their disam-
biguation system on a set of 197 articles from the
New York Times that mention a person named
’John Smith’. This data exhibits no name variants
and is strictly a disambiguation task. We include
this data (smith) to allow comparison to previous
work.

4.2 NYTAC Pseudo-name corpus

To study the effects of word sense ambiguity
and disambiguation several researchers have ar-
tificially conflated dissimilar words together and
then attempted to disambiguate them (Sanderson,
2000). The obvious advantage is cheaply obtained
ground truth for disambiguation.

The same trick has also been employed in per-
son name disambiguation (Mann and Yarowsky,
2003; Gooi and Allan, 2004). We adopt the same
method on a somewhat larger scale using annota-
tions from the New York Times Annotated Corpus
(NYTAC) (Sandhaus, 2008), which annotates doc-
uments based on whether or not they mention an
entity. The NYTAC data contains documents from
20 years of the New York Times and contains rich
metadata and document-level annotations that in-
dicate when an entity is mentioned in the docu-
ment using a standard lexicon of entities. (Note
that mention strings are not tagged.) Using these
annotations we created a set of 100 pairs of con-
flated person names.

The names were selected to be medium fre-
quency (i.e., occurring in between 50 and 200 ar-
ticles) and each pair matches in gender. The first
50 pairs are for names that are topically similar,
for example, Tim Robbins and Tom Hanks (both
actors); Barbara Boxer and Olympia Snowe (both

1054

smith nytac ace08
Approach P R F P R F P R F
Baseline 1.000 0.178 0.302 1.000 0.010 0.020 1.000 0.569 0.725

ExactMatch 0.233 1.000 0.377 0.563 0.897 0.692 0.977 0.697 0.814
Ortho 0.603 0.629 0.616 0.611 0.784 0.687 0.975 0.694 0.811
BoW 0.956 0.367 0.530 0.930 0.249 0.349 0.989 0.589 0.738
Topic 0.847 0.592 0.697 0.815 0.244 0.363 0.983 0.605 0.750

Ortho+BoW 0.603 0.634 0.618 0.801 0.601 0.686 0.976 0.691 0.809
Ortho+Topic 0.603 0.634 0.618 0.800 0.591 0.680 0.975 0.704 0.819

Table 2: Best B3 performance on the smith, nytac, and ace08 test sets.

US politicians). We imagined that this would be
a more challenging subset because of presumed
lexical overlap. The second set of 50 name pairs
were arbitrarily conflated. We sub-selected the
data to ensure that no two entities in our collec-
tion co-occur in the same document and this left
us with 19,360 documents for which ground-truth
was known. In each document we rewrote the
conflated name mentions using a single gender-
neutral name; any middle initials or names were
discarded.

4.3 ACE 2008 corpus

The NIST ACE 2008 (ace08) evaluation studied
several related technologies for information ex-
traction, including named-entity recognition, re-
lation extraction, and cross-document coreference
for person names in both English and Arabic. Ap-
proximately 10,000 documents from several gen-
res (predominantly newswire) were given to par-
ticipants, who were expected to cluster person and
organization entities across the entire collection.
However, only a selected set of about 400 docu-
ments were annotated and used to evaluate sys-
tem performance. Baron and Freedman (2008)
describe their work in this evaluation, which in-
cluded a separate task for within-document coref-
erence.

4.4 TAC-KBP 2009 corpus

The NIST TAC 2009 Knowledge Base Popula-
tion track (kbp09) (McNamee and Dang, 2009)
conducted an evaluation of a system’s ability to
link entity mentions to corresponding Wikipedia-
derived knowledge base nodes. The TAC-KBP
task focused on ambiguous person, organization,
and geo-political entities mentioned in newswire,
and required systems to cope with name variation

(e.g., “Osama Bin Laden” / “Usama Bin Laden”
or “Mark Twain” / “Samuel Clemens”) as well as
name disambiguation. Furthermore, the task re-
quired detection of when no appropriate KB entry
exists, which is a departure from the conventional
disambiguation problem. The collection contains
over 1.2 million documents, primarily newswire.
Wikipedia was used as a surrogate knowledge
base, and it has been used in several previous stud-
ies (e.g., Cucerzan (2007)). This task is closely re-
lated to CDCR, as mentions that are aligned to the
same knowledge base entry create a coreference
cluster. However, there are no actual CDCR anno-
tations for this corpus, though we used it nonethe-
les as a benchmark corpus to evaluate speed and
to demonstrate scalability.

5 Discussion

5.1 Accuracy
In Table 2 we report cross document coreference
resolution performance for a variety of experi-
mental conditions using the B3 method, which
includes precision, recall, and calculated Fβ=1

values. For each of the three evaluation corpora
(smith, nytac, and ace08) we report values for two
baseline methods and for similarity metrics us-
ing different types of features. The first baseline,
called Baseline, places each coreference chain in
its own cluster while the second baseline, called
ExactMatch, merges all mentions that match ex-
actly orthographically into the same cluster.

Use of name similarity scores as features (in ad-
dition to their use for candidate cluster selection)
is indicated by rows labeled Ortho. Use of lexi-
cal features is indicated by BoW and use of topic
model features by Topic.

Using topic models as features was more help-
ful than lexical contexts on the smith corpus.

1055

#coref chains Baseline ExactMatch Ortho BOW Topics Ortho+BOW Ortho+Topics
1K
10K
20K
30K
40K
50K
60K
70K
80K
90K
100K
110K
120K
130K
140K

1000 702 699 925 857 699 697
10000 4563 4530 7964 7956 4514 4518
20000 8234 8202 15691 15073 8159 8163
30000 11745 11682 23138 21878 11608 11611
40000 15041 14964 30900 28500 14869 14863
50000 18110 18016 38248 34758 17910 17903
60000 20450 20377 44735 40081 20241 20228
70000 22845 22780 51190 45722 22615 22603
80000 25062 25026 57440 51104 24832 24818
90000 27389 27358 64140 56581 27145 27126
100000 29797 29782 71034 62228 29546 29511
110000 32147 32139 77705 67853 31882 31840
120000 34567 34589 84309 73397 34284 34235
130000 36817 36874 90465 78676 36543 36486
140000 38826 38901 96225 83525 38539 38482

0

37500

75000

112500

150000

1K 20K 40K 60K 80K 100K 120K 140K

of

 c
lu

st
er

s
p

ro
d

uc
ed

of entity chains seen

Baseline ExactMatch
Ortho BOW
Topics Ortho+BOW
Ortho+Topics

Figure 2: Number of clusters produced vs. num-
ber of entity chains observed in the stream. Num-
ber of entity chains is proportional to the number
of documents.

When used alone topic beats BoW, but in com-
bination with the ortho features performance is
equivalent. For both nytac and ace08 heavy re-
liance on orthographic similarity proved hard to
beat. On the ace08 corpus Baron and Freedman
(2008) report B3 F-scores of 83.2 for persons and
67.8 for organizations, and our streaming results
appear to be comparable to their offline method.

The cluster growth induced by the various mea-
sures can be seen in Figure 2. The two base-
line methods, Baseline and ExactMatch, provide
bounds on the cluster growth with all other meth-
ods falling in between.

5.2 Hashing Strategies for Candidate
Selection

Table 3 containsB3 F-scores when different hash-
ing strategies are employed for candidate selec-
tion. The trend appears to be that stricter match-
ing outperforms fuzzier matching; full mentions
tended to beat words, which beat use of the char-
acter bigrams. This agrees with the results de-
scribed in the previous section, which show heavy
reliance on orthographic similarity.

5.3 Timing Results
Figure 3 shows how processing time increases
with the number of entities observed in the ace08

#chains 1 5 10 20

1000 2 0 0 1

2000 2 0 0 1

3000 2 0 0 1

4000 2 0 0 1

5000 2 2 0 4

6000 2 2 0 4

7000 2 2 0 4

8000 2 2 0 4

9000 2 2 0 4

10000 2 2 0 4

11000 2 2 0 4

12000 2 2 0 5

13000 2 2 0 6

14000 2 2 0 6

15000 2 2 0 6

16000 2 2 0 6

17000 2 2 0 6

18000 2 2 0 6

19000 2 2 1 7

20000 2 2 1 7

21000 2 2 2 7

22000 2 2 2 7

23000 2 2 3 7

24000 2 2 3 7

25000 2 2 3 7

26000 2 2 3 7

27000 2 2 4 8

28000 2 2 4 9

29000 2 2 5 10

30000 2 2 8 11

31000 2 2 8 12

32000 2 2 8 13

33000 2 2 8 14

34000 2 2 8 15

35000 2 2 8 16

36000 2 2 8 17

37000 2 2 8 18

38000 2 2 9 19

39000 2 2 9 20

40000 2 2 9 21

41000 2 2 10 22

42000 2 2 10 23

43000 2 2 11 24

44000 2 2 12 25

45000 2 2 12 26

46000 2 2 13 27

47000 2 3 14 28

48000 2 3 15 29

49000 2 4 16 30

50000 2 5 17 32

51000 2 6 18 34

52000 2 7 19 36

53000 2 7 20 38

54000 2 7 21 40

55000 2 8 22 41

56000 2 8 23 43

57000 2 9 24 45

58000 2 10 25 47

59000 2 10 26 48

60000 2 11 27 50

61000 2 12 28 52

62000 2 13 29 54

63000 2 13 30 56

64000 2 14 31 58

65000 2 15 32 60

66000 3 16 33 62

67000 3 17 34 63

68000 3 18 35 65

69000 3 19 36 67

70000 3 19 37 68

71000 4 20 38 70

72000 4 21 39 72

73000 4 22 40 73

74000 5 23 41 75

75000 6 24 42 77

76000 6 25 43 79

77000 6 26 44 81

78000 6 27 45 83

79000 7 28 46 85

80000 7 29 47 87

81000 8 30 48 89

82000 8 31 49 91

83000 9 32 50 93

84000 9 33 51 95

85000 9 34 52 97

86000 9 35 53 99

87000 10 36 54 101

88000 10 37 55 102

89000 10 38 56 104

90000 11 39 57 106

91000 13 40 58 108

92000 14 41 59 111

93000 15 42 60 113

94000 15 43 61 115

95000 16 44 62 117

96000 17 45 63 119

97000 17 46 64 121

98000 18 47 65 123

99000 19 48 66 125

100000 20 49 67 127

101000 21 50 68 129

102000 21 51 69 131

103000 22 52 70 133

104000 23 53 71 136

105000 24 54 72 138

106000 25 55 73 140

107000 25 56 74 142

108000 26 57 75 144

109000 27 58 76 146

110000 28 59 77 148

111000 28 60 78 150

112000 29 61 79 153

113000 30 62 80 156

114000 31 63 81 158

115000 32 64 83 161

116000 33 66 84 163

117000 34 67 85 165

118000 35 68 86 167

119000 36 69 87 169

120000 37 70 88 171

121000 38 71 90 174

122000 39 72 92 177

123000 40 73 93 179

124000 41 74 94 181

125000 42 75 95 183

126000 43 76 96 186

127000 44 77 99 188

128000 45 78 100 191

129000 46 79 101 196

130000 47 80 102 198

131000 48 81 103 201

132000 49 82 104 204

133000 50 83 105 207

134000 51 84 106 210

135000 52 85 107 214

136000 53 86 109 217

137000 54 87 110 219

138000 55 89 112 222

139000 56 90 113 225

140000 57 91 115 228

141000 58 92 117 231

142000 59 93 118 234

143000 62 94 120 237

143442 62 94 121 238

1

10

100

1000

1000 25000 49000 73000 97000 121000

T
im

e
 (
se

c
s)

of chains processed

1 5 10 20

Figure 3: Elapsed processing time as a function of
bounding the number of candidate clusters consid-
ered for an entity. When fewer candidates are con-
sidered, clustering decisions can be made much
faster.

document stream. We experimented with using an
upper bound on the number of candidate clusters
to consider for an entity.

Figure 4 compares the efficiency of using three
different methods for candidate cluster identifica-
tion. The most restrictive hashing strategy, using
exact mention strings, is the most efficient, fol-
lowed by the use of words, then the use of charac-
ter skip bigrams. This makes intuitive sense – the
strictest matching reduces the number of candi-
date clusters that have to be considered when pro-
cessing an entity.6

The ace08 corpus contained over 10,000 doc-
uments and is one of the largest CDCR test sets.
In Figure 5 we show how processing time grows
when processing the kbp09 corpus. Doubling the
number of entities processed increases the runtime
by about a factor of 5. The curve is not linear
due to the increasing number of entity cluster’s
that must be considered. Future work will exam-
ine how to keep the number of clusters considered
constant over time, such as ignoring older entities.

6 Conclusion

We have presented a new streaming cross doc-
ument coreference resolution system. Our ap-
proach is substantially faster than previous sys-

6In the limit, if names were unique, hashing on strings
would completely solve the CDCR problem and processing
an entity would be O(1)

1056

smith nytac ace08
Approach bigrams words mention bigrams words mention bigrams words mention

Ortho 0.382 0.553 0.616 0.120 0.695 0.687 0.540 0.797 0.811
BoW 0.480 0.530 0.467 0.344 0.339 0.349 0.551 0.700 0.738
Topic 0.697 0.661 0.579 0.071 0.620 0.363 0.544 0.685 0.750

Ortho+BoW 0.389 0.554 0.618 0.340 0.691 0.686 0.519 0.783 0.809
Ortho+Topic 0.398 0.555 0.618 0.120 0.477 0.680 0.520 0.776 0.819

Table 3: B3 F-scores using different hashing strategies for candidate selection. Name/cluster similarity
could be based on character skip bigrams, words appear in names, or exact matching of mention.

#chains mention string word bigram

1000 2 1 1

2000 2 2 5

3000 2 2 6

4000 2 4 7

5000 3 5 9

6000 4 6 11

7000 5 6 13

8000 5 7 15

9000 6 7 17

10000 6 7 19

11000 7 9 21

12000 7 10 23

13000 7 11 25

14000 9 13 27

15000 9 14 29

16000 10 15 31

17000 10 16 33

18000 11 17 36

19000 12 18 39

20000 12 19 42

21000 13 21 44

22000 13 23 47

23000 13 24 50

24000 14 26 53

25000 15 28 56

26000 16 30 60

27000 16 32 64

28000 17 34 68

29000 17 36 71

30000 18 39 75

31000 19 40 79

32000 21 43 83

33000 22 45 88

34000 23 47 92

35000 24 49 96

36000 26 51 100

37000 26 53 104

38000 27 55 108

39000 27 57 112

40000 28 59 117

41000 29 63 121

42000 30 66 125

43000 31 70 129

44000 33 73 133

45000 34 77 137

46000 35 80 142

47000 36 84 146

48000 36 87 150

49000 38 90 154

50000 39 94 158

51000 40 98 162

52000 41 101 167

53000 42 104 171

54000 44 107 175

55000 45 111 179

56000 46 115 183

57000 48 119 187

58000 49 122 192

59000 49 126 196

60000 50 130 200

61000 51 134 204

62000 52 139 208

63000 53 143 212

64000 56 146 217

65000 57 150 222

66000 59 155 227

67000 60 158 232

68000 62 163 237

69000 62 167 242

70000 63 170 247

71000 65 173 252

72000 66 178 257

73000 67 183 262

74000 67 186 267

75000 68 191 273

76000 69 194 277

77000 70 198 282

78000 70 202 287

79000 71 207 292

80000 72 211 297

81000 73 215 302

82000 73 219 307

83000 74 224 312

84000 74 229 317

85000 75 233 322

86000 76 238 328

87000 77 243 333

88000 77 246 338

89000 78 250 343

90000 78 254 348

91000 79 258 353

92000 80 262 358

93000 80 268 363

94000 81 273 368

95000 82 277 373

96000 82 281 378

97000 83 284 384

98000 84 288 389

99000 84 293 394

100000 85 297 400

101000 85 300 406

102000 85 303 413

103000 85 307 419

104000 85 310 425

105000 86 314 431

106000 87 319 438

107000 89 325 444

108000 90 330 450

109000 91 334 456

110000 91 339 463

111000 92 343 469

112000 92 348 476

113000 93 352 482

114000 94 357 489

115000 95 362 495

116000 95 366 501

117000 96 369 507

118000 96 373 513

119000 96 377 520

120000 97 382 526

121000 97 387 532

122000 100 392 539

123000 100 395 546

124000 101 399 552

125000 101 403 558

126000 102 408 564

127000 102 412 571

128000 103 417 577

129000 104 421 583

130000 104 425 589

131000 105 430 596

132000 106 435 602

133000 108 441 609

134000 109 446 615

135000 111 452 622

136000 112 457 628

137000 113 461 634

138000 113 467 640

139000 114 472 648

140000 115 479 655

141000 116 484 662

142000 117 489 669

143000 118 494 676

143442 118 497 679

1

10

100

1000

1000 25000 49000 73000 97000 121000

T
im

e
 (
se

c
s)

of coref chains processed

mention string word bigram

Figure 4: Comparison of three hashing strategies
for identifying candidate clusters for a given en-
tity. The more restrictive strategies lead to faster
processing as fewer candidates are considered.

tems, and our experiments have demonstrated
scalability to an order of magnitude larger data
than previously published evaluations. Despite its
speed and simplicity, we still obtain competitive
results on a variety of data sets as compared with
batch systems. In future work, we plan to investi-
gate additional similarity metrics that can be com-
puted efficiently, as well as experiments on web
scale corpora.

References
Artiles, Javier, Satoshi Sekine, and Julio Gonzalo.

2008. Web people search: results of the first evalua-
tion and the plan for the second. In World Wide Web
(WWW).

Bagga, Amit and Breck Baldwin. 1998. Entity-
based cross-document coreferencing using the vec-
tor space model. In Conference on Computational
Linguistics (COLING).

Baron, Alex and Marjorie Freedman. 2008. Who

#coref chains processed Time (secs)

1K 1.5

100K 10

200K 40

400K 120

600K 700

900K 920

1.1M 1200

1

10

100

1000

10000

1K 100K 200K 400K 600K 900K 1.1M
T

im
e
 (
se

c
s)

of coref chains processed

Figure 5: The number of coreference chains pro-
cessed over time in the kbp09 corpus. The pro-
cessing of over 1 million coreference chains is at
least an order of magnitude larger than previous
systems reported.

is Who and What is What: Experiments in cross-
document co-reference. In Empirical Methods in
Natural Language Processing (EMNLP).

Blei, D.M., A.Y. Ng, and M.I. Jordan. 2003. Latent
dirichlet allocation. Journal of Machine Learning
Research (JMLR), 3:993–1022.

Can, F. and E. Ozkarahan. 1987. A dynamic clus-
ter maintenance system for information retrieval. In
Conference on Research and Development in Infor-
mation Retrieval (SIGIR).

Charikar, Moses, Chandra Chekuri, Tomás Feder, and
Rajeev Motwani. 1997. Incremental clustering and
dynamic information retrieval. In ACM Symposium
on Theory of Computing (STOC).

Chen, Ying and James Martin. 2007. Towards ro-
bust unsupervised personal name disambiguation.
In Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Choi, Y. and C. Cardie. 2007. Structured local training
and biased potential functions for conditional ran-
dom fields with application to coreference resolu-
tion. In North American Chapter of the Association

1057

for Computational Linguistics (NAACL), pages 65–
72.

Cucerzan, Silviu. 2007. Large-scale named entity
disambiguation based on wikipedia data. In Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 708–716.

Firth, J.R. 1957. A synopsis of linguistic theory 1930-
1955. In Studies in Linguistic Analysis, pages 1–32.
Oxford: Philological Society.

Gooi, Chung Heong and James Allan. 2004. Cross-
document coreference on a large scale corpus. In
North American Chapter of the Association for
Computational Linguistics (NAACL).

Luo, X., A. Ittycheriah, H. Jing, N. Kambhatla, and
S. Roukos. 2004. A mention-synchronous corefer-
ence resolution algorithm based on the bell tree. In
Association for Computational Linguistics (ACL).

Mann, Gideon S. and David Yarowsky. 2003. Unsu-
pervised personal name disambiguation. In Confer-
ence on Natural Language Learning (CONLL).

McNamee, Paul and Hoa Dang. 2009. Overview of
the TAC 2009 knowledge base population track. In
Text Analysis Conference (TAC).

Ng, V. and C. Cardie. 2002. Improving machine learn-
ing approaches to coreference resolution. In Asso-
ciation for Computational Linguistics (ACL), pages
104–111.

Nicolae, C. and G. Nicolae. 2006. Bestcut: A
graph algorithm for coreference resolution. In Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 275–283. Association for Compu-
tational Linguistics.

Omiecinski, Edward and Peter Scheuermann. 1984. A
global approach to record clustering and file reorga-
nization. In Conference on Research and Develop-
ment in Information Retrieval (SIGIR).

Pradhan, S.S., L. Ramshaw, R. Weischedel,
J. MacBride, and L. Micciulla. 2007. Unre-
stricted coreference: Identifying entities and events
in ontonotes. In International Conference on
Semantic Computing (ICSC).

Ramshaw, L. and R. Weischedel. 2005. Information
extraction. In IEEE ICASSP.

Sanderson, Mark. 2000. Retrieving with good sense.
Information Retrieval, 2(1):45–65.

Sandhaus, Evan. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia.

Soon, Wee Meng, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistics.

Yao, L., D. Mimno, and A. McCallum. 2009. Effi-
cient methods for topic model inference on stream-
ing document collections. In Knowledge discovery
and data mining (KDD).

1058

