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Abstract 

This paper proposes a soft dependency matching model for hierarchical phrase-based (HPB) machine 

translation. When a HPB rule is extracted, we enrich it with dependency knowledge automatically learnt 

from the training data. The dependency knowledge not only encodes the dependency relations between 

the components inside the rule, but also contains the dependency relations between the rule and its con-

text. When a rule is applied to translate a sentence, the dependency knowledge is used to compute the 

syntactic structural consistency of the rule against the dependency tree of the sentence. We characterize 

the structure consistency by three features and integrate them into the standard SMT log-linear model to 

guide the translation process. Our method is evaluated on multiple Chinese-to-English machine transla-

tion test sets. The experimental results show that our soft matching model achieves 0.7-1.4 BLEU points 

improvements over a strong baseline of an in-house implemented HPB translation system. 

1 Introduction 

HPB model (Chiang, 2007) is widely used and has consistently delivered state-of-the-art performance. 

This model extends the phrase-based model (Koehn et al., 2003) by using the formal synchronous 

grammar to well capture the recursiveness of language during translation. In a formal synchronous 

grammar, the syntactic unit could be any sequence of contiguous terminals and non-terminals, which 

may not necessarily satisfy the linguistic constraints. HPB model is powerful to cover any format of 

translation pairs, but it might introduce ungrammatical rules and produce poor quality translations. 

To generate grammatical translations, lots of syntax-based models have been proposed by Galley et 

al. (2004), Liu et al. (2006), Huang et al. (2006), Mi et al. (2008), Shen et al. (2008), Xie et al. (2011), 

Zhang et al. (2008), etc. In these models, the syntactic units should be compatible with the syntactic 

structure of either the source sentence or the target sentence. These approaches can generate more 

grammatical translations by capturing the structural difference between language pairs. However, 

these models need special efforts to capture non-syntactic translation knowledge to improve the trans-

lation performance.  

It is desired to combine the advantages of syntax-based models and the HPB model (Stein et al., 

2010). There has been much work trying to improve HPB model by incorporating syntax information. 

Marton and Resnik (2008) leverage linguistic constituents to constrain the decoding softly. Some work 

go further to augment the non-terminals in HPB rules with syntactic tags which depend on the syntac-

tic structure covered by the non-terminals (Zollmann and Venugopal, 2006; Chiang, 2010; Li et al., 

2012; Huang et al., 2013). For example, given below HPB rules (1-4), the source non-terminal X 

could be refined into NP or PP as shown in rules (5-8) respectively.  
 

(1) <借 了 X, borrowed X>                  (2) <借 了 X, lent X>  

(3) <X1 借 了 X2, borrowed X2 X1>     (4) <X1 借 了 X2, X1 borrowed X2>  
 

(5) <借了 NP, borrowed X>                  (6) <借了 NP, lent X> 

(7) <PP 借了 NP, borrow X2 X1>          (8) <NP 借了 NP, X1 lent X2> 
 

Although augmenting the non-terminals with syntactic tags in these methods achieved better results 

for HPB model, they have limitations that the syntax information on the non-terminals are not discrim-
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inative enough due to the limited context covered by the HPB rule. For example, rule (5) and (6) are 

still not discriminative when translating below two sentences (9) and (10). 
 

(9) 我向他借了一本书(I borrowed a book from him)    (10) 我借了一本书给他(I lent a book to him) 
 

where the common phrase “借了一本书” appear in both sentences. Obviously, although rule (5) and 

(6) share same source sides, rule (5) can only be applied to the translation of sentence (9) and rule (6) 

to sentence (10). Otherwise, inappropriate application will lead to wrong translations. Rule (5) and (6) 

are not discriminative due to no consideration of their outside context during the translation.  

Motivated by such observation, we proposed an alternative approach, called soft dependency 

matching model, to incorporate into each HPB rule the source syntactic dependencies connecting the 

contents inside the rule with the context outside the rule. The dependency knowledge associated with 

HPB rules is automatically learnt from bilingual training corpus. They make HPB rules discriminative 

according to global context.  

 

 
Figure 1.  Dependency information associated with two rules. LC and RC mean the source context on 

the left and right of the rule respectively. 
 

Figure 1 shows two rules associated with different dependencies. The first one is applicable to the case 

when some word on the left side depends on the word “借” in the rule, and the second one is applica-

ble to the case when the word “借” in the rule depends on some word on the right side. 

During SMT decoding, first we parse the source sentence to get the dependency tree. When a HPB 

rule is applied to translate the sentence, we calculate structural consistency between the dependency 

knowledge associated with the rule and dependency tree structure of the source sentence. The con-

sistency degree is integrated into the SMT log-linear model as features to encourage syntactic hypoth-

eses and penalize the hypotheses violating syntactic constraints. 

Compared with previous work that incorporate syntax knowledge into HPB model, the advantage of 

our soft dependency matching model is: 

 It not only captures the dependency relations between the components inside the rule, but also 

models the dependency relations between the rule and its context from a global view. 

 Without increasing the amount of rules or the searching space, our model can capture the syntactic 

variation for all of the rules (syntactic or non-syntactic, well-formed or ill-formed). 

 Our model can take advantage of the dependency knowledge on both terminals and non-terminals.  

We evaluate the performance of our soft dependency matching model on Chinese-to-English trans-

lation task. Experimental results show that our method can achieve the improvements of 0.7-1.4 

BLEU points over the baseline HPB model on multiple NIST MT evaluation test sets. 

2 Related Work 

Ever since the invention of phrase-based model, a lot of efforts have been made to incorporate linguis-

tic syntax. Cherry(2008) and Marton and Resnik (2008) leverage linguistic constituent to constrain the 

decoding softly. In their methods, a translation hypothesis gets an extra credit if it respects the parse 

tree but may incur a cost if it violates a constituent boundary. The soft constrain based methods 

achieved promising results on various language pairs. One problem of these methods is that exactly 

matching syntactic constraints cannot always guarantee a good translation, and violating syntactic 

structure does not always induce a poor translation. It could be more reasonable if the credit and penal-

ty is learnt from the parallel training data. In this work, we learn this kind of constrain knowledge di-

rectly from the syntactic structures over the training corpus.  

Xiong et al. (2009) present a method that automatically learns syntactic constraints from training 

data for the ITG based translation (Wu, 1997; Xiong et al., 2006).  They utilize the syntactic con-

straints to estimates the extent to which a span is bracketable. Though the effect was demonstrated on 

the ITG based model, the method is also applicable to the HPB model. The main difference between 

Xiong et al. (2009) and our work is that we try to estimate the structural consistency of each rule 
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against the source syntax tree. For rules which are same in the source side but different in the target 

side, our method will distinguish the inconsistency degree for different rules. While, for such rules, 

Xiong et al. (2009) will give a same score which will be used to compete with rules in other spans. 

More recently, Huang et al. (2013) associate each non-terminal with the distribution of tags that is 

used to measure the consistency of syntactic compatibility of the translation rule on source spans. Our 

work is similar to Huang et al. (2013) since we also represent the syntactic variation of translation 

rules in the form of distribution. The main difference is that they annotate non-terminals with head 

POS tags while we use dependency triples (over both terminals and non-terminals) to explicitly repre-

sent both the dependency relations inside the rule, and that between the rule and its context. 

Both above related work and our work need parse the source sentence to get syntactic context be-

fore decoding. There are also some methods incorporating syntax information without the need of 

online parsing the source sentences (Zollmann and Venugopal, 2006; Shen et al, 2009; Chiang, 2010). 

They parse the training data to label the non-terminals with syntactic tags. During the bottom-up de-

coding, the tags are used to model the substitution of non-terminals in a soft way (Shen et al, 2009; 

Chiang, 2010) or in a hard way (Zollmann and Venugopal, 2006).  

Gao et al. (2011) derive soft constraints from the source dependency parsing for the HPB translation. 

They focus on the relative order of each dependent word and its head word after translation, while our 

method models whether the dependency information of a rule matches the context or not.  

Our work utilizes contextual information around translation rules. In this sense, it is similar to He et 

al. (2008) and Liu et al. (2008). The main difference between their work and our work is that they lev-

erage lexical context for rule selection while we focus on the syntactic contextual information. 

3 Hierarchical Phrase based Machine Translation 

Our model proposed in this paper is an extension of the HPB model (Chiang, 2007). Formally, HPB 

model is a weighted synchronous context free grammar. It employs a generalization of the standard 

plain phrase extraction approach in order to acquire the synchronous rules of the grammar directly 

from word-aligned parallel text. Rules have the form of: 

          

where X is a nonterminal,   and   are both strings of terminals and non-terminals from source and tar-

get side respectively, and ∼ is a one-to-one correspondence between nonterminal occurrences in   and 

 . Associated with each rule is a set of feature functions with the form        . These feature functions 

are combined into a log-linear model. When a rule is applied during SMT decoding, its score is calcu-

lated as: 

∑          

 

 

where    is the weight associated with feature function         . The feature weights are typically op-

timized using minimum error rate training algorithm (Och, 2003).  

4 Soft Dependency Matching Model 

In order to incorporate syntactic knowledge to refine both the word ordering and word sense disam-

biguation for HPB model, we propose a soft dependency matching model (SDMM). It extends HPB 

rule into a form which is named as SDMM rule: 
 

              
 

where RDT(rule’s dependency triples) is a set of dependency triples defined on source string   . Each 

element in RDT is a triple representing dependency knowledge in the form: 
 

{m-h-l} 
 

where m and h are the dependent and head respectively, l is the label of the dependency relation type. 

m and h could be any of terminals, non-terminals, LC and RC, where LC denotes the left context and 

RC the right context. 

In the following two sub-sections, we will explain the details of SDMM rule extensions for both 

plain phrases (i.e., there are no non-terminals in both         ) and hierarchical rules (i.e., there are at 
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least one non-terminal in both         )  respectively. For simplicity, we ignore the correspondence   

in the representations of both HPB rules and SDMM rules. 
 

 
Figure 2: An illustration of a dependency parse tree for the source side of a word-aligned parallel sen-

tences pair. 

4.1 SDMM Over Plain Phrase Rules 

Figure 2 illustrates a parallel sentence together with word alignments and source dependency parse 

tree, from which we can extract the phrase pairs of HPB rules like: 
 

(11) < 一 本 书, a book >        (12) < 借 了 一 本 书, borrowed a book > 
 

By incorporating syntactic knowledge, we can extend these HPB rules into SDMM rules as shown 

in Figure 3(a) and Figure 3(b) respectively.  

 
Figure 3: An illustration of two phrase pairs annotated with a set of dependency triples. 

 

Formally, the RDT corresponding to phrase pair (11) is {书-LC-dobj}. The RDT corresponding to 

phrase pair (12) is {LC-借-nsubj, LC-借-prep}. 

Now we describe how to build the RDT when a phrase pair is extracted from a sentence pair during 

the training step. First, we initialize RDT to be empty. Then, for each dependency triple “m-h-l” in the 

parse tree of the source sentence, if either m or h is covered by the source phrase in the rule, we add it 

to RDT. However, if both m and h are covered by the source phrase, we will ignore it because it holds 

less syntactic information beyond HPB rule itself. For example, the dependency triple “一 -本 -

nummod” is excluded from RDT for both phrase pair (11) and phrase pair (12). In addition, we do not 

add the dependency triple “m-h-l” into RDT if both m and h are not contained in source phrase, be-

cause it is not related to phrase pair at all. The dependency triple “他-向-pobj” is such a case for both 

phrase pair (11) and phrase pair (12).  

Finally, we normalize the word in RDT that is not covered by the source phrase with either LC 

(stands for the left context) or RC (stands for the right context) according to its relative position to the 

source phrase. For example, in the RDT for phrase pair (11), we normalize “书-借-dobj” as “书-LC-

dobj” since the word“借” is not covered by the source phrase and it is treated as left context.  

Note that for each context word outside the source phrase, we only record whether it is on the left or 

on the right of phrase. We do not further consider its lexical form and its distance to the source phrase. 

For example, in the two dependency triples in Figure 3(b), both the dependent word “我” and “向” are 

normalized into LC. In this way, we can generalize the dependency triples in RDT and alleviate the 

data sparseness problem. In fact, there might be duplicated dependency triples for a phrase pair. In this 

case, we only keep one of them. 

4.2 SDMM over Hierarchical Rules 

Hierarchical rules are usually generated by substituting sub-phrases with non-terminals from plain 

phrase pairs. For example, given the parallel sentence and the two phrase pairs in Section 4.1, we can 

get a hierarchical rule like:  

<借 了 X, borrowed X> 

To extend hierarchical rules into SDMM rules, we add dependency information to source terminals 

or non-terminals in RDT. Figure 4 shows an example representing an SDMM rule: 
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Figure 4: An illustration of a hierarchical rule annotated with a set of dependency triples. 

 

The generation of SDMM rules over hierarchical rules is similar to that of plain phrase rules. The only 

difference lies in processing the non-terminals, whose dependencies are inferred from the words they 

covered. For example, the RDT of the above SDMM rule would be:{LC-借-nsubj, LC-借-prep, X-借-

dobj} 
Similarly, any dependencies over two terminals contained in the source rule are not included in 

RDT, and dependencies inferred from same non-terminals are excluded as well. In addition, depend-

encies between two non-terminals are ignored.   

4.3 SDMM Rule Composing 

A same HPB rule (either plain phrase pair or a hierarchical rule) can be extracted from different bilin-

gual sentences. Therefore, the same HPB rule could be extended into multiple SDMM rules. For ex-

ample, given a parallel sentence pair shown in Figure 5, 
 

 
Figure 5: An example of a dependency tree over the source sentence together with the word-aligned 

target sentence. 
 

we might get a SDMM rule as shown in Figure 6. Compared to the SDMM rule in Figure 4, there is an 

additional dependency triple “LC-借-tmod” in RDT. 
 

 
Figure 6: An illustration of dependency triples associated to a hierarchical rule. 

 

Intuitively, we can process SDMM rules independently although they share the same information of 

HPB rules. However, this will exacerbate the data sparseness problem and make the computation inef-

ficient due to dramatically increased model size. An alternative way is only to keep the most frequent 

RDT information for the same HPB rules. Though this can get a very concise model, a lot of useful 

syntactic information might be lost. 

We propose a balanced composing method to make a trade-off between knowledge representation 

and computation efficiency of SDMM rules. Suppose there are more than one SDMM rules with dif-

ferent      but the same HPB rule, we compose them by the union and get the new form of RDT as: 
 

    ⋃    

 

 

 

In addition, we record the frequency of HPB rule as well as that of each dependency triple in RDT 

as: 

             ,                 
 

where              is the number of times that HPB rule           is extracted from the 

training data, and                 is the frequency that    and           co-occur. For ex-

ample, suppose SDMM rules in Figure 4 and Figure 6 occurs 9 and 1 times respectively, we can com-

pose them into the form as shown in Figure 7.  
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Figure 7: Composed form of the dependency annotation of a rule. The integers following the colons 

denote occurring times. 
 

Therefore, the composed SDMM rule will be represented by the original HPB rule <借 了 X, bor-

rowed X> together with RDT and its frequency information shown in Table 1. 

 
RDT # 

{ LC-借-tmod, 

   LC-借-nsubj, 

   LC-借-prep, 

    X - 借-dobj } 

1 

10 

10 

10 

Table 1. The RDT and its frequency information of a composed SDMM rule. 

4.4 Consistency of SDMM Rules 

So far we have described how to enrich a rule with RDT in the training step. Now we introduce how to 

use the RDT of each rule to guide the translation process. 

In the decoding, we parse the source sentence to get the dependency parse tree as shown in Figure 8. 

When we apply a rule to get a partial translation for a span, we also extract a set of dependency triples 

based on the parse tree in the exact same way that is used in the training step. We denote this by CDT 

(context dependency triples). Suppose the rule <借 了 X, borrowed X> is applied to translate the un-

derlined span in Figure 8, then the CDT for the rule is: {LC-借-nsubj, LC-借- dep, X-借-dobj}. 
 

 
Figure 8: A sentence to be translated and its dependency parse tree. 

 

In order to evaluate whether a SDMM rule is applicable to translate a sentence or not from the syn-

tactic view, we model the structural consistency of SDMM rule against source dependency tree by cal-

culating the matching degree between RDT and CDT. The example in Figure 9 illustrates how we 

compute the matching degree between the SDMM rule in Figure 7 and CDT over the source depend-

ency tree in Figure 8. We estimate the matching degree based on three sets including the relative com-

plement set of CDT in RDT, the intersection set of RDT and CDT, and the relative complement set of 

RDT in CDT. 

 

 
Figure 9: Three different sets of dependency triples to model the structural consistency of syntactic 

matching. 
 

The statistics over above three sets are leveraged to design three features which are incorporated into 

SMT log-linear model to encourage and penalize various syntactic motivated hypotheses. The first 

feature is called as the lost dependency triple feature   . It is calculated based on the set RDT\CDT as: 
 

   ∑                   
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where   is the indicator function whose value is one if and only if the condition is true, otherwise its 

value is zero. The motivation of     is that: if a dependency triple which always co-occur with the HPB 

rule is not observed in CDT, it indicates the current SDMM rule may mismatch with the source sen-

tence and therefore we need to penalize its application. In Figure 9, “LC-借-prep” is such a dependen-

cy triple. However, for the less frequent dependency triples in RDT such as “LC-借-tmod” in Figure 8, 

there is no penalty on it although it is not found in CDT.  

The second feature is the unexpected dependency triple feature   , which is computed as : 
  

   |       | 
 

This feature is the number of dependency triples in CDT that never co-occur with the rule in the train-

ing data. In Figure 9, “LC-借-dep” is such a case. Intuitively, the higher the value    is, the higher in-

consistency degree is, because it means that many dependency triples in CDT are never observed in 

the training corpus. We should discourage the application of the corresponding SDMM rule.  

The third feature is the matched dependency triple feature  
 

 which is calculated based on 

RDT∩CDT. It is directly used to model the structural consistency over all the dependency triples in 

RDT∩CDT for the application of HPB rule          . Formally,  
 

 is defined as the sum of log 

probability of each dependency triple in RDT∩CDT conditioned on the HPB rule: 
 

   ∑         |           
         

 

 

where    |           is the probability of a dependency triple  associated to a HPB rule    

       . We estimate it based on the relative frequency and experimentally use the adding 0.5 

smoothing. 

5 Experiments 

5.1 Experimental Settings 

Our baseline is the re-implementation of the Hiero system (Chiang, 2007). When our soft dependency 

matching model is integrated, the HPB rule is extended into the form of  
              and the score is calculated by: 

 

∑           

 

                                              

 

where the additional three features are defined in Section 4.3,   ,    and    are corresponding feature 

weights. 

We test our soft dependency matching model on a Chinese-English translation task. The NIST06 

evaluation data was used as our development set to tune the feature weights, and NIST04, NIST05 and 

NIST08 evaluation data are our test sets. We first conduct experiments by using the FBIS parallel cor-

pus, and then further test the performance of our method on a large scale training corpus. 

Word alignment is performed by GIZA++ (Och and Ney, 2000) in both directions with the default set-

ting. 4-gram language model is trained over the Xinhua portion of LDC English Gigaword Version 3.0 

and the English part of the bilingual training data. Feature weights are tuned with the minimum error 

rate training algorithm (Och, 2003).Translation performance is measured with case-insensitive BLEU4 

score (Papineni et al., 2002). 

All the Chinese sentences in the training set, development set and test set are parsed by an in-house 

developed dependency parser based on shift-reduce algorithm (Zhang and Nivre, 2011). There are 45 

named grammatical relations plus a default relation representing unknown cases. The detailed descrip-

tions about dependency parsing are explained in Chang et al. (2009). 

5.2 Experimental Results on FBIS Corpus 

We first conduct experiments by using the FBIS parallel corpus to train the model of both the baseline 

and the soft dependency matching model. Table 2 shows the statistics of FBIS corpus after the pre-

processing. 
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 #sentences #words 

Chinese 128,832 3,016,570 

English 128,832 3,922,816 

Table 2. The statistics of FBIS corpus 
 

The evaluation results over FBIS corpus are reported in Table 3. The first row shows the results of 

baseline, the next three rows show the effect of three features respectively and the last row gives the 

result when all features are integrated together. Based on Table 3, we can see that each individual fea-

ture improves the performance. Among all integrated features, the third feature  
 

 is the most effec-

tive one. The best performance is achieved when using all three features, where we get 1.4, 0.9 and 1.2 

BLEU points improvements respectively over the baseline on three test sets. 
 

 NIST04 NIST05 NIST08 

Baseline 33.53 32.97 25.08 

Baseline+fl 34.59 33.44 25.69 

Baseline+fu 34.48 33.59 25.51 

Baseline+fm 34.73 33.74 25.76 

Baseline+fl+fu+fm 34.96 33.91 26.28 

Table 3. Translation performance over BLEU% when models are trained on the FBIS corpus. 

5.3 Experimental Results on Large Scale  Corpus 

To further test the effect of our soft dependency matching model, we use a large scale corpus released 

by LDC. The catalog number of them is LDC2003E07, LDC2003E14, LDC2005T06, LDC2005T10, 

LDC2005E83, LDC2006E26, LDC2006E34, LDC2006E85 and LDC2006E92. There are 498K sen-

tence pairs, 12.1M Chinese words and 13.8M English words. Table 4 summarizes the translation per-

formance on the large scale of corpus. Our model is still effective when we train the translation system 

on large scale data. We get 1.3, 0.7 and 1.0 BLEU point improvements over the baseline on three test 

sets respectively, which shows that our method can consistently improve HPB system over different 

sized training corpus. 
 

 NIST04 NIST05 NIST08 

Baseline 38.72 37.59 29.03 

Baseline+fl+fu+fm 40.00 38.34 30.06 

Table 4. Translation performance over BLEU% when models are trained on a large scale parallel 

 corpus. 

5.4 Decoding Cost 

Incorporating syntax can improve the translation performance, but it might increase the SMT decoding 

complexity. One advantage of our method is that it does not increase the amount of translation rules, 

so the searching space is not enlarged. Table 5 shows the decoding time comparison with the baseline 

when models are trained on the FBIS corpus. The average decoding time per sentence is only in-

creased by about 12% due to the parsing of source sentences and the computation of the features. We 

believe that this is acceptable given the performance gain. 

 

 NIST04 NIST05 NIST08 

Baseline 0.67sec 0.78sec 0.50sec 

Baseline+fl+fu+fm 0.88sec 0.87sec 0.56sec 

Table 5.  The average decoding time per sentence, measured in second/sentence. 

6 Conclusion and Future Work 

We proposed a soft dependency matching model for HPB machine translation. We enrich the HPB 

rule with dependency knowledge learnt from the training data. The dependency knowledge allows our 

model to capture the both the dependency relations inside the rule and the dependency relations be-

tween the rule and its context from a global view. During decoding, the syntax structural consistency 

of rules against source dependency tree is calculated and converted into SMT log-linear model fea-
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tures to guide the translation process. The experimental results show that our soft matching model 

achieves significant improvements over a strong baseline of an in-house implemented HPB system. 

In future work, there is much room to improve the performance via our method. First, we can dis-

criminatively learn the contribution of the dependency knowledge of each rule based on the training 

data. Second, we can go beyond the current “bag of dependency triples” representation by composing 

them hierarchically to capture deep syntactic information. Third, section 2 has discussed the theoreti-

cal difference with related work on adding source syntax into the HPB model, we are interested in 

empirically comparing our method with them and combining it with them to get further improvement. 
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