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Abstract 

Entity Set Expansion (ESE) aims at automatically acquiring instances of a specific target category. 

Unfortunately, traditional ESE methods usually have the expansion boundary problem and the semantic 

drift problem. To resolve the above two problems, this paper proposes a probabilistic Co-Bootstrapping 

method, which can accurately determine the expansion boundary using both the positive and the 

discriminant negative instances, and resolve the semantic drift problem by effectively maintaining and 

refining the expansion boundary during bootstrapping iterations. Experimental results show that our 

method can achieve a competitive performance. 

1 Introduction 

Entity Set Expansion (ESE) aims at automatically acquiring instances of a specific target category 

from text corpus or Web. For example, given the capital seeds {Rome, Beijing, Paris}, an ESE system 

should extract all other capitals from Web, such as Ottawa, Moscow and London. ESE system has 

been used in many applications, e.g., dictionary construction (Cohen and Sarawagi, 2004), word sense 
disambiguation (Pantel and Lin, 2002), query refinement (Hu et al., 2009), and query suggestion (Cao 

et al., 2008). 

Due to the limited supervision provided by ESE (in most cases only 3-5 seeds are given), traditional 
ESE systems usually employ bootstrapping methods (Cucchiarelli and Velardi, 2001; Etzioni et al., 

2005; Pasca, 2007; Riloff and Jones, 1999; Wang and Cohen, 2008). That is, the entity set is 

iteratively expanded through a pattern generation step and an instance extraction step. Figure 1(a) 

demonstrates a simple bootstrapping process.
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Figure 1: A demo of Bootstrapping (a) and Co-Bootstrapping (b) 
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However, the traditional bootstrapping methods have two main drawbacks:  

1) The expansion boundary problem. That is, using only positive seeds (i.e., some example 

entities from the category we want to expand), it is difficult to represent which entities we want to 

expand and which we don’t want. For example, starting from positive seeds {Rome, Beijing, Paris}, 
we can expand entities at many different levels, e.g., all capitals, all cities, or even all locations. And 

all these explanations are reasonable.  

2) The semantic drift problem. That is, the expansion category may change gradually when noisy 
instances/patterns are introduced during the bootstrapping iterations. For example, in Figure 1 (a), the 

instance Rome will introduce a pattern “* is the city of”, which will introduce many noisy city 

instances such as Milan and Chicago for the expansion of Capital. And these noisy cities in turn will 
introduce more city patterns and instances, and finally will lead to a semantic drift from Capital to 

City. 

In recent years, some methods (Curran et al, 2007; Pennacchiotti and Pantel, 2011) have exploited 

mutual exclusion constraint to resolve the semantic drift problem. These methods expand multiple 
categories simultaneously, and will determine the expansion boundary based on the mutually 

exclusive property of the pre-given categories. For instance, the exclusive categories Fruit and 

Company will be jointly expanded and the expansion boundary of {Apple, Banana, Cherry} will be 
limited by the expansion boundary of {Google, Microsoft, Apple Inc.}. These methods, however, still 

have the following two drawbacks: 

1) These methods require that the expanded categories should be mutually exclusive. However, in 
many cases the mutually exclusive assumption does not hold. For example, many categories hold a 

hyponymy relation (e.g., the categories City and Capital, because the patterns for Capital are also the 

patterns for City) or a high semantic overlap (e.g., the categories Movies and Novels, because some 

movies are directly based on the novels of the same title.). 
2) These methods require the manually determination of the mutually exclusive categories. 

Unfortunately, it is often very hard for even the experts to determine the categories which can define 

the expansion boundaries for each other. For example, in order to expand the category Chemical 
Element, it is difficult to predict its semantic drift towards Color caused by the ambiguous instances 

{Silver, Gold}. 

In this paper, to resolve the above problems, we propose a probabilistic Co-Bootstrapping method. 

The first advantage of our method is that we propose a method to better define the expansion boundary 
using both the positive and the discriminant negative seeds, which can both be automatically populated 

during the bootstrapping process. For instance, in Figure 1(b), in order to expand Capital, the 

Co-Bootstrapping algorithm will populate both positive instances from the positive seeds {Rome, 
Beijing, Paris}, and negative instances from the negative seeds {Boston, Sydney, New York}. In this 

way the expansion boundary of Capital can be accurately determined. 

The second advantage of our method is that we can maintain and refine the expansion boundary 
during bootstrapping iterations, so that the semantic drift problem can be effectively resolved. 

Specifically, we propose an effective scoring algorithm to estimate the probability that an extracted 

instance belongs to the target category. Based on this scoring algorithm, this paper can effectively 

select positive instances and discriminant negative instances. Therefore the expansion boundary can be 
maintained and refined through the above jointly expansion process. 

We have evaluated our method on the expansion of thirteen categories of entities. The experimental 

results show that our method can achieve 6%~15% P@200 performance improvement over the 
baseline methods. 

This paper is organized as follows. Section 2 briefly reviews related work. Section 3 defines the 

problem and proposes a probabilistic Co-Bootstrapping approach. Experiments are presented in 
Section 4. Finally, we conclude this paper and discuss some future work in Section 5. 

2 Related Work 

In recent years, ESE has received considerable attentions from both research (An et al., 2003; 
Cafarella et al., 2005; Pantel and Ravichandran, 2004; Pantel et al., 2009; Pasca, 2007; Wang and 

Cohen, 2008) and industry communities (e.g., Google Sets). Till now, most ESE systems employ 

bootstrapping methods, such as DIPRE (Brin, 1998), Snowball (Agichtein and Gravano, 2000), etc. 
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The main drawbacks of the traditional bootstrapping methods are the expansion boundary problem 

and the semantic drift problem. Currently, two strategies have been exploited to resolve the semantic 

drift problem. The first is the ranking based approaches (Pantel and Pennacchiotti, 2006; Talukdar et 

al., 2008), which select highly confident patterns and instances through a ranking algorithm, with the 
assumption that high-ranked instances will be more likely to be the instances of the target category. 

The second is the mutual exclusion constraint based methods (Curran et al., 2007; McIntosh and 

Curran, 2008; Pennacchiotti and Pantel, 2011; Thelen and Riloff, 2002; Yangarber et al., 2002), which 
expand multiple categories simultaneously and determine the expansion boundary based on the 

mutually exclusive property of the pre-given categories. 

3 The Co-Bootstrapping Method 

3.1 The Framework of Probabilistic Co-Bootstrapping 

Given the initial positive seeds and negative seeds, the goal of our method is to extract instances of a 

specific target semantic category. For demonstration, we will describe our method through the running 
example shown in Figure 1(b). 

Specifically, Figure 2 shows the framework of our method. The central tasks of our 

Co-Bootstrapping method are as follows: 

 
Figure 2: The framework of probabilistic Co-Bootstrapping 

1) Pattern Generation and Evaluation. This step generates and evaluates patterns using the 

statistics of the positive and the negative instances. Specifically, we propose three measures of pattern 

quality: the Generality (GE), the Precision of Extracted Instances (PE) and the Precision of Not 
Extracted Instances (PNE). 

2) Instance Co-Extraction. This step co-extracts the positive and the negative instances using 

highly confident patterns. Specifically, we propose an effective scoring algorithm to estimate the 
probability that an extracted instance belongs to the target category based on the statistics and the 

quality of the patterns which extract it. 

3) Seed Selection. This step selects the high ranked positive instances and discriminant negative 

instances to refine the expansion boundary by measuring how well a new instance can be used to 
define the expansion boundary. 

The above three steps will iterate until the number of extracted entities reaches a predefined 

threshold. We describe these steps as follows. 

3.2 Pattern Generation and Evaluation 

In this section, we describe the pattern generation and evaluation step. In this paper, each pattern is a 

4-grams lexical context of an entity. We use the Google Web 1T corpus’s (Brants and Franz, 2006) 

5-grams for both the pattern generation and the instance co-extraction in ESE. Our method generates 
patterns through two steps: 1) Generate candidate patterns by matching seeds with the 5-grams. 2) 

Evaluate the quality of the patterns. 

For the first step, we simply match each seed instance with all 5-grams, then we replace the 

matching instance with wildcard “*” to generate the pattern. 

Extracted Positive (ep) London 

Extracted Negative (en) Shanghai, Milan 

Not Extracted Positive (nep) Tokyo 

Not Extracted Negative (nen) Chicago, Nokia 

 

Table 1: (a) shows the four classes of instances according to polarity and extraction. (b) shows the four 
classes of the instances given “to cities such as *” 

Count Positive Negative 

Extracted Extracted Positive (ep) Extracted Negative (en) 

Not Extracted 
Not Extracted and Positive 

(nep) 

Not Extracted and Negative 

(nen) 

Pattern Generation and Evaluation 
Initial   

Seeds 
Pattern 

Positive Instance 

Discriminant Negative Instance    

Positive Instance  

Negative Instance 

Instance Co-Extraction 

Seeds Evaluation and Selection 

(a) (b) 
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For the second step, we propose three measures to evaluate the quality of a pattern, correspondingly 

the Generality (GE), the Precision of Extracted Instances (PE), and the Precision of Not Extracted 

Instances (PNE). Specifically, given a pattern, we observed that all instances can be categorized into 

four classes, according to whether they belong to the target category and whether they can be extracted 
by the pattern (shown in Table 1(a)). For example, given the pattern “to cities such as *” in Figure 

1(b), the instances under its four classes are shown in Table 1 (b). 

The proposed three measures of the quality of a pattern can be computed as follows (In most cases, 
we cannot get the accurate number of ep, en, nep and nen. So this paper uses the corresponding known 

instances in the previous iteration to approximately compute ep, en, nep and nen): 

1) Generality (GE). The Generality of a pattern measures how many entities can be extracted by it. 
A more general pattern will cover more entities than a more specific pattern. Specifically, the GE of a 

pattern is computed as: 

 

That is, the proportion of the instances which can be extracted by the pattern in the previous iteration. 

2) Precision of Extracted Instances (PE). The PE measures how likely an instance extracted by a 

pattern will be positive. That is, a pattern with higher PE will be more likely to extract positive 

instances than a lower PE pattern. The PE is computed as: 

 

That is, the proportion of positive instances within all instances which can be extracted by the 
pattern in the previous iteration. 

3) Precision of Not Extracted Instances (PNE). The PNE measures how likely a not extracted 

instance is positive. Instances not extracted by a high PNE pattern will be more likely to be positive. 
PNE is computed as: 

 

Because the number of negative instances is usually much larger than the number of positive 

instances, we normalize the number of positive and negative instances in the formula. 
Table 2 shows these measures of some selected patterns evaluated using the Google Web 1T corpus. 

We can see that the above measures can effectively evaluate the quality of patterns. For instance, 

GE(“* is the city of”)=0.566 is larger than GE(“at the embassy in *”)=0.340, which is consistent with 
our intuition that the pattern “* is the city of” is more general than “at the embassy in *”. PE(“* is the 

capital of”)=0.928 is larger than PE(“* is the city of”)=0.269, which is consistent with our intuition 

that the instances extracted by “* is the capital of” are more likely Capital than by“* is the city of”. 

 GE PE PNE 

at the embassy in * 0.340 0.833 0.312 

* is the capital of 0.321 0.928 0.224 

to cities such as * 0.426 0.875 0.566 

at the hotel in * 0.333 0.192 0.571 

* is the city of 0.566 0.269 0.592 

* the official web site 0.218 0.230 0.607 

Table 2: The GE, PE and PNE of some selected patterns 

3.3 Instance Co-Extraction 

In this section, we describe how to co-extract positive instances and discriminant negative instances. 

Given the generated patterns, the central task of this step is to measure the likelihood of an instance to 
be positive. The higher the likelihood, the more likely the instance belongs to the target category. To 

resolve the task, we propose a probabilistic method which predicts the probability of an instance to be 

positive, i.e., the Instance Positive Probability and we denote it as P+. Generally, the P+ is determined 
by both the statistics and the quality of patterns. We start with the observation that: 
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1) If an instance is extracted by a pattern with a high PE, the instance will have a high P+. 

2) If an instance is not extracted by a high PNE pattern, the instance will have a high P+. 

3) If an instance is extracted by many patterns with high PE and not extracted by many patterns 

with high PNE, the instance will have a high P+, and vice versa. 
Based on the above observations, the computation of P+ is as follows: 

The Situation of One Pattern 

For the situation that only one pattern exists, the P+ of an instance can be simply computed as: 

 

where e denotes an extracted instance and p denotes a pattern which extracts e. This formula means 
that if the instance is extracted by a pattern, the P+ is determined by the PE of the pattern. For 

example, in Figure 3 (a), the instance Tokyo is only extracted by the pattern “at the embassy in *” and 

the P+ is determined by the PE of “at the embassy in *”, i.e., P+(Tokyo)=PE(“at the embassy in *”). 
The above formula also means when the instance cannot be extracted by the only pattern, the P+ 

will be determined by the PNE of the pattern. For example, in Figure 3 (b), the instance Tokyo is not 

extracted by the only pattern “at the hotel in *” and the P+ is only determined by the PNE of “at the 

hotel in *”, that is, P+(Tokyo)=PNE(“at the hotel in *”). 

 

 

 
 

Figure 3: (a) Tokyo is extracted by “at the embassy in *”. (b) Tokyo is not extracted by “at the hotel 

in *”. (c) London is extracted by “at the embassy in *” and not extracted by “to cities such as *”. 

The Situation of Multiple Patterns 

In this section, we describe how to compute P+ in the situation of multiple patterns. Specifically, we 

assume that an instance is extracted by different patterns independently. Therefore, given all the 

pattern-instance relations (i.e., whether a specific pattern extracts a specific instance), the likelihood 
for an instance e being positive is computed as: 

 

where R
+
 is all the patterns which extract e, and R

-
 is all the patterns which do not extract e. I

+
 is the 

set of all positive instances.  is the probability of the event “pattern p extracts 

instance e and e is positive”. Using Bayes rule, this probability can be computed as: 

 

where  is the probability of the event “p extracts an instance e”, its value is GE(p); 

 is the conditional probability that e is positive under the condition “p extracts e”, 

and its value is PE(p). Finally  is computed as: 

 

 is the probability of the event “p does not extract e and e is positive”, which can 

be computed as: 

 

 is the probability of p not extracting an instance e, and its value is 1-GE(p). 

 is the conditional probability that e is positive under the condition “p does not 

extract e”, and its value is PNE(p). Then  is finally computed as: 

 

Tokyo at the embassy in * Tokyo  at the hotel in * London 

at the embassy in * 

to cities such as * 

(a) (b) (c) 
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For example, in Figure 3 (c), the instance London is extracted by the pattern “at the embassy in *” 

and not extracted by the pattern “to cities such as *”. In this situation, PosLikelihood(London)= 

[GE(“at the embassy in *”) × PE(“at the embassy in”)] × [(1-GE(“to cities such as *”)) × PNE(“to 

cities such as *”)]. 
Using the same intuition and the same method, the likelihood of an instance being negative is 

computed as: 

 

where  is the probability of the event “p extracts e and e is negative”, which is 

computed as: 

 

 is the probability of the event “p does not extract e and e is negative”, which is 

computed as: 

 

For instance, in Figure 3 (c), NegLikelihood(London) = [GE(“at the embassy in *”) × (1-PE(“at the 
embassy in”))] × [(1-GE(“to cities such as *”)) × (1-PNE(“to cities such as *”))]. 

Finally, the Instance Positive Probability, P+, is computed as:  

 

3.4 Seed Selection 

In this section, we describe how to select positive and discriminant negative instances at each iteration. 
To determine whether an instance is positive, we use a threshold of P+ to determine the polarity of 

instances, which can be empirically estimated from data. The instances which have much higher P+ 

than the threshold will be added to the set of positive instances. For example, London and Tokyo in 
Figure 1 (b) are selected as positive instances. 

To select discriminant negative instances, we observed that not all negative instances are the same 

useful for the expansion boundary determination. Intuitively, the discriminant negative instances are 

those negative instances which are highly overlapped with the positive instances. For instance, due to 
the lower overlap between categories Fruit and Capital, Apple is not a discriminant negative instance 

since it provides little information for the expansion boundary determination. Therefore, the instances 

near the threshold are used as the discriminant negative instances in the next iteration. (Notice that, the 
computation of GE, PE and PNE still uses all positive and negative instances, rather than only 

discriminant negative instances). For example, in Figure 1(b), Shanghai, Milan and Chicago are 

selected as discriminate negative instances, and Nokia will be neglected. Finally the boundary between 
Capital and City can be determined by the positive instances and the discriminant negative instances. 

4 Experiments 

4.1 Experimental Settings 

Category Description Category Description 

CAP Place: capital name FAC Facilities: names of man-made structures 

ELE chemical element ORG Organization: e.g. companies, governmental 

FEM Person: female first name GPE Place: Geo-political entities 

MALE Person: male first name LOC Locations other than GPEs 

LAST Person: last name DAT Reference to a date or period 

TTL Honorific title LANG Any named language 

NORP Nationality, Religion, Political(adjectival)   

Table 3: Target categories 

Corpus: In our experiments, we used the Google Web 1T corpus (Brants and Franz, 2006) as our 

expansion corpus. Specifically, we use the open source package LIT-Indexer (Ceylan and Mihalcea, 

2011) to support efficient wildcard querying for pattern generation and instance extraction. 
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Target Expansion Categories: We conduct our experiments on thirteen categories, which are shown 

in Table 3. Eleven of them are from Curran et al. (2007). Besides the eleven categories, to evaluate 

how well ESE systems can resolve the semantic drift problem, we use two additional categories 

(Capital and Chemical Element) which are high likely to drift into other categories. 
Evaluation Criteria: Following Curran et al (2007), we use precision at top n (P@N) as the 

performance metrics, i.e., the percentage of correct entities in the top n ranked entities for a given 

category. In our experiments, we use P@10, P@20, P@50, P@100 and P@200. Since the output is a 
ranked list of extracted entities, we also choose the average precision (AP) as the evaluation metric. In 

our experiments, the correctness of all extracted entities is manually judged. In our experiments, we 

present results to 3 annotators, and an instance will be considered as positive if 2 annotators label it as 
positive. We also provide annotators some supporting resources for better evaluation, e.g., the entity 

list of target type collected from Wikipedia. 

4.2 Experimental Results 

In this section, we analyze the effect of negative instances, categories boundaries, and seed selection 

strategies. We compare our method with the following two baseline methods: i) Only_Pos (POS): 
This is an entity set expansion system which uses only positive seeds. ii) Mutual_Exclusion (ME): 

This is a mutual exclusion bootstrapping based ESE method, whose expansion boundary is determined 

by the exclusion of the categories. 
We implement our method using two different settings: i) Hum_Co-Bootstrapping (Hum_CB): 

This is the proposed Co-Bootstrapping method in which the initial negative seeds are manually given. 

Specifically, we randomly select five positive seeds from the list of the category’s instances while the 

initial negative seeds are manually provided. ii) Feedback_Co-Bootstrapping (FB_CB): This is our 
proposed probabilistic Co-Bootstrapping method with two steps of selecting initial negative seeds:   

1) Expand the entity set using only the positive seeds for only first iteration. Return the top ten 

instances. 2) Select the negative instances in the top ten results of the first iteration as negative seeds. 

4.2.1. Overall Performance 

Several papers have shown that the experimental performance may vary with different seed choices 

(Kozareva and Hovy, 2010; McIntosh and Curran, 2009; Vvas et al., 2009). Therefore, we input the 
ESE system with five different positive seed settings for each category. Finally we average the 

performance on the five settings so that the impact of seed selection can be reduced. 

 P@10 P@20 P@50 P@100 P@200 MAP 

POS 0.84 0.74 0.55 0.41 0.34 0.42 

ME 0.83(0.90) 0.79(0.87) 0.68(0.78) 0.58(0.67) 0.51(0.59) - 

Hum_CB 0.97 0.95 0.83 0.71 0.57 0.78 

FB_CB 0.97 0.96 0.90 0.79 0.66 0.85 

Table 4: The overall experimental results 

Table 4 shows the overall experimental results. The results in parentheses are the known results of 
eleven categories (without CAP and ELE) shown in (Curran et al., 2007). MAP of ME is missed 

because there are no available results in (Curran et al., 2007). From Table 4, we can see that: 

1) Our method can achieve a significant performance improvement: Compared with the 

baseline POS, our method Hum_CB and FB_CB can respectively achieve a 23% and 32% 
improvement on P@200; Compared with the baseline ME, our method Hum_CB and FB_CB can 

respectively improve P@200 by 6% and 15%. 

2) By explicitly representing the expansion boundary, the expansion performance can be 
increased: Compared with the baseline POS, ME can achieve a 17% improvement on P@200, and our 

method Hum_CB can achieve a 23% improvement on P@200. 

3) The negative seeds can better determine the expansion boundary than mutually exclusive 

categories. Compared with ME, Hum_CB and FB_CB can respectively achieve a 6% and 15% 
improvement on P@200. We believe this is because using negative instances is a more accurate and 

more robust way for defining and maintaining the expansion boundary than mutually exclusive 

categories. 
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4) The system’s feedback is useful for selecting negative instances: Compared with Hum_CB, 

FB_CB method can significantly improve the P@200 by 9.0%. We believe this is because that the 

system’s feedback is a good indicator of the semantic drift direction. In contrast, it is usually difficult 

for human to determine which directions the bootstrapping will drift towards. 

4.2.2. Detailed Analysis: Expansion Boundary 

In Table 5, we show the top 20 positive and negative Capital instances (FB_CB setting). From Table 5, 

we can make the following observations: 1) Our method can effectively generate negative instances. 
In Table 5, the negative instances contain cities, states, countries and general terms, all of which have 

a high semantic overlap with Capital category. 2) The positive instances and negative instances 

generated by our Co-Bootstrapping method can discriminately determine the expansion boundary. For 
instance, the negative instances Kyoto can distinguish Capital from City; Australia and China can 

distinguish Capital from Country; 

Positive Instances 
London,  Paris,  Moscow,  Beijing,  Madrid,  Amsterdam,  Washington,  Tokyo,  Berlin,  Rome,  

Vienna,  Baghdad,  Athens,  Bangkok,  Cairo,  Dublin,  Brussels,  Prague,  San,  Budapest 

Negative Instances 

(with categories)  

City Kyoto,  Kong,  Newcastle,  Zurich,  Lincoln,  Albany,  Lyon,  LA,  Shanghai 

Country China,  Australia 

General downtown,  April 

State Hawaii,  Oklahoma,  Manhattan 

Other Hollywood,  DC,  Tehran,  Charlotte 

Table 5: Top 20 positive instances and negative instances (True positive instances are in bold) 

4.2.3. Detailed Analysis: Semantic Drift Problem 

POS 
Stockholm,  Tampa,  East,  West,  Springfield,  Newport, Cincinnati,  Dublin,  Chattanooga,  Savannah,  

Omaha,  Cambridge,  Memphis,  Providence,  Panama,  Miami,  Cape,  Victoria,  Milan,  Berlin 

ME 
London,  Prague,  Newport,  Cape,  Dublin,  Savannah,  Chattanooga,  Beijing,  Memphis,  Athens,  

Berlin,  Miami,  Plymouth,  Victoria,  Omaha,  Tokyo,  Portland,  Troy,  Anchorage,  Bangkok 

Hum_CB 
London,  Rome,  Berlin,  Paris,  Athens,  Moscow,  Tokyo,  Beijing,  Prague,  Madrid,  Vienna,  

Dublin,  Budapest,  Amsterdam,  Bangkok,  Brussels,  Sydney,  Cairo,  Washington,  Barcelona 

FB_CB 
London,  Paris,  Moscow,  Beijing,  Washington,  Tokyo,  Berlin,  Rome,  Vienna,  Baghdad,  

Athens,  Bangkok,  Cairo,  Brussels,  Prague,  San,  Budapest,  Amsterdam,  Dublin,  Madrid 

Table 6: Top 20 instances of all methods (True positive instances are in bold) 

To analyze how our method can resolve the semantic drift problem, Table 6 shows the top 20 positive 

Capital instances of different methods. From Table 6, we can make the following observations: i) 
Different methods can resolve the semantic drift problem to different extent: ME is better than POS, 

with 50% instances being positive, and our method is better than ME, with 95% instances being 

positive. ii) The Co-Bootstrapping method can effectively resolve the semantic drift problem: 25% of 

POS’s top 20 instances and 50% of ME’s top 20 instances are positive. In contrast, 90% of Hum_CB’s 
top 20 instances and 95% of FB_CB’s top 20 instances are positive respectively. It proves that 

Co-Bootstrapping method can better resolve the semantic drift problem than POS and ME. 

4.3 Parameter Optimization 

 
Figure 4: The MAP vs. threshold of P+ 

Our method has only one parameter: threshold of P+, which determines the instance’s polarity. 

Intuitively, a larger threshold of P+ will improve the precision of the positive instances but will regard 

some positive instances as negative instances mistakenly. As shown in Figure 4, our method can 
achieve the best MAP performance when the value of the threshold is 0.6. 
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4.4 Comparison with State-of-the-Art Systems 

We also compare our method with three state-of-the-art systems: Google Sets
1
-- an ESE application 

provided by Google, SEAL
2
 -- a state-of-the-art ESE method proposed by Wang and Cohen (2008), 

and WMEB -- a state-of-the-art mutual exclusion based system proposed in McIntosh and Curran 
(2008). To make a fair comparison, we directly use the results before the adjustment which miss 

P@10 and P@50 in their original paper (McIntosh and Curran, 2008) and compared the performance 

of these systems on nine categories in (McIntosh and Curran, 2008). For each system, we conduct the 
experiment five times to reduce the impact of seeds selection. The average P@10, P@50, P@100 and 

P@200 are shown in Figure 5. 

 
Figure 5: The results compared with three state-of-the-art systems 

From the results shown in Figure 5, we can see that our probabilistic Co-Bootstrapping method can 

achieve state-of-the-art performance on all metrics: Compared with the well-known baseline Google 
Sets, our method can get a 42.0% improvement on P@200; Compared with the SEAL baseline, our 

method can get a 35.0% improvement on P@200; Compared with the WMEB method, our method can 

achieve a 6.2% improvement on P@100 and a 3.1% improvement on P@200. 

5 Conclusion and Future Work 

In this paper, we proposed a probabilistic Co-Bootstrapping method for entity set expansion. By 

introducing negative instances to define and refine the expansion boundary, our method can 
effectively resolve the expansion boundary problem and the semantic drift problem. Experimental 

results show that our method achieves significant performance improvement over the baselines, and 

outperforms three state-of-the-art ESE systems. Currently, our method did not take into account the 
long tail entity expansion, i.e., the instances which appear only a few times in the corpus, such as 

Saipan, Roseau and Suva for the Capital category. For future work, we will resolve the long tail 

entities in our Co-Bootstrapping method by taking the sparsity of instances/patterns into consideration. 
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