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ABSTRACT
Named entity recognition (NER) has been extensively studied for the names of genes and gene
products but there are few proposed solutions for phenotypes. Phenotype terms are expected
to play a key role in inferring gene function in complex heritable diseases but are intrinsi-
cally difficult to analyse due to their complex semantics and scale. In contrast to previous
approaches we evaluate state-of-the-art techniques involving the fusion of machine learning
on a rich feature set with evidence from extant domain knowledge-sources. The techniques are
validated on two gold standard collections including a novel annotated collection of 112 ab-
stracts derived from a systematic search of the Online Mendelian Inheritance of Man database
for auto-immune diseases. Encouragingly the hybrid model outperforms a HMM, a CRF and
a pure knowledge-based method to achieve an F1 of 77.07. Disagreement analysis points to
further improvements on this emerging NE task. The annotated corpus and guidelines are
available on request.

KEYWORDS: conditional random fields, biomedicine, machine learning, genetic disorders, text
mining.
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1 Introduction

Biomedical named entity recognition (NER) is a computational technique used to identify and
classify strings of text (mentions) that designate important concepts in biomedicine. Over the
last fourteen years there has been considerable interest in this problem with a variety of generic
and entity-specific algorithms applied to extract the names of genes, gene products, cells, chem-
ical compounds and diseases (Fukuda et al., 1998; Rindflesch et al., 1999; Collier et al., 2000;
Kazama et al., 2002; Zhou et al., 2003; Settles, 2004; Kim et al., 2004; Leaman and Gonzalez,
2008). As the first stage in the integrated semantic linking of knowledge between literature
and structured databases it is critically important to maximise the effectiveness of this step.

Despite significant progress in NER there is still no one size fits all solution. Barriers arise
because of ambiguity in the text and coding schema. Ambiguity in the text comes in vari-
ous forms according to the semantic type of the entity but can be caused by a lack of stan-
dard nomenclatures, extensive and growing nomenclatures for proteins/genes across multi-
ple organisms or the widespread use of abbreviations and descriptive names. For example,
(Krauthammer and Nenadic, 2004) illustrate uncontrolled naming in genes with bridge of sev-
enless (boss) (FlyBase ID FBgn0000206) and Hunter and Bretonnel Cohen (2006) discuss term
class ambiguity (e.g. is group a chemical entity or an assemblage of organisms?). Such chal-
lenges have led to a variety of proposed solutions involving a wide range of resources. Among
these, linguistically annotated corpora such as GENIA (Tateisi et al., 2000; Kim et al., 2003)
have proven to be central to the NER solution. However due to the size of the vocabularies
involved, annotated corpora by themselves do not provide a complete solution. Researchers
have therefore also looked at the rich availability of formally structured biomedical knowledge
(ontologies) such as the Unified Medical Language System (UMLS) (Bodenreider et al., 2002)
and the Gene Ontology (Gene Ontology Consortium, 2000). Nevertheless corpora remain a
key part of the solution as they provide the contextual evidence that link mentions to terms
through the author’s intentions. Creating such resources though is time consuming and expen-
sive, especially when annotating new semantic types and relations.

In this paper we focus on the analysis and identification of a new class of entity: phenotypes.
Two thoughts motivate this: (1) The database curation community has expressed a wish for
full text entity indexing and the inclusion of phenotypes (Dowell et al., 2009; Hirschman et al.,
2012), and (2) Biomedicine is rapidly moving towards full-scale integration of data, open-
ing up the possibility to understand complex heritable diseases caused by genes. Association
studies involving phenotypes are considered important to making progress (Lage et al., 2007;
Wu et al., 2008). The ultimate goal of the work we present here is to allow relations mined
from sentences such as the one we annotated below to feed into novel hypothesis generation
procedures. From Ex 1. the reader can easily infer a relation between IgG1 disorder and three
genes/gene products marked as GGP.

Ex 1. Among [patients]ORG with [systemic lupus erythematosus]DIS ([SLE]DIS), those with
the [IgG1 disorder]PHEN have a higher prevalence of high titre [rheumatoid factor]GGP and
[antinuclear antibody]GGP , but a lower prevalence of [anti-double-stranded DNA (anti-dsDNA)
antibodies]GGP above 30 U/ml. (Source PMCID: PMC1003566).

Whilst other authors have tried similar approaches for other entity types, none have tried both
machine learning and external resource lookup for a class as rich and semantically complex as
phenotypes. The key contributions of this paper are: (1) To provide an operational semantics
for identifying phenotype candidates in text, (2) To introduce a set of guidelines and an anno-
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tated corpus based on a selection of 19 clinically significant auto-immune diseases from The
Online Mendelian Inheritance of Man (OMIM) (Hamosh et al., 2005), one of the most widely
used gene-disease databases, and (3) To mitigate linguistic variation whilst still meeting the
conceptual expectations of biologists we propose a new named entity solution that uses sta-
tistical inference and external manually crafted resources. This method is tested on the new
corpus and one extant corpus (Khordad et al., 2011) that has been used in previously reported
experiments.

2 The challenge of phenotypes

Freimer and Sabatti (2003) describe phenotypes as referring to ‘any morphologic, biochem-
ical, physiological or behavioral characteristic of an organism. . . . All phenotypic character-
istics represent the expression of particular genotypes combined with the effects of specific
environmental influences.’ Despite recent data integration efforts for phenotypes such as
(Robinson and Mundlos, 2010), phenotypic descriptions still tend to be author/study specific
and biological results may go undiscovered if the terms used lie outside an author’s immediate
research area (Bard and Rhee, 2004). Again, unlike genes or anatomic structures, phenotypes
and their traits are complex concepts and do not constitute a homogeneous class of objects (i.e.
a natural kind).

Traits such as ‘eye colour’, ‘blood group’, ‘hemoglobin concentration’ or ‘facial grimacing’ de-
scribe morphological structures, physiological processes and behaviours. When qualities or
quantities of traits are used to describe a specific organism then we have phenotypic descrip-
tions, e.g. ‘blue eyes’, ‘blood group AB’, ‘not having between 13 and 18 gm/dl hemoglobin
concentration’.

Traits and phenotypes can apply at all levels of anatomical granularity from chemical structures
to cells and organs making it difficult to know where to draw a boundary. Phenotypes can
include quantifications that are either specific (e.g. ‘18 gm/dl’) or relative (e.g. ‘normal’ or
‘increased’). Accordingly the first part of this paper deals with specifying exactly what we mean
by the concepts of ‘phenotype’ with reference to current ontological research.

3 Methods

3.1 Schema

We employed two types of entity in our study: gene/gene product (GGP) and bodily feature
(BF). GGP is proposed because (a) a subset of these entities are useful for applications that
explore gene-phenotype relations, and (b) it allows us to compare our results against the many
biomedical NER studies of the past, e.g. (Kim et al., 2004; Rebholz-Schuhmann et al., 2010).
Because of space limitations we will not provide a rigidly formal definition or a taxonomic
analysis (Beisswanger et al., 2008). Future work will explore the relationships between these
and other entity types.

In line with BioTop (Beisswanger et al., 2008), GGP is relatively straightforward to define by
the conjunction of (BioTop ID Nucleic Acid Structure) and (BioTop ID Peptide Structure).

Definition: A GGP (gene/gene product) entity is a mention of one of three major macro-
molecules DNA, RNA or protein. DNA and RNA are nucleic acid sequences containing
the genetic instructions used in the development and function of an organism. Proteins
are polypeptide sequences, or parts of polypeptide sequences, folded into structures that
facilitate biological function.
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Examples include: [cryoglobulins], [anticariolipin antibodies], [AFM044xg3], [chromosome
17q], [CC16 protein] .

Our definition of phenotype was taken from the formal analysis in Scheuermann et al.
(Scheuermann et al., 2009) who define phenotype as ‘A (combination of) bodily features(s) of
an organism determined by the interaction of its genetic make-up and environment’. It is impor-
tant to recognise that this definition requires us to know the underlying cause. Since causality
is often difficult to establish using narrow contextual evidence of the sort used in NER it seems
reasonable that we focus here on identifying bodily features themselves, i.e. phenotype candi-
dates, and then determine causality in another stage of processing.

Definition: A BF (bodily feature) entity is a mention of a bodily quality in an organism.

Examples include: [lack of kidney], [abnormal cell migration],[absent ankle reflexes] as well
as more complex cases such as [no abnormality in his heart], [unfavorable serum lipid levels]
and [suceptibility to ulcerative colitis].

Our definition of bodily features require two caveats (a) in contrast to Khordad et al. (2011)
we did not apply a granular cut off at the level of cell, and (b) because of the diversity of bodily
features across organisms we took a decision to focus our definition of this entity on mouse
as a model organism and human as the most important species. Following the discussion of
phenotypes as processes in physiology (Hoehndorf et al., 2012) we include some mentions of
processes within the scope of our annotation schema.

Linguistic forms of entities require a number of policy decisions to be made about how to an-
notate mentions in text. For a class as complex as phenotypes this is a particular consideration.
Although more complex approaches exist, for simplicity we make the common assumption here
that named entities are ‘continuous, non-nested and non-overlapping’ (Alex et al., 2007). As
a basic policy we do not allow embedding of entities within our corpus so annotators have to
make a choice of entity class based on the longest matching span even though one entity may
contain another entity of the same or a different type. We leave to future work consideration
of other approaches, e.g. for handling discontinuous entity mentions. Within our guidelines
we describe whether specific, generic, underspecified and negatively quantified mentions qual-
ify. A summary of the rule set (available from the first author) is shown in Table 1. We
follow (Magnini et al., 2006) in differentiating between specific, generic and underspecified
mentions.

3.2 Annotated data sources

3.2.1 Phenominer

The Phenominer version 1 corpus contains 112 abstracts we selected from PubMed Central
(PMC). 19 auto-immune diseases were selected from OMIM and from these records citations
were then chosen. Diseases include Type 1 diabetes, Grave’s disease, Crohn’s disease, auto-
immune thyroid disease, multiple sclerosis and inflammatory arthritis. In order to ground
the article in discussion about both a disease and a phenotype, citations needed to contain
the auto-immune disease term and at least one term from either OMIM’s free form clinical
synopsis field, the Human Phenotype Ontology (HPO) (Robinson and Mundlos, 2010) or the
Mammalian Phenotype Ontology (MP) (Smith and Eppig, 2009).

Despite being small, the number of annotated abstracts is consistent with several previous spe-
cialised studies, e.g. (Suakkaphon et al., 2011; Collier et al., 2000). Annotation was carried
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BF GGP
specific reference Yes Yes
generic reference Yes Yes
underspecified reference No No
modifiers Yes1,2 No
conjunctions Yes3 Yes3

processes Yes4 No
negation Yes5 No

Table 1: Referential semantics and scoping of mentions by entity type. Notes on annotation:
1 Quantitative modifiers are included, e.g. [having five fingers] as well as spatial modifiers,
e.g. [abnormality in his left hand]. 2 Qualitative modifiers are included such as physical
components: [black hair], underspecified ranges: [normal height], locational modifiers: [low
set ears], and level modifiers: [quite small fingers].3 Where there is elision of the head, e.g.
[IA/H5 virus], then we annotate the whole expression. Otherwise we annotate each expression
separately, e.g. [IA virus] and [H5 virus]. 4 We exclude finite verb forms, infinite verb forms
with ‘to’, verbs in a progressive or perfect aspect, verb phrases, clauses or sentences and any
phrase with a relative clause or complement clause. 5 If the negation appears in a noun phrase
with an anatomical entity then we generally allow it, e.g. [absent ankle reflexes], [no left
kidney].

out by the same highly experienced biomedical annotator who had annotated the GENIA cor-
pus. The total number of tokens (sentences) in the corpus is 26,026 (1976) from which there
were 1611 GGP entities and 472 BF entities.

3.2.2 KMR

As a basis of comparison we test our methods on the same corpus and tagging model as
Khordad et al. (2011) who used a collection of 3784 tokens (120 sentences) with 110 an-
notated phenotype mentions. This is designated as the KMR corpus. In contrast to the Phe-
nominer corpus sentences in KMR were taken from 4 PubMed papers from the year 2009 in
the area of human genetics. Annotation was conducted with reference to the HPO so that a
term was tagged as phenotype if it was in the HPO or if it was not in the HPO but its definition
showed that it was caused by a genotype (Khordad, 2012). Finally we found that there was
no cross over of sentences between the Phenominer and KMR corpora.

3.3 Models

The full system we developed (designated in the Results as Hybrid) employs machine learning
and knowledge-based approaches, combined together with a rule-based Merge module. This
is illustrated in Figure 1. Below we briefly describe its component modules and resources. As
a baseline comparison we use Khordad’s approach, designated in the Results as Khordad and
in Figure 1 as the Rule matching module - see Khordad et al. (2011).
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Figure 1: Phenotype tagging architecture

3.3.1 Pre-processing

The text collections are passed into a module which splits texts into sentences and tokens.
This was done using the OpenNLP library with a Maximum Entropy model1. Abbreviation
expansion is then done using BioText (Schwartz and Hearst, 2003) to make a list of local
abbreviation occurring in each paper which we then replace with their full form. A similar
approach is adopted by Khordad in their staged rules.

3.3.2 Machine learning labeler

Within the machine learning module we compare two widely used sequence labeling models:
a second order Hidden Markov Models (HMM) (Rabiner and Juang, 1986; Bikel et al., 1997)
with Viterbi decoding and a linear chain Conditional Random Fields (CRF) (Lafferty et al.,
2001; McDonald and Pereira, 2005). Both are run as fully supervised models. Class labels
for tokens follow the standard BIO system, i.e. each token receives the label O if it is not
an NE, B plus the entity name when it starts an entity, and I plus the entity name when it is
inside an entity. The main advantage of the CRF over the vanilla HMM is that it estimates
the conditional probability distribution over labeled sequences. Both use the freely available
Java-based MALLET implementation2 with default parameters.

Previous research has found that utilizing various features for both the focus word (designated

1OpenNLP library: http://opennlp.apache.org
2Mallet: A machine learning for language toolkit: http://mallet.cs.umass.edu/
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as wi) and the surrounding words is crucial to obtain high performance. We take our feature
set for BF and GGP labeling from the most typical and effective features used for biomedical
NER (Kim et al., 2004). This is summarised in Table 2. Our experiments tested a variety of
unigram, bigram and conjoined base features. These were taken from a±2 window around the
focus word for parts of speech, orthography and surface word forms. POS tagging was done
using the OpenNLP library with Maximum Entropy model and Genia Corpus + WSJ Corpus
(F-score 98.4%), there are 44 Penn Treebank POS tags and all of them are used. The HMM did
not use conjoined features due to model memory limitations.

Feature Description Example
LX Current word token wi
MM MetaMap tag of the token2 cgab,fndg,neop
OR Orthography of the token initCap, isDate, allCap, isDigit
CT Word token context

History context of the token wi−2 , wi−1
Future context of the token wi+1 , wi+2
Conjoined context wi−2 . wi−1

POS1 Part of speech tag of the token RB, CD, NN, JJ, NNP

Table 2: Feature sets used in the machine learning labeler. 1Part of speech tags are assigned by
training the GENIA tagger (Tsuruoka et al., 2005). 2 The MetaMap semantic tags are chosen
from the same group of 15 semantic types chosen by Khordad which are relevant for pheno-
types.
In addition to the Phenominer and Khordad corpora outlined earlier we also make use of the
JNLPBA04 corpus (Kim et al., 2004) for training the GGP labeler. The corpus contains 2000
Medline abstracts selected by a search using terms human, blood cell, transcription factor and
then hand annotated for 5 NE classes including RNA, DNA and protein which we merge to
form our GGP class. Table 3 summarises the features exploited by the two learner models.

Model Target Phenominer JNLPBA04 LX MM OR CT POS
class corpus1 corpus

HMM BF + - + - - + -
CRF BF + - + + + + +
HMM GGP + + + - - + -
CRF GGP + + + + + + +

Table 3: Resource combinations compared in our experiments. 1This is applied within the
10-fold cross validation framework.

3.3.3 Knowledge-based labeler

The knowledge-based labeler is divided into Rule matching and Dictionary matching modules.
Rule matching is an implementation of Khordad’s approach using MetaMap, a subset of the
UMLS, the HPO as well as 5 staged heuristics to identify phenotypes. For example, if a phrase
has the form: “modifier (from the list of selected modifiers3) +[Anatomy] or [Physiology]" it
is a phenotype name.

3The list of 85 high frequency modifiers from the HPO is available from the first author
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Dictionary matching uses a longest string matching approach to recognise entities from the
following resources: BF entities from the HPO (9500 terms describing human phenotypes)
and the MP (9162 terms describing mouse phenotypes); GGP entities from the National Center
for Biotechnology Information’s gene list (9 million gene names). These sources were chosen
because of their high standing within the biomedical community.

3.3.4 Merge results

Merge results assigns the final entity label to each token in the corpus by applying the following
rules to each source module output. Processing proceeds sentence by sentence.

1. Following Jimeno et al. (2008) we combine the putative entity labels by collecting any
entity-specific result that has been proposed by at least one method. This is intended to
maximise recall. Thus, the O tag (non-entity label) has the least priority.

2. Based on our ontological analysis of BF and GGP it is often possible for a GGP to form
a fully embedded part of a BF mention. For example, [[HLA-DQ]GGP expression]BF . We
therefore apply a longest span rule and give priority to BF over GGP giving [HLA-DQ
expression]BF .

3. If there is a boundary conflict, we merge neighbouring entity mentions that share parts
of their token sequence. For example, if we have [AB]GGP and [BC]BF then we merge
them into one phrase [ABC] and label it with the highest priority tag, i.e. BF. Although
this appears rare in GGP and BF we included this rule for expandability when we want
to introduce further entity classes.

4 Evaluation

4.1 Metrics

We follow standard metrics of evaluation for the task using F1 as our primary method of
comparison4. In these experiments matching is calculated using partial matching, i.e. a correct
match is recorded when the span of text that is manually annotated in the gold standard corpus
and the span of text output as an entity by the NER tagger partially overlap. For example a
system annotation of [median cleft lip]/palate would be judged correct for a gold standard
annotation of median [cleft lip/palate]. Various authors in the biomedical NER domain such as
Kabiljo et al. (2009) have offered a reason for why this or other methods such as sloppy left
boundary matching might be preferred to strict matching for genes and proteins. In summary
it is thought that with partial matching, for the entity types examined so far, the core part of
the entity was in most cases correctly found. In contrast, strict matching places too much faith
in arbitrary choices in annotation guidelines.

4.2 Experiments on the KMR corpus

Our initial test run is conducted on the KMR corpus with micro-averaged F1 scores shown in
Table 4. Since the corpus only contains phenotype tags no GGP results are shown.

We noted that curiously the results we observed for Khordad’s method are slightly down by
approximately 3 points of F1 on those given in their article. This appears mostly to affect

4F1 is the harmonic mean of recall (R) and precision (P) and is calculated as F1= 2PR/P + R.
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precision rather than recall and is possibly due to implementation differences such as changes
to MetaMap/UMLS. Given the small amount of training data it is not surprising to see the pure
machine learning based methods perform relatively poorly (F1:34.07,68.29) against the pure
knowledge based approach (F1:83.29). Khordad’s staged rule based system with dictionary
lookup performs the best (F1:89.58) with the new Hybrid approach a reasonably close second
(F1:85.27). It is encouraging though to see that the rule-based combination of the learner and
KB outputs add value to the KB-only result.

Model
Class Metric Khordad HMM CRF KB1 Hybrid2

BF P 90.74 37.54 65.09 87.64 86.37
R 88.44 31.18 71.83 79.36 84.19
F 89.58 34.07 68.29 83.29 85.27

Table 4: (F)-scores, (R)ecall and (P)recision for each entity type on the KMR corpus using
models with partial matching. 1The KB method uses the Merge module to resolve conflicts.
2Hybrid refers to the jointly applied system.

4.3 Experiments on the Phenominer corpus

For the Phenominer data set we chose to add the GENIA NER tagger trained on the JNLPBA04
corpus as a baseline for GGP. Note that we also combined this corpus data with Phenominer
for training the CRF and HMM GGP recogniser. Khordad’s method remains as our baseline
for phenotypes. Micro-averaged F1 scores are shown in Table 5. With regard to GGP entities
we observed that whilst the GENIA tagger performed robustly (F1:80.89), the Hybrid model
appears to significantly outperform this (F1:85.48). The surprising result is that Khordad’s
method performs relatively poorly (F1:61.38) on BF. Again we try to dig down into the results
in the Discussion to get an understanding behind the complex contributing factors.

Model
Class Metric Khordad GENIA3 HMM1,2 CRF1 KB4 Hybrid5

BF P 65.89 - 34.67 66.32 61.24 78.21
R 57.44 - 38.11 64.17 60.91 75.96
F 61.38 - 36.31 65.23 61.07 77.07

GGP P - 78.35 64.03 76.84 92.74 86.67
R - 83.61 65.80 80.07 61.31 84.32
F - 80.89 64.90 78.42 73.82 85.48

Total Micro avg-F - - 56.46 75.19 71.62 85.04
Macro avg-F - - 50.61 71.83 67.45 81.28

Table 5: (F)-scores, (R)ecall and (P)recision for each entity type on the Phenominer corpus
using models with partial matching. 1HMM and CRF are trained separately on each entity class
and resolved in the Merge module. 2Training included the JNLPBA04 corpus data for GGPs.
3The GENIA method is the GENIA NER tagger trained on the GGP entities in the JNLPBA04
corpus. 4The KB method uses the Merge module to resolve conflicts. 5Hybrid refers to the
jointly applied system.
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5 Discussion

The results on the Phenominer corpus for Hybrid (F1:77.07) on BF are very encouraging and as
we hoped demonstrate the strength of combining a mildly context sensitive ML approach with
knowledge base lookup. Current NE methods based on a state-of-the-art learning approach
such as CRF seem well suited to non-complex NE types such as GGP but maybe less effective
for complex entities such as BF. Given the small size of the corpora we must be cautious in this
conclusion. With regard to the KB approach for BF, our first impression was that the phenotype
resources (HPO and MP) may to some extent lack coverage on the Phenominer corpus but we
discuss below why this conclusion maybe too simplistic.

We start our analysis with the necessary observation that the Phenominer and KMR corpora
do not offer a strict like-for-like comparison and are therefore most useful to highlight areas of
difficulty. Importantly as we noted in Section 2, there is the issue of causality which is implicitly
encoded into Khordad’s schema and absent from ours. This means that our bodily features may
not have a genetic or environmental cause. There is also the issue of granularity: our schema is
more complex as it encodes bodily features from the genetic level upwards whereas Khordad’s
operates on the cellular level upwards. A statistical analysis points to further differences. We
found that the average phenotype mention length in the KMR corpus was 1.72 tokens with the
longest term being 5 tokens: [hypoplasia of the corpus callosum]. In contrast the average bodily
feature mention in Phenominer is 2.89 tokens with the longest being [susceptibility to psoriasis
(PS) and psoriatic arthritis (PSA)]. The longest GGP in Phenominer is 16 tokens: [chromosomes
1 (D1S235), 4 (D4S1647), 12 (D12S373), 16 (D16S403), and 17 (D17S1301))]. Both of these
examples from Phenominer indicate structural term issues related to coordination and elipsis
which are not easily handled by the simple longest term match approach that we have adopted.

Table 6 shows examples of where the Hybrid method disagreed with the KMR corpus. Whilst
we have not conducted an in-depth analysis the examples seem reasonable and indicative of
differences between the two coding schemas regarding causality of a bodily feature, algorith-
mic differences in how we prioritize UMLS semantic types related to Disorder and gaps in the
knowledge resources.

No. Standard System Issue1 Cause of error
annotation annotation

1 eversion of the - FN Cannot be found in HPO
lateral eyelid or by rule matching

2 cervical - FN Hybrid system does not
rachischisis include default assignment

for UMLS semantic types
3 absent nervi - FN

olphactorii
4 - pregnancy FP Bodily feature does not
5 - female FP differentiate between
6 - height FP normal and abnormal

Table 6: Sources of error by the Hybrid system on the KMR corpus. 1 FN: False Negative; FP:
False Positive.
Table 7 looks now at examples in the Phenominer corpus where the Hybrid approach disagreed

656



with Khordad’s model. In the table the Hybrid model output agrees with the annotated corpus
and the Issue column refers to the Khordad annotation. We see in particular that differences
in the schema semantics account for many of the errors. The Phenominer schema for bod-
ily features does not include disease mentions and simple anatomical entities but these may
both be considered as phenotypes by the HPO. Clearly a notion of the compositional semantic
relationships between types within terms is important to fully resolve the score differences.

Since Khordad’s method relies to a greater extent than Hybrid on the HPO, we tested a number
of terms from the Phenominer corpus by searching for them in the HPO. Using the exact match
facility in OBO-Edit5 we found several gaps. The following terms could not be found: complex
terms such as [perivascular distribution and granular deposits of immunoglobins] as well as some
gene specific terms such as [IGG1 disorder]. Surprisingly several seemingly common terms
such as [kidney impairment] and [abnormal thyroid function] could also not be identified from
a simple exact match. In the case of [kidney impairment] a suitable match might be found
in Abnormality of renal physiology (HPO ID 0000082) by replacing the organ name with its
anatomical adjective. Of 12 BF mentions in the Phenominer corpus that were not in the HPO
our analysis revealed that 9 of them could be found by Hybrid. The ones that were not found
tended to be very long and involved either coordination or a preposition phrase.

No. Hybrid Khordad Issue1 Cause of error
annotation2 annotation

1 pathogenic - FN These entries do not belong to
process the UMLS’s 15 target types, and

2 gene - FN are not in the HPO, and
expression cannot be recognised by the

3 RA - FN pattern rules.
susceptibility -

4 - Inflammatory FP Although this is present in
bowel HPO it is considered as a
disease disease in our guidelines

5 - enteropathy FP Although this is present in
bowel HPO it is considered as an
disease anatomical entity in our

guidelines
6 - asthma FP Although this is present in

susceptibility HPO it is considered as
gene GGP in our guidelines

Table 7: Sources of error by Khordad’s system on the Phenominer corpus. 1 FN: False Negative;
FP: False Positive. 2 We show here Hybrid system outputs that are correctly annotated.

Finally we show examples of disagreement for the Hybrid method on the Phenominer corpus in
Table 8. As is common the biomedical literature we noticed a high proportion of coordination
issues as well as ambiguity caused by generic terms.

5OBO-Edit: the OBO ontology editor: http://oboedit.org/
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No. Standard Hybrid Issue1 Cause of error
annotation2 annotation

1 FEV 1 - FN Because of orthographic
similarity to genes this is tagged
as GGP

2 [asthma]BF and [asthma and FP Coordination creates
[atopy atopy a boundary error
phenotypes]BF phenotypes]BF

3 emotion - FN This generic term is
context sensitive

4 Diabetes [Diabetes FP Entity class error
Mellitus Mellitus]BF

5 [citrullination]BF [citrullination FP Boundary error due
of the [endogenous of the endogenous preposition phrase
antigen]GGP antigen]GGP

Table 8: Sources of error by the Hybrid system on the Phenominer corpus. 1 FN: False Negative;
FP: False Positive. 2 We show here Hybrid system outputs that are correctly annotated.

6 Conclusions and future work

We have presented new results and analysis that add evidence to how phenotype candidates
can be identified using named entity technology. The methods we have employed are aimed
at making tractable the annotation of a critical semantics in the scientific literature. To do this
we have matched surface forms to their attested forms in domain resources, balanced against
contextual evidence from annotations in the scientific literature. The benchmark tests have
demonstrated that the Hybrid method performs strongly on both the KMR corpus as well as
the new Phenominer corpus. The evidence points towards complementarities between the
existing phenotype resources and contextual evidence from annotated corpora.

Our methods have been formulated to be simple, effective and extensible with a focus on pro-
viding input to more knowledge intensive techniques downstream that can identify causality.
Simplicity though may have sacrified both precision and recall in some cases, e.g. in the issue
of coordination, in including generic and underspecified references and in adopting a longest
matching approach to annotation.

There is considerable scope for further investigation. F1 might be increased using a machine
learning framework such as integer linear programming (Koomen et al., 2005) to resolve hy-
potheses against multiple constraints much as we have tried to do manually in the Merge mod-
ule. Coverage might be extended by including disjoint entities and a deeper analysis of embed-
ded entity semantics such as that employed by Alex et al. (2007). In line with Hoehndorf et al.
(2010) future solutions may need to focus on decomposing phenotypes in terms of their inter-
nal relations such as qualities 6.

6e.g. The Phenotypic Attribute and Trait Ontology http://obofoundry.org/cgi-bin/detail.cgi?quality
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