
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers,
pages 2280–2290, Dublin, Ireland, August 23-29 2014.

A Probabilistic Co-Bootstrapping Method for Entity Set Expansion

Bei Shi, Zhengzhong Zhang Le Sun, Xianpei Han

Institute of Software,

 Chinese Academy of Sciences,

 Beijing, China

State Key Laboratory of Computer Science,

Institute of Software,

Chinese Academy of Sciences,

Beijing, China

{shibei, zhenzhong, sunle, xianpei}@nfs.iscas.ac.cn

Abstract

Entity Set Expansion (ESE) aims at automatically acquiring instances of a specific target category.

Unfortunately, traditional ESE methods usually have the expansion boundary problem and the semantic

drift problem. To resolve the above two problems, this paper proposes a probabilistic Co-Bootstrapping

method, which can accurately determine the expansion boundary using both the positive and the

discriminant negative instances, and resolve the semantic drift problem by effectively maintaining and

refining the expansion boundary during bootstrapping iterations. Experimental results show that our

method can achieve a competitive performance.

1 Introduction

Entity Set Expansion (ESE) aims at automatically acquiring instances of a specific target category

from text corpus or Web. For example, given the capital seeds {Rome, Beijing, Paris}, an ESE system

should extract all other capitals from Web, such as Ottawa, Moscow and London. ESE system has

been used in many applications, e.g., dictionary construction (Cohen and Sarawagi, 2004), word sense
disambiguation (Pantel and Lin, 2002), query refinement (Hu et al., 2009), and query suggestion (Cao

et al., 2008).

Due to the limited supervision provided by ESE (in most cases only 3-5 seeds are given), traditional
ESE systems usually employ bootstrapping methods (Cucchiarelli and Velardi, 2001; Etzioni et al.,

2005; Pasca, 2007; Riloff and Jones, 1999; Wang and Cohen, 2008). That is, the entity set is

iteratively expanded through a pattern generation step and an instance extraction step. Figure 1(a)

demonstrates a simple bootstrapping process.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

Rome

Beijing

Paris

Milan

Tokyo

Shanghai

London

* is the city of

at the embassy in *

* is the capital of

at the hotel in *

Chicago

Berlin

Pattern Generation Instance Extraction

Rome

Beijing

Paris

Milan

Tokyo

Shanghai

London

Sydney

Boston

* is the city of

at the embassy in *

* is the capital of

to cities such as *

at the hotel in *

Chicago

Nokia * the official web site

New York

Pattern Generation Instance Co-Extraction

Negative Positive

(a) (b)

Figure 1: A demo of Bootstrapping (a) and Co-Bootstrapping (b)

2280

However, the traditional bootstrapping methods have two main drawbacks:

1) The expansion boundary problem. That is, using only positive seeds (i.e., some example

entities from the category we want to expand), it is difficult to represent which entities we want to

expand and which we don’t want. For example, starting from positive seeds {Rome, Beijing, Paris},
we can expand entities at many different levels, e.g., all capitals, all cities, or even all locations. And

all these explanations are reasonable.

2) The semantic drift problem. That is, the expansion category may change gradually when noisy
instances/patterns are introduced during the bootstrapping iterations. For example, in Figure 1 (a), the

instance Rome will introduce a pattern “* is the city of”, which will introduce many noisy city

instances such as Milan and Chicago for the expansion of Capital. And these noisy cities in turn will
introduce more city patterns and instances, and finally will lead to a semantic drift from Capital to

City.

In recent years, some methods (Curran et al, 2007; Pennacchiotti and Pantel, 2011) have exploited

mutual exclusion constraint to resolve the semantic drift problem. These methods expand multiple
categories simultaneously, and will determine the expansion boundary based on the mutually

exclusive property of the pre-given categories. For instance, the exclusive categories Fruit and

Company will be jointly expanded and the expansion boundary of {Apple, Banana, Cherry} will be
limited by the expansion boundary of {Google, Microsoft, Apple Inc.}. These methods, however, still

have the following two drawbacks:

1) These methods require that the expanded categories should be mutually exclusive. However, in
many cases the mutually exclusive assumption does not hold. For example, many categories hold a

hyponymy relation (e.g., the categories City and Capital, because the patterns for Capital are also the

patterns for City) or a high semantic overlap (e.g., the categories Movies and Novels, because some

movies are directly based on the novels of the same title.).
2) These methods require the manually determination of the mutually exclusive categories.

Unfortunately, it is often very hard for even the experts to determine the categories which can define

the expansion boundaries for each other. For example, in order to expand the category Chemical
Element, it is difficult to predict its semantic drift towards Color caused by the ambiguous instances

{Silver, Gold}.

In this paper, to resolve the above problems, we propose a probabilistic Co-Bootstrapping method.

The first advantage of our method is that we propose a method to better define the expansion boundary
using both the positive and the discriminant negative seeds, which can both be automatically populated

during the bootstrapping process. For instance, in Figure 1(b), in order to expand Capital, the

Co-Bootstrapping algorithm will populate both positive instances from the positive seeds {Rome,
Beijing, Paris}, and negative instances from the negative seeds {Boston, Sydney, New York}. In this

way the expansion boundary of Capital can be accurately determined.

The second advantage of our method is that we can maintain and refine the expansion boundary
during bootstrapping iterations, so that the semantic drift problem can be effectively resolved.

Specifically, we propose an effective scoring algorithm to estimate the probability that an extracted

instance belongs to the target category. Based on this scoring algorithm, this paper can effectively

select positive instances and discriminant negative instances. Therefore the expansion boundary can be
maintained and refined through the above jointly expansion process.

We have evaluated our method on the expansion of thirteen categories of entities. The experimental

results show that our method can achieve 6%~15% P@200 performance improvement over the
baseline methods.

This paper is organized as follows. Section 2 briefly reviews related work. Section 3 defines the

problem and proposes a probabilistic Co-Bootstrapping approach. Experiments are presented in
Section 4. Finally, we conclude this paper and discuss some future work in Section 5.

2 Related Work

In recent years, ESE has received considerable attentions from both research (An et al., 2003;
Cafarella et al., 2005; Pantel and Ravichandran, 2004; Pantel et al., 2009; Pasca, 2007; Wang and

Cohen, 2008) and industry communities (e.g., Google Sets). Till now, most ESE systems employ

bootstrapping methods, such as DIPRE (Brin, 1998), Snowball (Agichtein and Gravano, 2000), etc.

2281

The main drawbacks of the traditional bootstrapping methods are the expansion boundary problem

and the semantic drift problem. Currently, two strategies have been exploited to resolve the semantic

drift problem. The first is the ranking based approaches (Pantel and Pennacchiotti, 2006; Talukdar et

al., 2008), which select highly confident patterns and instances through a ranking algorithm, with the
assumption that high-ranked instances will be more likely to be the instances of the target category.

The second is the mutual exclusion constraint based methods (Curran et al., 2007; McIntosh and

Curran, 2008; Pennacchiotti and Pantel, 2011; Thelen and Riloff, 2002; Yangarber et al., 2002), which
expand multiple categories simultaneously and determine the expansion boundary based on the

mutually exclusive property of the pre-given categories.

3 The Co-Bootstrapping Method

3.1 The Framework of Probabilistic Co-Bootstrapping

Given the initial positive seeds and negative seeds, the goal of our method is to extract instances of a

specific target semantic category. For demonstration, we will describe our method through the running
example shown in Figure 1(b).

Specifically, Figure 2 shows the framework of our method. The central tasks of our

Co-Bootstrapping method are as follows:

Figure 2: The framework of probabilistic Co-Bootstrapping

1) Pattern Generation and Evaluation. This step generates and evaluates patterns using the

statistics of the positive and the negative instances. Specifically, we propose three measures of pattern

quality: the Generality (GE), the Precision of Extracted Instances (PE) and the Precision of Not
Extracted Instances (PNE).

2) Instance Co-Extraction. This step co-extracts the positive and the negative instances using

highly confident patterns. Specifically, we propose an effective scoring algorithm to estimate the
probability that an extracted instance belongs to the target category based on the statistics and the

quality of the patterns which extract it.

3) Seed Selection. This step selects the high ranked positive instances and discriminant negative

instances to refine the expansion boundary by measuring how well a new instance can be used to
define the expansion boundary.

The above three steps will iterate until the number of extracted entities reaches a predefined

threshold. We describe these steps as follows.

3.2 Pattern Generation and Evaluation

In this section, we describe the pattern generation and evaluation step. In this paper, each pattern is a

4-grams lexical context of an entity. We use the Google Web 1T corpus’s (Brants and Franz, 2006)

5-grams for both the pattern generation and the instance co-extraction in ESE. Our method generates
patterns through two steps: 1) Generate candidate patterns by matching seeds with the 5-grams. 2)

Evaluate the quality of the patterns.

For the first step, we simply match each seed instance with all 5-grams, then we replace the

matching instance with wildcard “*” to generate the pattern.

Extracted Positive (ep) London

Extracted Negative (en) Shanghai, Milan

Not Extracted Positive (nep) Tokyo

Not Extracted Negative (nen) Chicago, Nokia

Table 1: (a) shows the four classes of instances according to polarity and extraction. (b) shows the four
classes of the instances given “to cities such as *”

Count Positive Negative

Extracted Extracted Positive (ep) Extracted Negative (en)

Not Extracted
Not Extracted and Positive

(nep)

Not Extracted and Negative

(nen)

Pattern Generation and Evaluation
Initial

Seeds
Pattern

Positive Instance

Discriminant Negative Instance

Positive Instance

Negative Instance

Instance Co-Extraction

Seeds Evaluation and Selection

(a) (b)

2282

For the second step, we propose three measures to evaluate the quality of a pattern, correspondingly

the Generality (GE), the Precision of Extracted Instances (PE), and the Precision of Not Extracted

Instances (PNE). Specifically, given a pattern, we observed that all instances can be categorized into

four classes, according to whether they belong to the target category and whether they can be extracted
by the pattern (shown in Table 1(a)). For example, given the pattern “to cities such as *” in Figure

1(b), the instances under its four classes are shown in Table 1 (b).

The proposed three measures of the quality of a pattern can be computed as follows (In most cases,
we cannot get the accurate number of ep, en, nep and nen. So this paper uses the corresponding known

instances in the previous iteration to approximately compute ep, en, nep and nen):

1) Generality (GE). The Generality of a pattern measures how many entities can be extracted by it.
A more general pattern will cover more entities than a more specific pattern. Specifically, the GE of a

pattern is computed as:

That is, the proportion of the instances which can be extracted by the pattern in the previous iteration.

2) Precision of Extracted Instances (PE). The PE measures how likely an instance extracted by a

pattern will be positive. That is, a pattern with higher PE will be more likely to extract positive

instances than a lower PE pattern. The PE is computed as:

That is, the proportion of positive instances within all instances which can be extracted by the
pattern in the previous iteration.

3) Precision of Not Extracted Instances (PNE). The PNE measures how likely a not extracted

instance is positive. Instances not extracted by a high PNE pattern will be more likely to be positive.
PNE is computed as:

Because the number of negative instances is usually much larger than the number of positive

instances, we normalize the number of positive and negative instances in the formula.
Table 2 shows these measures of some selected patterns evaluated using the Google Web 1T corpus.

We can see that the above measures can effectively evaluate the quality of patterns. For instance,

GE(“* is the city of”)=0.566 is larger than GE(“at the embassy in *”)=0.340, which is consistent with
our intuition that the pattern “* is the city of” is more general than “at the embassy in *”. PE(“* is the

capital of”)=0.928 is larger than PE(“* is the city of”)=0.269, which is consistent with our intuition

that the instances extracted by “* is the capital of” are more likely Capital than by“* is the city of”.

 GE PE PNE

at the embassy in * 0.340 0.833 0.312

* is the capital of 0.321 0.928 0.224

to cities such as * 0.426 0.875 0.566

at the hotel in * 0.333 0.192 0.571

* is the city of 0.566 0.269 0.592

* the official web site 0.218 0.230 0.607

Table 2: The GE, PE and PNE of some selected patterns

3.3 Instance Co-Extraction

In this section, we describe how to co-extract positive instances and discriminant negative instances.

Given the generated patterns, the central task of this step is to measure the likelihood of an instance to
be positive. The higher the likelihood, the more likely the instance belongs to the target category. To

resolve the task, we propose a probabilistic method which predicts the probability of an instance to be

positive, i.e., the Instance Positive Probability and we denote it as P+. Generally, the P+ is determined
by both the statistics and the quality of patterns. We start with the observation that:

2283

1) If an instance is extracted by a pattern with a high PE, the instance will have a high P+.

2) If an instance is not extracted by a high PNE pattern, the instance will have a high P+.

3) If an instance is extracted by many patterns with high PE and not extracted by many patterns

with high PNE, the instance will have a high P+, and vice versa.
Based on the above observations, the computation of P+ is as follows:

The Situation of One Pattern

For the situation that only one pattern exists, the P+ of an instance can be simply computed as:

where e denotes an extracted instance and p denotes a pattern which extracts e. This formula means
that if the instance is extracted by a pattern, the P+ is determined by the PE of the pattern. For

example, in Figure 3 (a), the instance Tokyo is only extracted by the pattern “at the embassy in *” and

the P+ is determined by the PE of “at the embassy in *”, i.e., P+(Tokyo)=PE(“at the embassy in *”).
The above formula also means when the instance cannot be extracted by the only pattern, the P+

will be determined by the PNE of the pattern. For example, in Figure 3 (b), the instance Tokyo is not

extracted by the only pattern “at the hotel in *” and the P+ is only determined by the PNE of “at the

hotel in *”, that is, P+(Tokyo)=PNE(“at the hotel in *”).

Figure 3: (a) Tokyo is extracted by “at the embassy in *”. (b) Tokyo is not extracted by “at the hotel

in *”. (c) London is extracted by “at the embassy in *” and not extracted by “to cities such as *”.

The Situation of Multiple Patterns

In this section, we describe how to compute P+ in the situation of multiple patterns. Specifically, we

assume that an instance is extracted by different patterns independently. Therefore, given all the

pattern-instance relations (i.e., whether a specific pattern extracts a specific instance), the likelihood
for an instance e being positive is computed as:

where R
+
 is all the patterns which extract e, and R

-
 is all the patterns which do not extract e. I

+
 is the

set of all positive instances. is the probability of the event “pattern p extracts

instance e and e is positive”. Using Bayes rule, this probability can be computed as:

where is the probability of the event “p extracts an instance e”, its value is GE(p);

 is the conditional probability that e is positive under the condition “p extracts e”,

and its value is PE(p). Finally is computed as:

 is the probability of the event “p does not extract e and e is positive”, which can

be computed as:

 is the probability of p not extracting an instance e, and its value is 1-GE(p).

 is the conditional probability that e is positive under the condition “p does not

extract e”, and its value is PNE(p). Then is finally computed as:

Tokyo at the embassy in * Tokyo at the hotel in * London

at the embassy in *

to cities such as *

(a) (b) (c)

2284

For example, in Figure 3 (c), the instance London is extracted by the pattern “at the embassy in *”

and not extracted by the pattern “to cities such as *”. In this situation, PosLikelihood(London)=

[GE(“at the embassy in *”) × PE(“at the embassy in”)] × [(1-GE(“to cities such as *”)) × PNE(“to

cities such as *”)].
Using the same intuition and the same method, the likelihood of an instance being negative is

computed as:

where is the probability of the event “p extracts e and e is negative”, which is

computed as:

 is the probability of the event “p does not extract e and e is negative”, which is

computed as:

For instance, in Figure 3 (c), NegLikelihood(London) = [GE(“at the embassy in *”) × (1-PE(“at the
embassy in”))] × [(1-GE(“to cities such as *”)) × (1-PNE(“to cities such as *”))].

Finally, the Instance Positive Probability, P+, is computed as:

3.4 Seed Selection

In this section, we describe how to select positive and discriminant negative instances at each iteration.
To determine whether an instance is positive, we use a threshold of P+ to determine the polarity of

instances, which can be empirically estimated from data. The instances which have much higher P+

than the threshold will be added to the set of positive instances. For example, London and Tokyo in
Figure 1 (b) are selected as positive instances.

To select discriminant negative instances, we observed that not all negative instances are the same

useful for the expansion boundary determination. Intuitively, the discriminant negative instances are

those negative instances which are highly overlapped with the positive instances. For instance, due to
the lower overlap between categories Fruit and Capital, Apple is not a discriminant negative instance

since it provides little information for the expansion boundary determination. Therefore, the instances

near the threshold are used as the discriminant negative instances in the next iteration. (Notice that, the
computation of GE, PE and PNE still uses all positive and negative instances, rather than only

discriminant negative instances). For example, in Figure 1(b), Shanghai, Milan and Chicago are

selected as discriminate negative instances, and Nokia will be neglected. Finally the boundary between
Capital and City can be determined by the positive instances and the discriminant negative instances.

4 Experiments

4.1 Experimental Settings

Category Description Category Description

CAP Place: capital name FAC Facilities: names of man-made structures

ELE chemical element ORG Organization: e.g. companies, governmental

FEM Person: female first name GPE Place: Geo-political entities

MALE Person: male first name LOC Locations other than GPEs

LAST Person: last name DAT Reference to a date or period

TTL Honorific title LANG Any named language

NORP Nationality, Religion, Political(adjectival)

Table 3: Target categories

Corpus: In our experiments, we used the Google Web 1T corpus (Brants and Franz, 2006) as our

expansion corpus. Specifically, we use the open source package LIT-Indexer (Ceylan and Mihalcea,

2011) to support efficient wildcard querying for pattern generation and instance extraction.

2285

Target Expansion Categories: We conduct our experiments on thirteen categories, which are shown

in Table 3. Eleven of them are from Curran et al. (2007). Besides the eleven categories, to evaluate

how well ESE systems can resolve the semantic drift problem, we use two additional categories

(Capital and Chemical Element) which are high likely to drift into other categories.
Evaluation Criteria: Following Curran et al (2007), we use precision at top n (P@N) as the

performance metrics, i.e., the percentage of correct entities in the top n ranked entities for a given

category. In our experiments, we use P@10, P@20, P@50, P@100 and P@200. Since the output is a
ranked list of extracted entities, we also choose the average precision (AP) as the evaluation metric. In

our experiments, the correctness of all extracted entities is manually judged. In our experiments, we

present results to 3 annotators, and an instance will be considered as positive if 2 annotators label it as
positive. We also provide annotators some supporting resources for better evaluation, e.g., the entity

list of target type collected from Wikipedia.

4.2 Experimental Results

In this section, we analyze the effect of negative instances, categories boundaries, and seed selection

strategies. We compare our method with the following two baseline methods: i) Only_Pos (POS):
This is an entity set expansion system which uses only positive seeds. ii) Mutual_Exclusion (ME):

This is a mutual exclusion bootstrapping based ESE method, whose expansion boundary is determined

by the exclusion of the categories.
We implement our method using two different settings: i) Hum_Co-Bootstrapping (Hum_CB):

This is the proposed Co-Bootstrapping method in which the initial negative seeds are manually given.

Specifically, we randomly select five positive seeds from the list of the category’s instances while the

initial negative seeds are manually provided. ii) Feedback_Co-Bootstrapping (FB_CB): This is our
proposed probabilistic Co-Bootstrapping method with two steps of selecting initial negative seeds:

1) Expand the entity set using only the positive seeds for only first iteration. Return the top ten

instances. 2) Select the negative instances in the top ten results of the first iteration as negative seeds.

4.2.1. Overall Performance

Several papers have shown that the experimental performance may vary with different seed choices

(Kozareva and Hovy, 2010; McIntosh and Curran, 2009; Vvas et al., 2009). Therefore, we input the
ESE system with five different positive seed settings for each category. Finally we average the

performance on the five settings so that the impact of seed selection can be reduced.

 P@10 P@20 P@50 P@100 P@200 MAP

POS 0.84 0.74 0.55 0.41 0.34 0.42

ME 0.83(0.90) 0.79(0.87) 0.68(0.78) 0.58(0.67) 0.51(0.59) -

Hum_CB 0.97 0.95 0.83 0.71 0.57 0.78

FB_CB 0.97 0.96 0.90 0.79 0.66 0.85

Table 4: The overall experimental results

Table 4 shows the overall experimental results. The results in parentheses are the known results of
eleven categories (without CAP and ELE) shown in (Curran et al., 2007). MAP of ME is missed

because there are no available results in (Curran et al., 2007). From Table 4, we can see that:

1) Our method can achieve a significant performance improvement: Compared with the

baseline POS, our method Hum_CB and FB_CB can respectively achieve a 23% and 32%
improvement on P@200; Compared with the baseline ME, our method Hum_CB and FB_CB can

respectively improve P@200 by 6% and 15%.

2) By explicitly representing the expansion boundary, the expansion performance can be
increased: Compared with the baseline POS, ME can achieve a 17% improvement on P@200, and our

method Hum_CB can achieve a 23% improvement on P@200.

3) The negative seeds can better determine the expansion boundary than mutually exclusive

categories. Compared with ME, Hum_CB and FB_CB can respectively achieve a 6% and 15%
improvement on P@200. We believe this is because using negative instances is a more accurate and

more robust way for defining and maintaining the expansion boundary than mutually exclusive

categories.

2286

4) The system’s feedback is useful for selecting negative instances: Compared with Hum_CB,

FB_CB method can significantly improve the P@200 by 9.0%. We believe this is because that the

system’s feedback is a good indicator of the semantic drift direction. In contrast, it is usually difficult

for human to determine which directions the bootstrapping will drift towards.

4.2.2. Detailed Analysis: Expansion Boundary

In Table 5, we show the top 20 positive and negative Capital instances (FB_CB setting). From Table 5,

we can make the following observations: 1) Our method can effectively generate negative instances.
In Table 5, the negative instances contain cities, states, countries and general terms, all of which have

a high semantic overlap with Capital category. 2) The positive instances and negative instances

generated by our Co-Bootstrapping method can discriminately determine the expansion boundary. For
instance, the negative instances Kyoto can distinguish Capital from City; Australia and China can

distinguish Capital from Country;

Positive Instances
London, Paris, Moscow, Beijing, Madrid, Amsterdam, Washington, Tokyo, Berlin, Rome,

Vienna, Baghdad, Athens, Bangkok, Cairo, Dublin, Brussels, Prague, San, Budapest

Negative Instances

(with categories)

City Kyoto, Kong, Newcastle, Zurich, Lincoln, Albany, Lyon, LA, Shanghai

Country China, Australia

General downtown, April

State Hawaii, Oklahoma, Manhattan

Other Hollywood, DC, Tehran, Charlotte

Table 5: Top 20 positive instances and negative instances (True positive instances are in bold)

4.2.3. Detailed Analysis: Semantic Drift Problem

POS
Stockholm, Tampa, East, West, Springfield, Newport, Cincinnati, Dublin, Chattanooga, Savannah,

Omaha, Cambridge, Memphis, Providence, Panama, Miami, Cape, Victoria, Milan, Berlin

ME
London, Prague, Newport, Cape, Dublin, Savannah, Chattanooga, Beijing, Memphis, Athens,

Berlin, Miami, Plymouth, Victoria, Omaha, Tokyo, Portland, Troy, Anchorage, Bangkok

Hum_CB
London, Rome, Berlin, Paris, Athens, Moscow, Tokyo, Beijing, Prague, Madrid, Vienna,

Dublin, Budapest, Amsterdam, Bangkok, Brussels, Sydney, Cairo, Washington, Barcelona

FB_CB
London, Paris, Moscow, Beijing, Washington, Tokyo, Berlin, Rome, Vienna, Baghdad,

Athens, Bangkok, Cairo, Brussels, Prague, San, Budapest, Amsterdam, Dublin, Madrid

Table 6: Top 20 instances of all methods (True positive instances are in bold)

To analyze how our method can resolve the semantic drift problem, Table 6 shows the top 20 positive

Capital instances of different methods. From Table 6, we can make the following observations: i)
Different methods can resolve the semantic drift problem to different extent: ME is better than POS,

with 50% instances being positive, and our method is better than ME, with 95% instances being

positive. ii) The Co-Bootstrapping method can effectively resolve the semantic drift problem: 25% of

POS’s top 20 instances and 50% of ME’s top 20 instances are positive. In contrast, 90% of Hum_CB’s
top 20 instances and 95% of FB_CB’s top 20 instances are positive respectively. It proves that

Co-Bootstrapping method can better resolve the semantic drift problem than POS and ME.

4.3 Parameter Optimization

Figure 4: The MAP vs. threshold of P+

Our method has only one parameter: threshold of P+, which determines the instance’s polarity.

Intuitively, a larger threshold of P+ will improve the precision of the positive instances but will regard

some positive instances as negative instances mistakenly. As shown in Figure 4, our method can
achieve the best MAP performance when the value of the threshold is 0.6.

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

MAP

Threshold of P+

MAP

2287

4.4 Comparison with State-of-the-Art Systems

We also compare our method with three state-of-the-art systems: Google Sets
1
-- an ESE application

provided by Google, SEAL
2
 -- a state-of-the-art ESE method proposed by Wang and Cohen (2008),

and WMEB -- a state-of-the-art mutual exclusion based system proposed in McIntosh and Curran
(2008). To make a fair comparison, we directly use the results before the adjustment which miss

P@10 and P@50 in their original paper (McIntosh and Curran, 2008) and compared the performance

of these systems on nine categories in (McIntosh and Curran, 2008). For each system, we conduct the
experiment five times to reduce the impact of seeds selection. The average P@10, P@50, P@100 and

P@200 are shown in Figure 5.

Figure 5: The results compared with three state-of-the-art systems

From the results shown in Figure 5, we can see that our probabilistic Co-Bootstrapping method can

achieve state-of-the-art performance on all metrics: Compared with the well-known baseline Google
Sets, our method can get a 42.0% improvement on P@200; Compared with the SEAL baseline, our

method can get a 35.0% improvement on P@200; Compared with the WMEB method, our method can

achieve a 6.2% improvement on P@100 and a 3.1% improvement on P@200.

5 Conclusion and Future Work

In this paper, we proposed a probabilistic Co-Bootstrapping method for entity set expansion. By

introducing negative instances to define and refine the expansion boundary, our method can
effectively resolve the expansion boundary problem and the semantic drift problem. Experimental

results show that our method achieves significant performance improvement over the baselines, and

outperforms three state-of-the-art ESE systems. Currently, our method did not take into account the
long tail entity expansion, i.e., the instances which appear only a few times in the corpus, such as

Saipan, Roseau and Suva for the Capital category. For future work, we will resolve the long tail

entities in our Co-Bootstrapping method by taking the sparsity of instances/patterns into consideration.

6 Acknowledgements

We would like to thank three anonymous reviewers for invaluable comments and suggestions to

improve our paper. This work is supported by the National Natural Science Foundation of China under
Grants no. 61100152 and 61272324, and the National High Technology Development 863 Program of

China under Grants no. 2013AA01A603.

References

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting Relations from Large Plain-Text Collections.

In: Proceedings of the fifth ACM conference on Digital libraries (DL-00), Pages 85-94.

Joohui An, Seungwoo Lee, and Gary Geunbae Lee. 2003. Automatic acquisition of named entity tagged corpus

from world wide web. In: Proceedings of ACL-03, Pages 165-168, Volume 2.

Thorsten Brants and Alex Franz. 2006. Web 1t-5gram version1. http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2006T13

1 https://docs.google.com/spreadsheet/
2 http://www.boowa.com/

0.978 0.909
0.848

0.773

0

0.2

0.4

0.6

0.8

1

P@10 P@50 P@100 P@200

Google Sets SEAL WMEB Co-Bootstrapping

2288

Sergey Brin. 1998. Extracting patterns and relations from the World Wide Web. In: Proceedings of the

Workshop at the 6th International Conference on Extending Database Technology, Pages 172-183.

Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. 2005. KnowItNow: Fast, Scalable

Information Extraction from the Web. In: Proceedings of EMNLP-05, Pages 563-570.

Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang Li. 2008. Context-aware

query suggestion by mining click-through and session data. In Proceedings of KDD-08, pages 875–883.

Hakan Ceylan and Rada Mihalcea. 2011. An Efficient Indexer for Large N-Gram Corpora. In: Proceedings of

System Demonstrations of ACL-11, Pages 103-108.

William W. Cohen and Sunita Sarawagi. 2004. Exploiting dictionaries in named entity extraction: combining

semi-Markov extraction processes and data integration methods. In: Proceedings of KDD-04, Pages 89-98.

Alessandro Cucchiarelli and Paola Velardi. 2001. Unsupervised Named Entity Recognition Using Syntactic and
Semantic Contextual Evidence. In: Computational Linguistics, Pages 123-131, Volume 27.

James R. Curran, Tara Murphy, and Bernhard Scholz. 2007. Minimising semantic drift with Mutual Exclusion

Bootstrapping. In: Proceedings of the 10th Conference of the Pacific Association for Computational

Linguistics, Pages 172–180.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S.

Weld, and Alexander Yates. 2005. Unsupervised Named-Entity Extraction from the Web: An Experimental

Study. In: Artificial Intelligence, Pages 91-134, Volume 165.

Jian Hu, Gang Wang, Fred Lochovsky, Jiantao Sun, and Zheng Chen. 2009. Understanding user’s query intent

with Wikipedia. In Proceedings of WWW-09, Pages 471–480.

Zornitsa Kozareva and Eduard Hovy. 2010. Learning arguments and supertypes of semantic relations using

recursive patterns. In: Proceedings of ACL-10, Pages 1482–1491.

Tara McIntosh and James R. Curran. 2008. Weighted mutual exclusion bootstrapping for domain independent

lexicon and template acquisition. In: Proceedings of the Australasian Language Technology Association

Workshop, Pages 97-105.

Tara McIntosh and James R. Curran. 2009. Reducing semantic drift with bagging and distributional similarity.

In: Proceedings of ACL-09, Pages 396-404.

Patrick Pantel and Dekang Lin. 2002. Discovering word senses from text. In: Proceedings of KDD-08, Pages

613-619.

Patrick Pantel and Deepak Ravichandran. 2004. Automatically Labeling Semantic Classes. In: Proceedings of

HLT/NAACL, Pages 321-328, Volume 4.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso: Leveraging Generic Patterns for Automatically

Harvesting Semantic Relations. In: Proceedings of ACL-06, Pages 113–120.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu and Vishnu Vyas. 2009. Web-Scale
Distributional Similarity and Entity Set Expansion. In: Proceedings of EMNLP-09, Pages 938-947.

Marius Pasca. 2007. Weakly-supervised discovery of named entities using web search queries. In: Proceedings of

CIKM-07, Pages 683-690.

Marco Pennacchiotti, Patrick Pantel. 2011. Automatically building training examples for entity extraction. In:

Proceedings of CoNLL-11, Pages 163-171.

Ellen Riloff and Rosie Jones. 1999. Learning dictionaries for information extraction using multi-level

bootstrapping. In: Proceedings of AAAI-99, Pages 474-479.

Partha P. Talukdar, Joseph Reisinger, Marius Pasca, Deepak Ravichandran, Rahul Bhagat, and Fernando Pereira.

2008. Weakly-supervised acquisition of labeled class instances using graph random walks. In: Proceedings of

EMNLP-08, Pages 582-590.

Michael Thelen and Ellen Riloff. 2002. A bootstrapping method for learning semantic lexicons using extraction
pattern contexts. In: Proceedings of ACL-02, Pages 214-221.

Richard C. Wang and William W. Cohen. 2008. Iterative Set Expansion of Named Entities using the Web. In:

Proceedings of ICDM-08, Pages 1091-1096.

2289

Richard C. Wang and William W. Cohen. 2009. Automatic Set Instance Extraction using the Web. In:

Proceedings of ACL-09, Pages 441-449.

Vishnu Vvas, Patrick Pantel and Eric Crestan. 2009. Helping editors choose better seed sets for entity set

expansion. In: Proceedings of CIKM-09, Pages 225-234

Roman Yangarber, Winston Lin and Ralph Grishman. 2002. Unsupervised learning of generalized names. In:

Proceedings of COLING-02, Pages 1-7.

2290

