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Abstract

We propose a transition system for dependency parsing with a left-corner parsing strategy. Unlike
parsers with conventional transition systems, such as arc-standard or arc-eager, a parser with our
system correctly predicts the processing difficulties people have, such as of center-embedding.
We characterize our transition system by comparing its oracle behaviors with those of other tran-
sition systems on treebanks of 18 typologically diverse languages. A crosslinguistical analysis
confirms the universality of the claim that a parser with our system requires less memory for
parsing naturally occurring sentences.

1 Introduction

It is sometimes argued that transition-based dependency parsing is appealing not only from an engi-
neering perspective due to its efficiency, but also from a scientific perspective: These parsers process a
sentence incrementally similar to a human parser, which have motivated several studies concerning their
cognitive plausibility (Nivre, 2004; Boston and Hale, 2007; Boston et al., 2008). A cognitively plausible
dependency parser is attractive for many reasons, one of the most important being that dependency tree-
banks are available in many languages, so it is suitable for crosslinguistical studies of human language
processing (Keller, 2010). However, current transition systems based on shift-reduce actions fully or
partially employ a bottom-up strategy1, which is problematic from a psycholinguistical point of view:
Bottom-up or top-down strategies are known to fail in predicting the difficulty for certain sentences, such
as center-embedding, which people have troubles in comprehending (Abney and Johnson, 1991).

We propose a transition system for dependency parsing with a left-corner strategy. For constituency
parsing, unlike other strategies, the arc-eager left-corner strategy is known to correctly predict processing
difficulties people have (Abney and Johnson, 1991). To the best of our knowledge, however, the idea of
left-corner strategy has not been introduced in the dependency parsing literature. We define the memory
cost for a transition system as the number of unconnected subtrees on a stack. Under this condition, the
proposed system incurs non-constant memory cost only when encountering center-embedded structures.

After developing the transition system, we characterize it by looking into the following question: Is
it true that naturally occurring sentences can be parsed on this system with a lower memory overhead?
This should be true under the assumptions that 1) people avoid generating a sentence that causes diffi-
culty for them, and 2) center-embedding is a kind of such structure. Specifically, we focus on analyzing
the oracle transitions of the system, i.e., parser actions to recover the gold dependency tree for a sen-
tence. In English, it is known that left-corner transformed treebank sentences can be parsed with less
memory (Schuler et al., 2010), but our focus in this paper is on the language universality of the claim in
a crosslingual setting. Two different but relevant motivations exist for this analysis. The first is to an-
swer the following scientific question: Is the claim that people tend to avoid generating center-embedded
sentences language universal? This is unclear since the observation that a center-embedded sentence is

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

1The top-down parser of Hayashi et al. (2012) is an exception, but its processing is not incremental.
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difficult to comprehend is from psycholinguistic studies mainly on English. The second motivation is
to verify whether a parser with the developed system can be viable for crosslinguistical study of human
language processing. There is evidence that a human parser cannot store elements of a small constant
number, such as three or four (Cowan, 2001). If our system confirms to such a severe constraint, we may
claim its cognitive plausibility across languages. We will pursue these questions using the multilingual
dependency treebanks from the CoNLL-X and 2007 shared tasks (Buchholz and Marsi, 2006; Nivre et
al., 2007).

In short, our contributions of this paper can be sketched as follows:
1. We formulate a transition system for dependency parsing with a left-corner strategy.
2. We characterize our transition system with its memory cost by simulating oracle transitions along

with other transition systems on the CoNLL multilingual treebanks. This is the first empirical study
of required memory for left-corner parsing in a crosslinguistical setting.

2 Memory cost of Parsing Algorithms

In this work, we focus on the memory cost for dependency parsing transition systems. While there
have been many studies concerning the memory cost for an algorithm in constituency parsing (Abney
and Johnson, 1991; Resnik, 1992), the same kind of study is rare in dependency parsing. This section
discusses the memory cost for the current dependency parsing transition systems. Before that, we first
review the known results in constituency parsing regarding memory cost.

2.1 Center-Embedding and the Left-Corner Strategy 10X
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The structures on the right side are called left-branching,
right-branching, and center-embedding, respectively. Peo-
ple have difficulty when parsing center-embedded struc-
tures, while no difficulty with right-branching or left-
branching structures. An example of a center-embedded sentence is the rat [the cat [the dog chased]
bit] ate the cheese, which is difficult, but if we rewrite it as the cheese was eaten [by the rat [that bit the
cat [that chased the dog]]], which is a kind of right-branching structure, the parse becomes easier.

Abney and Johnson (1991) showed that top-down or bottom-up strategies2 fail to predict this result.
For example, for the right-branching structure, a bottom-up strategy requires O(n) memory, since it
must first construct a subtree of c and d, but the center-embedded structure requires less memory. The
arc-eager left-corner strategy correctly predicts the difficulty of a center-embedded structure, which is
characterized by the following order of recognitions of nodes and arcs:

1. A node is enumerated when the subtree of its first child has been enumerated.
2. An arc is enumerated when two nodes it connects have been enumerated.

The numbers on the trees above indicate the order of recognition for this strategy. We can see that it
requires a constant memory for both right-branching and left-branching structures. For example, for
the right-branching structure, it reaches 7 after reading b, which means that a and b are connected by a
subtree. On the other hand, for the center-embedded structure, it reaches 6 after reading b, but a and b
cannot be connected at this point, requiring extra memory.

2.2 Transition-based Dependency Parsing
Next, we summarize the issues with current transition systems for dependency parsing with regards to
their memory cost. A transition-based dependency parser processes a sentence on a transition system,
which is defined as a set of configurations and a set of transitions between configurations (Nivre, 2008).
Each configuration has a stack preserving constructed subtrees on which we define the memory cost as a
function for each system.

2We should distinguish between two types of characterizations of parsing: strategy and algorithm. A parsing strategy is
an abstract notion that defines “a way of enumerating the nodes and arcs of parse trees” (Abney and Johnson, 1991), while
a parsing algorithm defines the implementation of that strategy, typically with push-down automata (Johnson-Laird, 1983;
Resnik, 1992). A parsing strategy is useful for characterizing the properties of each parser, and we concentrate on the strategy
for exposition of constituency parsing. For dependency parsing, we mainly discuss the algorithm, i.e., the transition system.
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Figure 1: (a)–(c): Right-branching dependency
trees for three words; (d): the corresponding CNF.

Arc-standard Arc-eager Left-corner
left-branching O(1) O(1) O(1)
right-branching O(n) O(1 ∼ n) O(1)
center-embedding O(n) O(1 ∼ n) O(n)

Table 1: Order of the memory cost for each struc-
ture for each transition system. O(1 ∼ n) means
that it processes some structures with a constant
cost but some with a non-constant cost.

Arc-Standard We define the memory cost as the number of elements on the stack since all stack
elements are disjoint. In this setting, we can see that the arc-standard system has a problem for a right-
branching structure, such as aybycy · · · , in which the system first pushes all words on the stack before
connecting each pair of words, requiring O(n) memory. Nivre (2004) discussed the problem with this
system in greater detail, observing that its stack size grows when processing structures that become right-
branching when converted to the Chomsky normal form (CNF) of a context-free grammar (CFG). Figure
1 lists those dependency structures for three words, for which the system must construct a subtree of b
and c before connecting a to either, requiring extra memory. This is because the system builds a tree
bottom-up: each token collects all dependents before being attached to its head. In fact, the arc-standard
system is essentially equivalent to the push-down automaton of a CFG in the CNF with a bottom-up
strategy (Nivre, 2004), so it has the same property as the bottom-up parser for a CFG.

Arc-Eager In the arc-eager system, the stack contains sequences of tokens comprising connected com-
ponents, so we can define the memory cost as the number of connected components on the stack. With
this definition, we can partially resolve the problem with the arc-standard system. The arc-eager system
does not incur any cost for processing the structure in Figure1(a) and aybycy · · · since it can connect
all tokens on the stack (Nivre, 2004). Because its construction is no longer pure bottom-up, it is difficult
to formally characterize the cost based on the type of tree structure. However, this transition system can-
not correctly predict difficulties with center-embedding because the cost never increases as long as all

dependency arcs are left-to-right, e.g., a sentence aybyc d becomes center-embedding when converted
to a CNF, but it does not incur any cost for it. Note that this system still incurs cost for some right-
branching structures, such as in Figures 1(b–c), and some center-embedded structures. Therefore, for the
arc-eager system, it is complicated to discuss the required order of memory cost. We summarize these
results in Table 1. Our goal is to develop an algorithm with the properties of the last column, requiring
non-constant memory for only center-embedded structures.

Other systems All systems where stack elements cannot be connected have the same problem as the
arc-standard system because of their bottom-up constructions, including the hybrid system of Kuhlmann
et al. (2011). Kitagawa and Tanaka-Ishii (2010) and Sartorio et al. (2013) present an interesting variant,
which attaches a node to another node that may not be the head of a subtree on the stack. We can use
the same reasoning for the arc-eager system for these systems: they sometimes do not incur costs for
center-embedded structures, while they incur a non-constant cost for some right-branching structures.

3 Left-corner Dependency Parsing

We now discuss the construction of our transition system with the left-corner strategy. Resnik (1992)
proposed a push-down recognizer for a CFG. In the following, we instead characterize his algorithm by
inference rules, which are more intuitive and helpful to adapt the idea for dependency parsing.

Prediction:
B

—————– A→B C
A

CB

Composition: A

CB D

———————— C→D E
A

C

ED

B

Prediction and Composition There are two
characteristic operations in the push-down recog-
nizer of Resnik (1992): prediction and composi-
tion. We show inference rules of these operations
on the right side:

Prediction is used to predict the parent node and
the sibling of a recognized subtree when the sub-
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SHIFT (σ, j|β,A) 7→ (σ|〈j〉, β, A)
INSERT (σ|〈σ′1|i|x(λ)〉), j|β,A) 7→ (σ|〈σ′1|i|j〉, β, A ∪ {(i, j)} ∪ {∪k∈λ(j, k))
LEFT-PRED (σ|〈σ11, · · · 〉, β, A) 7→ (σ|〈x(σ11)〉, β, A)
RIGHT-PRED (σ|〈σ11, · · · 〉, β, A) 7→ (σ|〈σ11, x(∅)〉, β, A)
LEFT-COMP (σ|〈σ′2|x(λ)〉|〈σ11, · · · 〉, β, A) 7→ (σ|〈σ′2|x(λ ∪ {σ11})〉, β, A)
RIGHT-COMP (σ|〈σ′2|x(λ)〉|〈σ11, · · · 〉, β, A) 7→ (σ|〈σ′2|σ11|x(∅)〉, β, A ∪ {∪k∈λ(σ11, k)})

Figure 2: Actions of the left-corner transition system.
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Figure 3: Correspondences of reduce actions between dependency and CFG. Nonterminal X(t) means
that its lexical head is t. We only show minimal example subtrees for simplicity. However, a can have
an arbitrary number of children, so can b or x, as long as x is on a right spine and has no right children.

tree is complete and its parent node is not yet recognized. Composition composes two subtrees by first
predicting the parent and the sibling of a recognized subtree then immediately connecting trees by iden-
tifying the same node on two trees (C, in this case). This is used when the parent node of a completed
subtree has already been predicted as a part of another tree in a top-down fashion.

Dummy Node We now turn to the discussion of dependency parsing. The key characteristic of our
transition system is the introduction of a dummy node on a subtree, which is needed to represent a
subtree containing some predicted structures as in constituency subtrees for Resnik’s recognizer. To get
an intuition of the parser actions, we present a simulation of transitions for the sentence in Figure 1(b),
of which current systems fail to predict its difficulty. Our system first shifts a then conducts a kind of
prediction operation, resulting in a subtree x

a
, where x is a dummy node. This means that we predict

that a will become a left dependent of an incoming word. Next, it shifts b to the stack then conducts a
composition operation to obtain a tree x

a b
. It finally inserts c to the position of x, recovering the tree.

Transition system As in many other transition systems, a configuration for our system is a tuple c =
(σ, β,A), where σ is a stack, and we use a vertical bar to signify an append operation, e.g., σ = σ′|σ1

denoting σ1 is the top most element of the stack σ, and β is an input buffer consisting of token indexes
not processed yet. β = j|β′ means j is a first element of β, and A ⊆ Vw × Vw is a set of arcs given Vw,
a set of token indexes for a sentence w. Stack:

w2

w1 x

w3 w5

w4

w6

w7

σ = [〈2, x({3, 5})〉, 〈6, 7〉]
β = [8, 9, · · · , n]

A = {(2, 1), (5, 4), (6, 7)}

Each element of a stack is a list representing a right
spine of a subtree, as in Kitagawa and Tanaka-Ishii
(2010) and Sartorio et al. (2013). A right spine σi =
〈σi1, σi2, · · · , σik〉 consists of all nodes in a descending
path from the head of σi, i.e., σi1, taking the rightmost
child at each step. We also write σi = σ′i|σik meaning that σik is the right most node of spine σi. Each
element of σi is an index of a token in a sentence, or a dummy node x(λ), where λ is a set of the left
dependents of x. The figure above depicts an example of the configuration, where the i-th word in a
sentence is written as wi on the stack.

In the following, we say a right spine σi is complete if it does not contain any dummy nodes, while
σi containing a dummy node is referred to as incomplete. Our transition system uses six actions, two of
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which are shift actions and four are reduce actions. All actions are defined in Figure 2.

Shift Actions There are two kinds of shift actions: SHIFT and INSERT3. SHIFT moves a token from
the top of the buffer to the stack. INSERT replaces a dummy node on the top of the stack with a token
from the top of the buffer. This adds arcs from/to tokens connected to the dummy node. Note that this
action can be performed for a configuration where x(λ) is the top of σ1 or λ is empty, in which case
arcs (i, j) or ∪k∈λ(j, k) are not added. Resnik (1992) does not define this action, but instead uses a
verification operation (Rule 9). One can view our INSERT action as a composition of two actions: SHIFT

and a verification. We note that after these shift actions, the top element of the stack must be complete.

Reduce Actions Reduce actions create new arcs for subtrees on the stack. LEFT-PRED and RIGHT-
PRED correspond to the predictions of the CFG counterpart. Figure 3 describes these transitions for
minimal subtrees. LEFT-PRED assigns a dummy node x as the head of a (this corresponds to σ11), while
RIGHT-PRED creates x as a new right dependent. When we convert the resulting tree into a CNF, we can
see that the difference between these two operations lies in the predicted parent node of a: LEFT-PRED

predicts a nonterminal X(x), i.e., it predicts that the head of this subtree is the head of the predicting
sibling node, while RIGHT-PRED predicts that the head is a. Note that different from CFG rules, we do
not have to predict the actual sibling node; rather, we can abstract this predicted node as a dummy node
x. A similar correspondence holds between the composition actions: RIGHT-COMP and LEFT-COMP.

We note that to obtain a valid tree, shift and reduce actions must be performed alternatively. We
can prove this as follows: Let c = (σ|σ2|σ1, β, A). Since reduce actions turn an incomplete σ1 into a
complete subtree, we cannot perform two consecutive reduce actions. Shift actions make σ1 complete.
After a shift action, we cannot perform INSERT since it requires σi to be incomplete; if we perform
SHIFT, the top two elements on the stack become complete, but we cannot connect these two trees since
the only way to connect two trees on the stack is composition, but this requires σ2 to be incomplete.

Defining Oracle The oracle for a transition system is a function that returns a correct action given the
current configuration and a set of gold arcs. It is typically used for training a parser (Nivre, 2008), but
we define it to analyze the behavior of our system on treebank sentences.

First, we show that our system has the spurious ambiguity, and discuss its implications. Consider a
sentence axbyc, which can be parsed with two different action sequences as follows:

1. SHIFT→ LEFT-PRED→ INSERT→ RIGHT-PRED→ INSERT

2. SHIFT→ LEFT-PRED→ SHIFT→ RIGHT-COMP→ INSERT

The former INSERTs b at step 3, then RIGHT-PREDs to wait for a right dependent (c). The latter, on the
other hand, SHIFTs b at step 3, then RIGHT-COMPs to combine two subtrees (axx and b) to obtain a
tree axbyx. These ambiguities between action sequences and the resulting tree are referred to as the
spurious ambiguity. Next, we analyze the underlying differences between these two operations. We
argue that the difference lies in the form of the recognized constituency tree: The former RIGHT-PREDs
at step 4, which means that it recognizes a constituency of the form ((a b) c), while the latter recognizes
(a (b c)) due to its RIGHT-COMP operation. Therefore, the spurious ambiguity of our system is caused by
the ambiguity of converting a dependency tree to a constituency tree. Recently, some transition systems
have exploited similar ambiguities using dynamic oracles (Goldberg and Nivre, 2013; Sartorio et al.,
2013; Honnibal et al., 2013). The same type of analysis might be possible for our system, but we leave
it for future work; here we only present a static oracle and discuss its properties.

Since our system performs shift and reduce actions interchangeably, we need two functions to define
the oracle. Let c = (σ|σ2|σ1, β, A). The next shift action is determined as follows:

• INSERT: if σ1 = 〈σ′1|i|x(λ)〉 and (i, j) ∈ Ag and j has no dependents in β (if i exists) or ∃k ∈
λ; (j, k) ∈ Ag (otherwise).

• SHIFT: otherwise.

The next reduce action is determined as follows:
3We use small caps to refer to a specific action, e.g., SHIFT, while “shift” refers to an action type.
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• LEFT-COMP: if σ2 = 〈σ′2|i|x(λ)〉, σ1 = 〈σ11, · · · 〉, σ11 has no dependents in β, and σ11 can be a
left dependent of x: i’s next dependent is the head of σ11 (if i exists) or k ∈ λ and σ11 share the
same head (otherwise).

• RIGHT-COMP: if σ2 = 〈σ′2|i|x(λ)〉, σ1 = 〈σ11, · · · 〉, σ11 has one more dependent in β, and σ11 can
be insertable at the position of x: (i, σ11) ∈ Ag or ∃k ∈ λ; (σ11, k) ∈ Ag.

• RIGHT-PRED: if σ1 = 〈σ11, · · · 〉 and σ11 has one more dependent in β.

• LEFT-PRED: otherwise.

Each condition checks whether we can obtain the gold dependency arcs after the transition. This oracle
follows the strategy of “compose or insert when possible”. As we saw in the example, sometimes INSERT

and SHIFT both can be valid to recover the gold arcs; however, we always select INSERT. Sometimes the
same ambiguity occurs between LEFT-COMP and LEFT-PRED or RIGHT-COMP and RIGHT-PRED, but
we always prefer composition.

As we saw above, the spurious ambiguity of our system occurs when the conversion from a depen-
dency tree to a constituency tree is not deterministic. This oracle has the property that its recognized
constituency tree corresponds to the one that can be obtained by constructing all left-arcs first given a de-
pendency tree. For example, in the above example for axbyc, we select action sequences 1 to recognize
a constituency of ((a b) c). We can prove this property by showing that the algorithm always collects all
left-arcs for a head before any right-arcs; Not doing INSERT or composition when possible means that
we create a right-arc for a head when the left-arcs are not yet completed. We can also verify that this
algorithm can parse all no-center-embedded sentences in a CNF converted in this manner with the stack
depth never exceeding three, requiring non-constant memory for only center-embedded structures.

4 Memory Cost Analysis

To characterize our transition system, we compare it to other systems by observing the incurred memory
cost during running oracle transitions for sentences on a set of typologically diverse languages. For this
analysis, we aim to verify the language universality of the claim: naturally occurring sentences should
be parsed with a left-corner parser with less required memory.

Settings We collect 18 treebanks from the CoNLL-X and 2007 shared tasks (Buchholz and Marsi,
2006; Nivre et al., 2007). Some languages were covered by both shared tasks; we use only 2007 data.
We remove sentences with non-projective arcs (Nivre, 2008) or without any root nodes. We follow the
common practice adding a dummy root token to each sentence. This token is placed at the end of each
sentence, as in Ballesteros and Nivre (2013), since it does not change the cost on sentences with one root
token on all systems.

We compare three transition systems: arc-standard, arc-eager, and left-corner. For each system, we
perform oracle transitions for all sentences and languages, measuring the memory cost for each configu-
ration defined as follows. For the arc-standard and left-corner systems, we use the number of elements on
the stack. This arc-standard system uses the original formulation of Nivre (2003), connecting two items
on the stack at the reduce action. For the arc-eager system, we use the number of connected components.
The system can create a subtree at the beginning of a buffer, in which case we add 1 to the cost.

We run a static oracle for each system. For the left-corner system, we implemented the algorithm
presented in Section 3. For the arc-standard and arc-eager systems, we implemented an oracle preferring
reduce actions over shift, which can minimizes the memory cost.

Memory costs for general sentences For each language, we count the number of configurations for
each memory cost during performing oracles on all sentences. In Figure 4, we show the cumulative
frequencies of configurations having each memory cost (see solid lines in the figure). These lines can
answer the question: What memory cost is required to cover X% of configurations when recovering all
gold trees? Note that comparing absolute values are not meaningful since the minimal cost to construct
an arc is different for each system, e.g., the arc-standard system requires at least two items on the stack,
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Figure 4: Crosslinguistic comparison of cumulative frequency of memory cost when processing all sen-
tences for each system. For example, in Arabic, for the arc-eager system, around 90% of all config-
urations incurred memory cost of ≤ 5. Dotted lines (random) are results on the sentences, which are
randomly reordered while preserving the graph structure and projectivity.

while the arc-eager system can create a right arc if the stack contains one element. Instead, we focus on
the universality of each system’s behavior for different languages.

As we discussed in section 2.2, the arc-standard system can process only left-branching structures with
a constant memory, which are typical in head-final languages such as Japanese or Turkish, and we can
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see this tendency. The system behaves poorly in many other languages.
The arc-eager and left-corner systems behave similarly for many languages, but we can see that there

are some languages for which the left-corner system behaves similarly to other languages, while the arc-
eager system requires larger cost; Arabic, Hungarian, or Japanese, for example. In fact, except Arabic,
the left-corner system reaches 98% of configurations with a memory cost of≤ 3, which indicates that the
property of the left-corner system requiring less memory is more universal than that of other systems.

Comparison to randomized sentences One might wonder that the results above come from the nature
of left-corner parsing reducing the stack size, not from the bias in language avoiding center-embedded
structures. To partially answer this question, we conduct another experiment comparing oracle transitions
on original treebank sentences and on wrong sentences. We create these wrong sentences by using the
method from Gildea and Temperley (2007). We reorder words in each sentence by first extracting a
directed graph then randomly reordering the children of each node while preserving projectivity. The
dotted lines in Figure 4 denotes the results of randomized sentences for each system.

There are notable differences in required memory between original and random sentences for many
languages. This result indicates that our system can parse with less memory for only naturally occurring
sentences. For Chinese and Hungarian, the differences are subtle. However, the differences are also
small for the other systems, which implies that these corpora have some biases on graphs reducing the
differences.

5 Related Work and Discussion

To the best of our knowledge, parsing with a left-corner strategy has only been studied for constituency.
Roark (2001) proposed a top-down parser for a CFG with a left-corner grammar transform (Johnson,
1998), which is essentially the same as left-corner parsing but enables several extensions in a unified
framework. Roark et al. (2009) studied the psychological plausibility of Roark’s parser, observing that it
fits well to human reading time data. Another model with a left-corner strategy is Schuler et al. (2010):
they observed that the transformed grammar of English requires only limited memory, proposing a finite
state approximation with a hierarchical hidden Markov model. This parser was later extended by van
Schijndel and Schuler (2013), which defined a left-corner parser for constituency with shift and reduce
actions. In fact, they used the same kind of actions as our transition system: shift, insert, predict, and
composition. Though they did not mentioned explicitly, we showed how to construct a left-corner parsing
algorithm with these actions by decomposing the push-down recognizer of Resnik (1992). These are
examples of broad-coverage parsing models with cognitively plausibility, which has recently received
considerable attention in interdisciplinary research on psycholinguistics and computational linguistics
(Schuler et al., 2010; Keller, 2010; Demberg et al., 2013).

Differently from previous models, our target is dependency. A dependency-based cognitively plausible
model is attractive, especially from a crosslinguistical viewpoint. Keller (2010) argued that current
models only work for English, or German in few exceptions, and the importance of crosslinguistically
valid models of human language processing. There has been some attempts to use a transition system for
studying human language processing (Boston and Hale, 2007; Boston et al., 2008), so it is interesting to
compare automatic parsing behaviors with various transition systems to human processing.

We introduced a dummy node for representing a subtree with an unknown head or dependent. Re-
cently, Menzel and colleagues (Beuck and Menzel, 2013; Kohn and Menzel, 2014) have also studied
dependency parsing with a dummy node. While conceptually similar, the aim of introducing a dummy
node is different between our approach and theirs: We need a dummy node to represent a subtree cor-
responding to that in Resnik’s algorithm, while they introduced it to confirm that every dependency tree
on a sentence prefix is fully connected. This difference leads to a technical difference; a subtree of their
parser can contain more than one dummy node, while we restrict each subtree to containing only one
dummy node on a right spine.

Our experiments in section 4 can be considered as a study on functional biases existing in language or
language evolution (Jaeger and Tily, 2011). In computational linguistics, Gildea and Temperley (2007;
2010) examined the bias on general sentences called dependency length minimization (DLM), which
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argues that grammar should favor the dependency structures that reduce the sum of dependency arc
lengths. They reordered English and German treebank sentences with various criteria: original, random
with projectivity, and optimal that minimizes the sum of dependency lengths. They observed that the
word order of English fits very well to the optimal ordering, while German does not. We examined the
universality of the bias to reduce memory cost for left-corner parsing. Although we cannot compare the
incurred cost with the optimal reordered sentences, our results on original sentences, in which there are
few configurations requiring the stack depth≥ 4, suggest the bias to avoid center-embedded structures is
language universal. It will be interesting to analyze in more detail the relationships between DLM and the
bias of our system since the two biases are not independent, e.g., center-embed structures typically appear
with longer dependencies. Are there languages that do not hold DLM while requiring less memory, or
vice versa? For these analyses, we might have to take care of the grammar construction, e.g., there
are several definitions for coordination structures for dependency grammars (Popel et al., 2013). The
functional views discussed above might shed some light on the desired construction for these cases.

6 Conclusion

We have pointed out that the memory cost on current transition systems for dependency parsing do not
coincide with observations in people, proposing a system with a left-corner strategy. Our crosslinguistical
analysis confirms the universality of the claim that people avoid generating center-embedded sentences,
which also suggests that it is worthy for crosslinguistical studies of human language processing.

As a next stage, we are seeking to train a parser model as in other transition systems with a discrimi-
native framework such as a structured perceptron (Zhang and Nivre, 2011; Huang and Sagae, 2010). A
parser with our transition system might also be attractive for the problem of grammar induction, where
recovering dependency trees are a central problem (Klein and Manning, 2004), and where some linguis-
tic biases have been exploited, such as reducibility (Mareček and Žabokrtský, 2012) or acoustic cues
(Pate and Goldwater, 2013). Recently, Cohen et al. (2011) showed how to interpret shift-reduce actions
as a generative model; combining their idea and our transition system might enable the model to exploit
memory biases that exist in natural sentences.

Finally, dependency grammars are suitable for treating non-projective structures. Extensions for tran-
sition systems have been proposed to handle non-projective structures with additional actions (Attardi,
2006; Nivre, 2009). Although our system cannot handle non-projective structures, a similar extension
might be possible, which would enable a left-corner analysis for non-projective structures.
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