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ABSTRACT
Recently, methods for mining graph sequences have attracted considerable interest in data-
mining research. A graph sequence is a data structure used to represent changing networks.
The aim of graph sequence mining is to enumerate common changing patterns appearing more
frequently than a given threshold in graph sequences. Dependency analysis is recognized as
a basic process in natural language processing. In transition-based parsers for dependency
analysis, a transition sequence can be represented by a graph sequence, where each graph,
vertex, and edge corresponds to a state, word, and dependency, respectively. In this paper,
we propose a method for mining rules to rewrite states reaching incorrect final states to those
reaching correct final states, from transition sequences of a dependency parser using a beam
search. The proposed method is evaluated using an English corpus, and we demonstrate the
design of effective feature templates based on knowledge obtained from the mined rules.
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1 Introduction

Data mining is the process of mining useful knowledge from large datasets. Recently,
methods for mining graph sequences (dynamic graphs (Borgwardt et al., 2006) or evolving
graphs (Berlingerio et al., 2009)) have attracted considerable interest from researchers in the
field of data mining (Inokuchi and Washio, 2008). For example, human networks can be rep-
resented as a graph, where each vertex and edge corresponds, respectively, to a human and
a relationship in the network. If a human joins or leaves the network, the numbers of ver-
tices and edges in the graph increase or decrease, respectively. A graph sequence is one of the
data structures used to represent a changing network. Figure 1(a) shows a graph sequence
consisting of four steps, five vertices, and various edges between the vertices. The aim of
graph sequence mining is to enumerate subgraph subsequence patterns, an example of which
is shown in Fig. 1(b), appearing more frequently than a given threshold in graph sequences.
Since the development of methods for mining graph sequences, these methods have been ap-
plied, for example, to social networks in Web services (Berlingerio et al., 2009), article-citation
networks (Ahmed and Karypis, 2011), and e-mail networks (Borgwardt et al., 2006).

Dependency parsing is considered a basic process in natural language processing (NLP), and a
number of studies have been reported (Kudo and Matsumoto, 2002; Nivre, 2008). One reason
for the increasing popularity of this research area is the fact that dependency-based syntactic
representations seem to be useful in many applications of language technology (Kubler et al.,
2009), such as machine translation (Culotta and Sorensen, 2004) and information extrac-
tion (Ding and Palmer, 2004). Broadly speaking, dependency parsers can be categorized as
transition-based, graph-based, and grammar-based dependency parsers. Transition-based de-
pendency parsers, which are data-driven methods, transit between states in a deterministic
way using local state information. If the parser adds an incorrect dependency between words
once, it never reaches the correct final state. To reduce such incorrect decisions, the parser
can keep track of multiple candidate outputs using the beam search principle, thus avoiding
making decisions too early (Zhang and Clark, 2008).

In a transition-based parser, a transition sequence can be represented by a graph sequence,
where each graph, vertex, and edge, corresponds to a state, word, and dependency, respec-
tively. By mining characteristic patterns from transition sequences for sentences analyzed in-
correctly by a parser, it is possible to design new parsers and generate effective feature tem-
plates in the machine learner of the parser to avoid incorrect dependency structures. In this
paper, we demonstrate the application of graph sequence mining to dependency parsing in NLP.

We propose a method for mining rewriting rules from transition sequences of an arc-eager
dependency parser integrated with the beam search principle for English sentences. The mined
rewriting rules can shed light on why incorrect dependency structures are returned by this
type of parser. We also present effective feature templates designed according to knowledge
obtained from the mined rules, and show the improvement of the parser’s attachment score,
which is a measure of the percentage of words with the correct heads. To mine such rules, the
rules should be human-readable, since they are to be used as inspiration for the engineering

Figure 1: Examples of a graph sequence and a mined frequent pattern
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Parse(x = 〈w0, w1, · · · , wn〉)
1) c← cs(x)
2) while c /∈ CF
3) c← [o(c)](c)
4) return c

Figure 2: Dependency parser
based on a transition system

Transitions
Left (σ|i, j|β ,A)⇒ (σ, j|β ,A∪ {( j, i)})
Right (σ|i, j|β ,A)⇒ (σ|i| j,β ,A∪ {(i, j)})
Reduce (σ|i,β ,A)⇒ (σ,β ,A)
Shift (σ, j|β ,A)⇒ (σ| j,β ,A})
Preconditions
Left i �= 0∧ ∄k s.t. (k, i) ∈ A
Right ∄k s.t. (k, j) ∈ A
Reduce ∃k s.t. (k, i) ∈ A
Figure 3: Transitions for an arc-eager parser

of new feature templates of the parser.

2 Transition-based Dependency Parsing

In this paper, we focus on dependency analysis using an “arc-eager parser” (Nivre, 2008),
which is a parser based on a transition system, for “English sentences”. However, the princi-
ple of the method proposed in this paper can basically be applied to any parser based on a
transition system for sentences in any language (Inokuchi et al., 2012).

The aim of dependency parsing of a sentence is to output its dependency graph.

Definition 1 The dependency graph for a sentence x = 〈w0, · · · , wn〉 is represented as a graph
g = (V, E), where V = {0, · · · , n} and E ⊂ V × V . �

Definition 2 A dependency graph (V, E) is well-formed, if the following conditions are satisfied:
• ∄x ∈ V such that (x , 0) ∈ E (root condition),
• ∄x ∈ V such that (x , y) ∈ E ∧ x �= x ′, when (x ′, y) ∈ E (single-head condition), and
• ∄{(v0, v1), (v1, v2), · · · , (vl−1, vl)} ⊆ E such that v0 = vl (acyclicity condition). �

A dependency graph satisfying these conditions is a forest. In addition, if a dependency graph
is connected, the graph is a tree.

We define a transition-based dependency parser with input x = 〈w0, w1, · · · , wn〉 and output
g = (V, E).

Definition 3 A transition-based parser consists of S = (C , T, cs, CF ), where
• C = {(σ,β ,A)} is a set of states, with σ, β , and A a stack, a buffer, and a set of edges,

respectively,
• T is a set of transitions, with t ∈ T a partial function such that t : C → C,
• cs is an initial function satisfying cs(x) = ([0], [1,2, · · · , n],�), and
• CF ⊆ C is a set of final states {c ∈ C | c = (σ, [],A)}. �

A transition sequence for x = 〈w0, w1, · · · , wn〉 on S = (C , T, cs, CF ) is represented as C1,m =
〈c(1), · · · , c(m)〉, satisfying (1) c(1) = cs(x), (2) c(m) ∈ CF , and (3) ∃t ∈ T for c(i) (1 ≤ i < m),
c(i+1) = t(c(i)). We denote β and A for state c as βc and Ac , respectively.

Figure 2 gives the algorithm for a transition-based dependency parser, where o denotes an
oracle for selecting t = [o(c)] to transit to the next state in a deterministic way. In particular,
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the arc-eager parser, which is a transition-based parser, selects either Left, Right, Reduce,
or Shift to analyze sentences, as shown in Fig. 3, where the operator | is taken to be left-
associative for the stack and right-associative for the buffer. If o selects Left or Right, then
edge ( j, i) or (i, j) is added to A to transit from c to t(c), respectively. If o selects Reduce, then
i is popped from the stack to transit from c to t(c). Otherwise, j is popped from the buffer and
j is pushed onto the stack to transit from c to t(c). Since o is a function that determines the
transition from Left, Right, Reduce, and Shift, it is implemented using a multi-class classifier
for feature vectors characterizing the state c (Kubler et al., 2009).

Although we defined each state using a stack and buffer in a similar way to that reported in
most of the literature, we now redefine it using a graph to link dependency parsing to graph
sequence mining.

Definition 4 A state c = (σ, j|β ,A) s.t. σ = [s|σ|, s|σ|−1, · · · , s1] is represented as a graph
cg = (N ,A, N ′), where N = {0,1, · · · , j} is a set of vertices, A is a set of edges, and N ′ =
{s|σ|, s|σ|−1, · · · , s1, j} ⊆ N.

The graph cg = (N ,A, N ′) is a forest of ordered trees, where N ′ ⊆ N are vertices that are not
reduced on the rightmost path of each tree in the forest. If o selects Left or Right, then edge
( j, i) or (i, j), where i and j (i < j) are the largest vertices in N ′, is added to transit from c to
t(c), respectively. If o selects Shift, the smallest vertex that does not exist in N is added to cg to
transit from c to t(c). Otherwise, the second largest vertex in N ′ is removed from N ′ to transit
from c to t(c). Since an arc-eager dependency parser is incremental (Kubler et al., 2009), the
numbers of vertices and edges in cg increase monotonically.

Example 1 Figure 4 shows the transition sequence from the initial state to the final state for the
sentence 〈$, I , saw,him, .〉, where w0 = $ is a special root vertex. In the sequence, Shift, Left,
Right, Right, Reduce, and Right are selected in order by o. In this figure, shaded vertices in each
state belong to N ′.

Figure 5 shows the search space T for sentence 〈w0, w1, w2, w3〉. The words in each state
and all states whose final states are not trees are omitted owing to lack of space. The search
space T for the algorithm given in Figs. 2 and 3 is depicted as a single-rooted directed acyclic
graph, where states C on S = (C , T, cs, CF ) are nodes, initial state c(1) is the root node, final
states CF ⊆ C are leaves, and transitions between the states are branches. As shown in Fig. 5,
there is only one or a few transition sequences from the initial state to each leaf. Therefore,
if an incorrect dependency is added between words once, the parser never reaches the correct
final state. To reduce the possibility of such an incorrect decision, the parser can keep track
of multiple candidate outputs using the beam search principle and avoid making decisions
too early (Zhang and Clark, 2008). Nevertheless, an arc-eager parser incorporating the beam
search principle sometimes reaches an incorrect final state.
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Figure 4: Transition sequence for the sentence 〈$, I , saw,him, .〉
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Figure 5: Search space for sentence 〈w0, w1, w2, w3〉

Figure 6: Change between two successive graphs

In this paper, we propose a method for mining rewriting rules from transition sequences of an
arc-eager dependency parser incorporating the beam search principle for English sentences.
The rewriting rules to be mined are human-readable rules for rewriting states reaching incor-
rect final states to those reaching the correct final states. The rewriting rules correspond to
bypasses between states in the search space shown in Fig. 5. To describe the proposed method,
we first discuss GTRACE for mining graph sequences corresponding to transition sequences in
the next section.

3 Graph Sequence Mining

Figure 1(a) shows an example of a graph sequence. Graph g( j) is the j-th labeled graph in the
sequence. The problem we address in this section is how to mine patterns that appear more
frequently than a given threshold from a set of graph sequences. We proposed using trans-
formation rules to represent graph sequences compactly under the assumption that “change
is gradual” (Inokuchi and Washio, 2008). In other words, only a small part of the structure
changes, while the other part remains unchanged between successive graphs g( j) and g( j+1) in
a graph sequence. For example, the change between successive graphs g( j) and g( j+1) in the
graph sequence shown in Fig. 6 is represented as an ordered list of two transformation rules
〈vi( j)[1,A], ed( j)[(2,3),•]〉. This list denotes that a vertex with ID 1 and label A is inserted (vi), and then
the edge between the vertices with IDs 2 and 3 is deleted (ed). By assuming that the change
in each graph is gradual, we can represent a graph sequence compactly, even if the graph in
the graph sequence has many vertices and edges. We also proposed a method, called GTRACE
(Graph TRAnsformation sequenCE mining), for mining all frequent patterns from ordered lists
of transformation rules. A transition sequence in the dependency parser is represented as a
graph sequence. In addition, since any change between two successive graphs in the graph
sequence comprises at most two changes, the assumption holds.

A labeled graph g is represented as g = (V, E, L, l), where V = {1, · · · , n} is a set of vertices,
E ⊆ V ×V is a set of edges, and L is a set of labels such that l : V ∪ E→ L. In addition, a graph
sequence is an ordered list of labeled graphs and is represented as d = 〈g(1), · · · , g(z)〉.
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Table 1: TRs used to represent a graph sequence
Vertex Insertion vi( j,k)[u,l] Insert vertex u with label l into g( j,k) to transform to g( j,k+1).

Vertex Deletion vd( j,k)[u,•] Delete an isolated vertex u in g( j,k) to transform to g( j,k+1).

Vertex Relabeling vr( j,k)[u,l] Relabel the label of vertex u in g( j,k) as l to transform to g( j,k+1).

Edge Insertion ei( j,k)[(u1 ,u2),l]
Insert an edge with label l between vertices u1 and u2 in g( j,k)

to transform to g( j,k+1).

Edge Deletion ed( j,k)[(u1 ,u2),•] Delete an edge between vertices u1 and u2 in g( j,k) to transform to g( j,k+1).

Edge Relabeling er( j,k)[(u1 ,u2),l]
Relabel a label of an edge between vertices u1 and u2 in g( j,k) as l

to transform to g( j,k+1).

To represent a graph sequence compactly, we focus on the differences between two successive
graphs g( j) and g( j+1) in the sequence.

Definition 5 The differences between graphs g( j) and g( j+1) in d are interpolated by a virtual
sequence d( j) = 〈g( j,1), · · · , g( j,m j)〉, where g( j,1) = g( j) and g( j,m j) = g( j+1). The graph sequence d
is represented by d = 〈d(1), · · · , d(z−1)〉. �

The order of graphs g( j) represents the order of the graphs in an observed sequence. On the
other hand, the order of graphs g( j,k) is the order of graphs in the artificial graph sequences,
and there can be various artificial graph sequences between graphs g( j) and g( j+1). We limit the
artificial graph sequences to be compact and unambiguous by taking the one with the shortest
length in terms of the graph edit distance to reduce both the computational and spatial costs.

Definition 6 Let the transformation of a graph by either insertion, deletion, or relabeling of a
vertex or an edge be a unit, and let each unit have edit distance 1. A graph sequence d( j) =
〈g( j,1), · · · , g( j,m j)〉 is defined as an artificial graph sequence in which the edit distance between
any two successive graphs is 1 and the edit distance between any two graphs is the minimum. �

Transformations are represented in this paper by the following “transformation rule (TR)”.

Definition 7 A TR transforming g( j,k) to g( j,k+1) is represented by t r( j,k)[o jk ,l jk]
, where

• t r is the transformation type that is either insertion, deletion, or relabeling of a vertex
or edge,
• o jk is the vertex or edge to which the transformation is applied, and
• l jk ∈ L is a label to be assigned to the vertex or edge in the transformation. �

For the sake of simplicity, we simplify t r( j,k)[o jk ,l jk]
to t r( j,k)[o,l] using the six TRs listed in Table 1. In

summary, we define a transformation sequence as follows.

Definition 8 A graph sequence d( j) = 〈g( j,1), · · · , g( j,m j)〉 is represented by seq(d( j)) =
〈t r( j,1)[o,l] , · · · , t r

( j,m j−1)
[o,l] 〉. Moreover, a graph sequence d = 〈g(1), · · · , g(z)〉 is represented by a trans-

formation sequence seq(d) = 〈seq(d(0)), · · · , seq(d(z−1))〉. �

The notation for transformation sequences is far more compact than the original graph-based
representation since only differences between two successive graphs in d are kept in the se-
quence. In addition, any graph sequence can be represented by the six TRs in Table 1.
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(b) Representation of the graph sequence      by using TRs.

(a) An example of a graph sequence    .
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Figure 7: Graph sequence and its TRs

Example 2 The graph sequence d in Fig. 7(a) can be represented by a sequence of insertions and
deletions of vertices and edges, as shown in Fig. 7(b). The transformation sequence is represented
as 〈vi(0,1)

[1,B]vi(0,2)
[2,A]vi(0,3)

[3,B]ei(0,4)
[(1,3),−]ei(0,5)

[(2,3),−]vi(1,1)
[4,C]vi(2,1)

[5,C]ei(2,2)
[(3,4),−]ed(2,3)

[(2,3),•]vd(2,4)
[2,•] ed(3,1)

[(1,3),•]vd(3,2)
[1,•]〉,

where “−” denotes an edge label.

When transformation sequence s′d is a subsequence of transformation sequence sd , denoted as
s′d ⊑ sd , there is a mapping φ from vertex IDs in s′d to those in sd . We omit a detailed definition
thereof owing to lack of space (see (Inokuchi and Washio, 2008) for the details). Given a set
of graph sequences DB = {d | d = 〈g(1), · · · , g(z)〉}, we define a support sup(sp) of transfor-
mation sequence sp as sup(sp) = |{d | d ∈ DB, sp ⊑ seq(d)}|/|DB|. We call a transformation
sequence whose support is no less than the minimum support sup′, a frequent transformation
subsequence (FTS). Given a set of graph sequences, GTRACE enumerates a set of all FTSs from
the set according to the anti-monotonic property of the support. GTRACE-RS (Inokuchi et al.,
2012) which is an extended version of GTRACE first mines FTSs each of which consists of a
TR. It then mines FTSs by recursively adding one TR to the mined FTS.

4 Mining Rules for Rewriting States

As mentioned in Section 2, if the parser shown in Fig. 2 adds an incorrect dependency between
words once, it never reaches the correct final state. Even if the parser keeps track of multiple
candidate outputs using the beam search principle, sometimes all the multiple candidates reach
incorrect final states. In this study, we set out to discover rules for rewriting states reaching
incorrect final states to those reaching the correct final states from a corpus D = {(x , g)}
consisting of sentences x = 〈w0, w1, · · · , wn〉 and their dependency graphs g. The rewriting
rules state that “if state cg contains graph p as a subgraph, the state is transformed to another
state using a certain TR”. The rewriting rules contain knowledge about why the dependency
parser outputs the incorrect final states and what should be done to fix these incorrect states.
Since p and cg can also be represented as TRs, each rewriting rule is represented as a sequences
of TRs.

To mine these rewriting rules, it needs to be determined how to generate the input graph
sequences for GTRACE from transition sequences of the dependency analysis. For the sake of
simplicity, we assume that the beam width of the parser is 1. Let C1,m(x) = 〈c(1)g , c(2)g , · · · , c(m)g 〉
be a transition sequence from the initial state, c(1)g , to the correct final state, c(m)g = g, for

sentence (x , g) ∈ D. In addition, let C ′1,m′(x) = 〈c(1)g , · · · , c(k−1)
g , c′g

(k), c′g
(k+1), · · · , c′g

(m′)〉 be
another transition sequence for x , where the parser selects the incorrect transition between
c(k−1)

g and c′g
(k) for some k > 1. One way of generating a graph sequence from transition

sequence C ′1,m′(x) is to append the correct final state g to the transition sequence after the

parser outputs the incorrect final state; i.e., dA = 〈c(1)g , · · · , c(k−1)
g , c′g

(k), c′g
(k+1), · · · , c′g

(m′), g〉.
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We define rewriting rules R to be mined from the graph sequences in the form of dA as FTSs,
each of which contains a subsequence of seq(C ′1,m′(x)) and TRs to transform c′g

(m′) to g; i.e.,

R= {s1◊s2 | s1 ⊑ seq(C ′1,m′(x)), s2 ⊑ seq(〈c′g (m
′), g〉), (x , g) ∈ D, sup(s1◊s2)≥ sup′}, (1)

where sup′ and s1◊s2 are the minimum support threshold and the concatenation of trans-
formation sequences s1 and s2, respectively. We refer to s1 of r in R as the precondition of
rewriting rule r. Another way of generating a graph sequence from the transition sequence is
to append the correct state c(k)g to its transition subsequence immediately after the parser se-

lects the incorrect transition; i.e., dB = 〈c(1)g , · · · , c(k−1)
g , c′g

(k), c(k)g 〉. Then, similar to the first
approach, rewriting rules are mined from the graph sequences in the form of dB. Since
f ⊑ seq(dB) ⇒ f ⊑ seq(dA), all FTSs mined from graph sequences generated in the second
approach are also mined from those in the first approach. However, the converse does not
hold, since dA contains information about vertices and edges that is not included in dB. Since
this information is not used in feature vectors characterizing c(k−1)

g to select the next transition

at state c(k−1)
g , this may explain why incorrect dependency graphs are returned by transition-

based dependency parsers. In addition, the first approach may contain “maximal” information
gathered from the whole dependency graph that is not available during transitions of the
conventional parser (Attardi and Ciaramita, 2008). Therefore, we use the first approach to
generate graph sequences. In addition, to distinguish TRs in s1 of Eq. (1) from those in s2, we
assign label l2 to edges in g that are not in c′g

(m′), and label l1 to all other edges.

Example 3 Figure 8 shows a graph sequence generated by appending the correct final state
g to the transition sequence for the sentence in Example 1, where the parser selects an
incorrect transition from c(5)g to c′g

(6). Since edge (2,4) is not in c′g
(6) but is in g, label

l2 is assigned to the edge. The transformation sequence of the graph sequence is given as
〈vi(0,1)
[0,$]vi(0,2)

[0,root]vi(0,3)
[1,I] vi(0,4)

[1,PRP]vi(1,1)
[2,saw]vi(1,2)

[2,V BD]ei(2,1)
[(2,1),l1]

vr(2,2)
[1,reduced]ei(3,1)

[(0,2),l1]
vi(3,2)
[3,him]vi(3,3)

[3,PRP]

ei(4,1)
[(2,3),l1]

vi(4,2)
[4,.] vi(4,3)

[4,‘.′]ed(5,1)
[(2,3),•]ei(5,2)

[(2,4),l2]
〉, where ROOT, PRP, VBD, and ‘.’ are the parts of speech

(POSs) of the corresponding words1.

Let r = 〈vi(0,1)
[0,root]vi(1,1)

[2,V BD]ei(3,1)
[(0,2),l1]

ei(4,1)
[(2,3),l1]

vi(4,2)
[4,.] ei(5,1)

[(2,4),l2]
〉 be a rewriting rule. If the parser has

the rewriting rule r and is in state c′g
(6) in Example 3, the method proposed in this paper deletes

edge (3,4) from c′g
(6), and adds edge (2,4) to c′g

(6), by applying r to transit to another state g
in Fig. 4 that can reach the correct final state, since the transformation sequence of transition
sequence 〈c(1)g , · · · , c(5)g , c′g

(6)〉 contains the precondition of r as a subsequence. Therefore, the
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Figure 8: Graph sequence for a transition sequence
1We have a priori knowledge that each vertex in a state has at most one parent. Therefore, the fact that a TR t for

inserting an edge labeled l2 exists in transformation sequence s indicates that another TR for deleting an edge whose
dependent is identical to t must exist in s. For this reason, in our implementation, we do not include TRs for deleting
edges in s to reduce the computation time of GTRACE, which increases exponentially with the average length of the
transformation sequences in its input.
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rewriting rule that transforms from c′g
(6) to g corresponds to a bypass between states in the

search space.

GTRACE mines a vast set of FTSs, R, in Eq. (1) from the graph sequences. Next, we discuss
how to select certain FTSs from these. Desirable rewriting rules are those that rewrite states
reaching incorrect final states to those reaching the correct final states. By rewriting states,
the attachment score for a parser using rewriting rules should be better than that for a parser
without rewriting rules. This is achieved by selecting the rewriting rule satisfying the following
equation.

r = arg max
r∈R

⎡
⎣ 1

|D|
∑
x∈D

#p(Sr , x)−#p(S, x)

⎤
⎦ , (2)

where Sr and S are transition-based parsers with and without rewriting rule r, and #p is
the number of words with correct parents in the dependency graph returned by the parser
for sentence x . If r = s1◊s2 is a rule in R as given in Eq. (1), |D| × sup(s1◊s2) and |D| ×�
sup(s1)− sup(s1◊s2)

�
are the expected numbers of sentences in D, correctly and incorrectly

rewritten by r, respectively. Thus, we obtain the following approximation.

1

|D|
∑
x∈D

#p(Sr , x)−#p(S, x)≃ sup(s1◊s2)−
�
sup(s1)− sup(s1◊s2)

�
= 2 sup(s1◊s2)− sup(s1).

(3)
We select certain FTSs that maximize the right-hand side of Eq. (3) from R. In addition, we
limit the mined rewriting rules such that the number of TRs in s2 is 1, which is denoted as
|s2| = 1, for the following reason. If there is a rewriting rule r = s1◊s2 that correctly rewrites
a state c into c′, where s2 = 〈t r1 t r2〉 consists of two TRs, we divide r into r1 = s1◊t r1 and
r2 = s′1◊t r2, where s′1 = s1◊t r1. If r1 rewrites a state c into another state c′′, the state c′′

is rewritten into c′ by r2. Even if we limit the mined rewriting rules such that |s2| = 1, we
can mine r1 and r2, and the state c can be rewritten correctly by r1 and r2. In addition,
by the limitation, we efficiently mine all rewriting rules because mining rewriting rules is a
combinatorial problem of TRs.

We propose a method for mining rewriting rules from transition sequences traversed by a de-
pendency parser. For the sake of simplicity of explanation, we first explain the basic algorithm
for mining rewriting rules from transition sequences generated by a transition-based parser
with beam width 1, and then expand it using a dependency parser incorporating the beam
search principle. The left part of Fig. 9 gives the pseudo-code for mining the set of rewriting
rules R from the transition sequences. Let D be a corpus D = {(x , g)} consisting of sentences
x = 〈w0, w1, · · · , wn〉 and their dependency graphs g. In line 6a, ParseWithRules returns a
transition sequence d by parsing sentence x using the rewriting rules R. Next, in line 7a, af-
ter appending g to the tail of d, denoted by 〈d◊g〉, 〈d◊g〉 is added to DB. Subsequently, in
line 8a, the attachment score is updated after comparing the final state c(m)g with the correct
dependency g of sentence x . In line 9a, if the attachment score for R∪ {r} is not greater than
that for R, R is returned. Otherwise, r is added to R. In line 13a, a rewriting rule r satisfying
Eqs. (2) and (3) is mined from the FTSs enumerated by GTRACE from DB under the minimum
support threshold sup′.

The right part of Fig. 9 gives the pseudo-code for parsing sentence x using the rewriting rules
R to return a transition sequence for x . The procedures, except for those in lines b6 to b13, are
similar to those in Fig. 2. In line b5, the last state in the transition sequence d is substituted
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RuleMiner(D, sup′)
1a) R← �
2a) r ← null
3a) while
4a) DB← �
5a) for sentence (x = 〈w0, · · · , wn〉, g) ∈ D
6a) d ← ParseWithRules (x , R∪ {r}),

where d = 〈c(1)g , · · · , c(m)g 〉
7a) DB← DB ∪ {〈d◊g〉}
8a) evaluate(c(m)g , g)
9a) if R �= � and the attachment

score is saturated,
10a) return R
11a) if r �= null
12a) R← R∪ {r}
13a) r ← MineRewri t ingRule(DB, sup′)
14a) if r = null
15a) return R

ParseWithRules(x = 〈w0, · · · , wn〉, R)
1b) Candidates ← {〈cs(x)〉}
2b) while {last(d) | d ∈ Candidates} �⊆ CF

3b) Agenda ← �
4b) for each d ∈ Candidates

5b) cg = (N , A, N ′)← last(d)
6b) for each r = s1◊s2 ∈ R
7b) (a, b)← (v1, v2) s.t. s2 = ei( j)[(v1 ,v2),l2]
8b) if s1 ⊑ seq(d),

where φ : I D(s1)→ I D(seq(d))
9b) (i, j)← (φ(a),φ(b))

10b) cg ← (N , A∪ {(i, j), N ′})
11b) if ∃i′ s.t. (i′, j) ∈ A∧ i′ �= i
12b) cg ← (N , A\ {(i′, j), N ′})
13b) d ← 〈d◊cg〉
14b) Agenda ← Agenda ∪ {〈d◊t(cg)〉

| t ∈ {Left, Right, Reduce, Shift}}
15b) Candidates ← best(Agenda)
16b) return Candidates

Figure 9: Algorithms for mining rewriting rules and parsing using the rules (beam width is 1)

into cg by function last. All possible transition sequences for cg are generated in line 14b, and
the best of these is selected by function best in line 14b. If there is a rewriting rule whose
precondition is contained in seq(d) and its mapping φ from vertex IDs in the precondition of
r to vertex IDs in seq(d), state cg = (N ,A, N ′) is rewritten in line 10b or 12b and the parser
transits to another state. In line 10b, edge (i, j) corresponding to (a, b), is added to A. In
addition, if the j-th word has another parent i′ different from i, edge (i′, j) is deleted from A
in line 12b.

In the case of a parser using a beam search with width b, ParseWithRules returns a set of
transition sequences ={di | i = 1, . . . , b}, instead of a single transition sequence. We assume
that d1 is the transition sequence whose final state has the best score of all {di}. If the final
state of d1 is isomorphic to g, we do not append g to di for any i, because we do not need any
rewriting rules to transform states in transition sequences for sentences for which the parser
returns correct final states. Otherwise, after appending g to the tail of each di , denoted by
〈di◊g〉, 〈di◊g〉 is added to DB similarly to the case in line a7. Therefore, DB consists of |D|× b
graph sequences. On the other hand, the code for ParseWithRules incorporating the beam
search principle is almost the same as the original. In line 15b, the b best transition sequences
are selected from Agenda by function best.

5 Experiments

We evaluated the proposed method using English Penn Treebank data. We used Yamada’s
head rules to convert the phrase structure to a dependency structure (Yamada and Matsumoto,
2003). We also used the averaged perceptron algorithm with early-update strat-
egy (Collins and Roark, 2004), where weights are updated whenever the gold-standard action-
sequence falls off the beam, while the rest of the sequence is ignored. The idea behind this
strategy is that later mistakes are often caused by earlier ones, and are irrelevant if the parser
is already on the wrong track (Huang and Sagae, 2010).

We split the Wall Street Journal part of the corpus into sections 02-11 for training, sections
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12-21 for mining rewriting rules, and section 22 for development. The set of feature templates
in Zhang and Clark (2008) characterizing states in the parser was used. Figures 10, 13, and
14 show three of the few dozen rewriting rules mined using the proposed method under
a minimum support threshold of 0.05% and beam width of 4, where h, i, j, k, and l are
word IDs satisfying h < i < j < k < l, and the terms in each circle are words or their POS-
tags. The minimum support threshold was set through trial and error using the development
data. The supports sup(s1) and sup(s1◊s2) of the rule shown in Fig. 10 are 1.22% and 0.95%,
respectively. In addition, Fig. 11 shows some of the sentences in the corpus whose transition
sequences are correctly rewritten by the rule. In Fig. 11, the annotations i, j, and h after
words correspond to the respective word IDs in Fig. 10. Here, we explain the rule using
concrete examples. The two sentences

• “$ Dozens of workers were injured.” and
• “$ Dozens of workers were injured, authorities said.”

and their correct dependency graphs, are shown on the left and right sides of Fig. 12, respec-
tively. If the parser is in state c(6)g , where σ = [0] and β = [4,5, · · · , n], when parsing the first
sentence, it usually selects Right to transit to the next state. Similarly, the parser incorrectly
selects Right, instead of Shift, to transit to the next state from c(6)g when parsing the second

sentence. This is because when the parser is in state c(6)g , it does not know whether the phrase
“authorities said.” occurs at the end of the sentence. As mentioned in Section 2, if the parser
shown in Fig. 2 adds an incorrect dependency between words once, it never reaches the correct
final state. This rule rewrites the fifth state g(5) by deleting edge (i, j) and adding edge (h, j)
without backtracking. Since we limit the mined rewriting rules to r = s1◊s2 where |s2| = 1,
this rule does not include deleting edge (h, i) and adding edge ( j, i) in g(5) in the rewrite.
However, we obtained another rewriting rule to do this.

The rewriting rule shown in Fig. 13 suggests that our parser incorrectly parses sentences con-
taining “because of NN”. The supports, sup(s1) and sup(s1◊s2), of the rule are 0.71% and
0.54%, respectively. We assume that the parser is in state (σ,β ,A) = ([· · · ,h, i], [ j, · · ·],A),
where wh =“because”, wi =“of”, the POS-tag for w j is NN (noun, singular or mass), and
(h, i) ∈ A. Since the parser using the feature templates in Zhang and Clark (2008) does not
know what the word for the parent of the stack top is, the parser incorrectly selects Right,
instead of Reduce, to transit to the next state. This rule rewrites state g(5) by deleting edge
(i, j) and adding edge (h, j), after the parser adds an incorrect edge.

The supports, sup(s1) and sup(s1◊s2), of the rule shown in Fig. 14 are 0.053%. After mining
the rewriting rule, we investigated words corresponding to vertices h, i, and j by scanning
the corpus. The words, (wh, wi , w j), were either (Procter, &, Gamble), (Peabody, &, Co.),
(Ogilvy, &, Mather), (Young, &, Rubicam), (Shea, &, Gould), (Standard, &, Poor), (Bausch, &,
Lomb), or (Dun, &, Bradstreet). The trigram of words comprising each triplet is a compound
proper noun. The rule suggests incorrect parsing of words consisting of proper compound
nouns. Since the parser does not know that the triplets are proper compound nouns, it cannot
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Figure 10: Mined rule #1
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$(h) Dozens of workers were(i) injured, authorities said(j).
$(h) But the Fed move was(i) a small gesture, traders said(j).
$(h) Mr. Agnos declined(i) the invitations, the White House said(j).
$(h) They continued(i) to represent that to the board,” said(j) Mr. Lloyd.
$(h) Some laggard food issues attracted(i) bargain-hunters, traders said(j).

Figure 11: Sentences for which the rule in Fig. 10 correctly rewrites transition sequences
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Figure 12: Transition of two similar sentences

correctly parse sentences containing “A & B’s NN”, where “A & B” is a proper compound noun.
This rule rewrites state g(9) by deleting edge (l, j) and adding edge (i, j).

As shown above, the proposed method has the benefits that the rules mined by the method are
human-readable and easily understandable. In addition, the rewriting rules contain context
that is more complex and detailed than a set of features of the conventional parser, because of
the use of the graph representation. Furthermore, if the mined rules are valid grammatically,
and a dependency structure obtained by the proposed method, after being rewritten by the
rules, is different from a dependency structure in the corpus made by humans, the latter
dependency structure may contain incorrect dependencies. The proposed method is therefore
also useful for rectifying human errors in the corpus.

According to the knowledge obtained from the mined rewriting rules, we designed three new
types of feature templates characterizing states in the parser. First, according to the knowledge
obtained from the first rewriting rule, we added feature templates N0w◦Flag and N0t◦Flag,
where N0w and N0t denote the word at the top of the stack and its POS-tag in the parser,
respectively, Flag is either true or false, and N0w◦Flag and N0t◦Flag are their concatenations.
Flag is true, if one of the words “said”, “say”, or “says” appears after N0w in the sentence.
Flag can be calculated in time linear to the length of the sentence during preprocessing. Since
features of these templates provide the parser with information on whether a sentence contains
“said”, “say” or “says” at the end, the parser has a high probability of correctly parsing such
sentences. Second, according to knowledge obtained from the second rewriting rule, we added
feature templates SPTw◦STw◦N0t and SPTw◦STt◦N0t, where STw, STt, and STPw are the word
at the top of the stack, its POS tag, and the word at the parent of the stack top, respectively. The
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Figure 14: Mined rule #3

arc-eager shift -reduce parser using these feature templates has word information on the parent
of the stack top, and is expected to parse sentences containing “because of NN” correctly. Third,
according to knowledge obtained from the third rewriting rule, we added feature templates N-
2w◦N-1w◦N0w, N-1w◦N0w◦N1w, and N0w◦N1w◦N2w, where N0w is the word at the buffer
top, and N-2w, N-1w, N1w, and N2w are words before and after that word. Therefore, N-2w◦N-
1w◦N0w, N-1w◦N0w◦N1w, and N0w◦N1w◦N2w are trigrams containing N0w in a sentence.
The arc-eager shift-reduce parser using these feature templates is expected to parse sentences
containing proper compound nouns correctly.

Figure 15 shows (1) the attachment scores for an arc-eager shift-reduce parser using only the
conventional feature templates in Zhang and Clark (2008), (2) that using the feature tem-
plates given above as well as the conventional feature templates, and (3) that using the fea-
ture templates given above as well as the conventional feature templates and mined rewriting
rules2 for various beam widths. In these experiments, we split the WSJ part of the corpus
into sections 02-21 for training, section 22 for development, and section 23 for testing. The
figure shows that attachment scores are improved by adding the new feature templates to the
conventional feature templates. In particular, the degree of improvement is large when the
beam width is small. Although we used knowledge obtained from the three rewriting rules,
greater improvement is expected by mining more rewriting rules and designing more feature
templates based on the knowledge obtained from these rules. Table 2 reproduces the attach-
ment scores for various dependency parsers given in Hayashi et al. (2012) including those of
our proposed method. The table shows that our method is comparable to parsers of the latest
studies with respect to the attachment score.

6 Conclusion

This paper proposed a method for mining rewriting rules from transition sequences of an arc-
eager dependency parser incorporating the beam search principle for English sentences. The
rewriting rules mined by the proposed method are human-readable, and it is possible for us to
design new parsers and to generate feature templates for the machine learner of the parser to
avoid producing incorrect dependency graphs. In this study, we used GTRACE to analyze tran-
sition sequences, although there are other data structures for representing graph sequences,

2Result using rewriting rules with beam with 64 was not obtainable due to memory overflow.
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Table 2: Attachment scores for various methods
method attachment score [%]
McDonald (McDonald and Pereira, 2006) 91.5
Koo (Koo and Collins, 2010) 93.04
Hayashi (Hayashi et al., 2011) 92.89
Goldberg (Goldberg and Elhadad, 2010) 89.7
Kitagawa (Kitagawa and Tanaka-Ishii, 2010) 91.3
Zhang (Sh beam 64) (Zhang and Clark, 2008) 91.4
Zhang (Sh+Graph beam 64) (Zhang and Clark, 2008) 92.1
Huang (beam+DP) (Huang and Sagae, 2010) 92.1
Zhang (beam 64) (Zhang and Nivre, 2011) 93.07
Hayashi (beam 32+pred 5+DP) (Hayashi et al., 2012) 92.5
Hayashi (beam 32+pred 5+DP+FIRST) (Hayashi et al., 2012) 92.6
Our method (Sh beam 64+additional features) 92.67

such as dynamic graphs (Borgwardt et al., 2006) and evolving graphs (Berlingerio et al.,
2009), and algorithms for mining the graphs. Since insertions of vertices cannot be repre-
sented by dynamic graphs, and a vertex in an evolving graph always comes with an edge
connected to the vertex, these data structures cannot be used to analyze transition sequences
in transition-based parsers to mine rewriting rules. Compared with dynamic graphs and evolv-
ing graphs, the class of graph sequences is, therefore, general enough to apply to the analysis
of transition sequences.

Revision rules proposed in Ahmed and Karypis (2011) transform only edges in dependency
structures output by the dependency parser in post-processing. Since it is assumed that revi-
sion rules do not remove or add any vertices in the dependency structures, the revision rules
cannot be applied to phrase structure analysis. On the other hand, rewriting rules transform
states in the transition-based dependency parser. Since the method proposed in this paper can
basically be applied to any transition systems whose internal states are represented by graphs,
it can be applied to the phrase structure analysis. In addition, rewriting rules are more human-
readable than revision rules. Kudo et al. (2005) proposed a method for extracting features
represented by trees that are human-readable to obtain high attachment scores. Using the
features, the transition-based parser selects a correct transition in each state. Compared with
that method, using our method proposed in this paper, we obtain knowledge about why incor-
rect dependency graphs are returned by transition-based dependency parsers and knowledge
about how we transform incorrect states into correct states.
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