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Abstract

Because of the increasing popularity of social media, much information has been shared on the
internet, enabling social media users to understand various real world events. Particularly, social
media-based infectious disease surveillance has attracted increasing attention. In this work, we
specifically examine influenza: a common topic of communication on social media. The funda-
mental theory of this work is that several words, such as symptom words (fever, headache, etc.),
appear in advance of flu epidemic occurrence. Consequently, past word occurrence can contribute
to estimation of the number of current patients. To employ such forecasting words, one can first
estimate the optimal time lag for each word based on their cross correlation. Then one can build
a linear model consisting of word frequencies at different time points for nowcasting and for
forecasting influenza epidemics. Experimentally obtained results (using 7.7 million tweets of
August 2012 – January 2016), the proposed model achieved the best nowcasting performance to
date (correlation ratio 0.93) and practically sufficient forecasting performance (correlation ratio
0.91 in 1-week future prediction, and correlation ratio 0.77 in 3-weeks future prediction). This
report reveals the effectiveness of the word time shift to predict of future epidemics using Twitter.

1 Introduction

The increased use of social media platforms has led to wide sharing of personal information. Espe-
cially Twitter, a micro-blogging platform that enables users to communicate by updating their status
using 140 or fewer characters, has attracted great attention of researchers and service developers because
Twitter can be a valuable personal information resource. The feasibility of such approaches, known as
social sensors, has been demonstrated in various event detection systems such as earthquakes (Sakaki
et al., 2010), outbreaks of disease (Chew and Eysenbach, 2010), and stock market fluctuations (Bollen
et al., 2011). Among the applications mentioned above, this study particularly examines detection of
seasonal influenza epidemics because the influenza detection is a popular application of Twitter. To date,
more than 30 Twitter-based influenza detection and prediction systems have been developed worldwide
(Charles-Smith et al., 2015).

Although the detailed functions of these systems differ, they share the underlying assumption that the
flu spreading in the real world is immediately reflected to the tweets. Therefore, most systems have
simply aggregated counts of daily flu-related tweets to obtain the current patient status (Aramaki et al.,
2011; Collier et al., 2011; Chew and Eysenbach, 2010; Lampos and Cristianini, 2010; Culotta, 2013;
Paul et al., 2014). Their typical materials are presented as shown below.

• I got a flu I can not go to school for the rest of the week

• I was diagnosed with a high fever. Maybe flu :(

Although the former tweet is described by an actual influenza patient, the latter one merely expresses a
suspicion of flu. From a practical (clinical) perspective, these differences have great importance because

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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(a) “Fever.”
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(b) “Injection.”

Figure 1: Motivating examples: The time lag of the frequency of a word enables one to obtain a good
approximation to the number of patients. The blue line shows the word frequency. The green line shows
the word frequency shifted time lag days. The red line shows the number of patients.
the latter is noise that impedes precise influenza surveillance. Therefore, earlier studies (Aramaki et
al., 2011; Kanouchi et al., 2015; SUN et al., 2014) have devoted great efforts to removal of such noise
(suspicion, negation, news wired, and so on).

This study employs such noisy tweets. We assume that a word, “fever” presents a clue to an up-
coming influenza outbreak. Inferring that people are frequently afflicted by symptoms such as “fever”
and “headache” immediately before the onset and diagnosis of influenza, we designate such words as
forecasting words.

More concrete examples of forecasting words are presented in Figure 1a. The figure reveals that an
approximately 16-day time lag exists between the frequency of “fever” (blue line) and the number of
patients (red line). If this time lag was known in advance, one could obtain a good approximation of
the number of patients (red line) by a 16-day time shift operation (green line). Similarly, flu prevention
words such as “shot” and “injection” have previously been used to describe outbreaks.

• I took a flu shot today

• I don’t wanna get a flu injection cuz it hurts me

In the latter case as shown in Figure 1b, we can find much longer time lag (55 days) between tweets
(frequency of “injection”) and the reality (number of patients).

Presuming that each word has its own time lag, then the problems to be solved are two-fold: (1)
estimating the optimal time lag for each forecasting word and (2) incorporating these time lags into the
model.

For the first problem, the suitable time lag for each word is measured by calculating the cross correla-
tion between the word frequency and the patient number. For the second problem, we construct a word
frequency matrix that consists of a shifted word frequency timeline (Sec. 3). Next, a linear model called
nowcasting model is constructed from the modified word matrix, for which the parameters are estimated
using several regularization models, Lasso and Elastic Net (Sec. 4).

Moreover, the nowcasting model can be extended easily to a predictive model called a forecasting
model. In the forecasting model (∆f days future), only forecasting words that have more than n day
time lag are used (Sec. 5).

Nowcasting models can dramatically boost the current patient number estimation capability (correla-
tion ratio 0.93; +0.10 point). Forecasting models have demonstrated successful prediction performance
(the correlation ratio 0.91 in 1-week future prediction, and the correlation ratio 0.77 in 3-weeks future
prediction). This performance goes beyond the practical baseline (over 0.75 correlation).

Our contributions are summarized as presented below.

• We discover that forecasting words have a time lag between the virtual world (number of tweets in
Twitter) and the real world (number of patients).
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• We propose a method to build time-shifted features using cross correlation measures.

• We realize nowcasting model and its extended one, forecasting model, based on the time shift with
parameter estimation. This report is the first of the relevant literature describing a successful model
enabling the prediction of future epidemics over the practical baseline.

We make code and data publicly available. 1

2 Dataset

2.1 Influenza Corpus

We collected 7.7 million influenza related tweets, starting from August 2012 to January 2016, via Twitter
API2. Then, we filtered noises (removed retweets including the word, RT, and tweets linked to other web
pages including the word, http from the collected tweet data). In the case of just counting influenza-
related tweets, we should only consider unique users to avoid to count more than ones the tweets of the
same patients. However, we didn’t filter out the users which posted influenza-related tweets multiple
times because we provide the different word for the different role even if these tweets were posted by the
same patients. For example, the word, “fever” for nowcasting, and the word, “injection” for forecasting.
To analyze a word, we applied a Japanese morphological parser (JUMAN3) and obtained the stem forms.
As a result, 27,588 words were extracted. Then, we investigated the word frequency per day to build a
word matrix (days× words) as shown in Figure 2a.

2.2 IDSC report

In Japan, the Infectious Disease Surveillance Center (IDSC) announces the number of influenza patients
once a week during an influenza epidemic season (typically during November–May in Japan). In fact,
IDSC reports tend to delay around a week likewise the U.S. Centers for Disease Control and Prevention
(CDC) (Paul et al., 2014), but even if we consider such time delay, twitter stream attains the peak faster
than the real world.

To use the IDSC reports for evaluation, we divided the data into the following three periods:
2012/12/01–2013/05/31 (Season 1), 2013/12/01–2014/05/31 (Season 2), and 2014/12/01–2015/05/24
(Season 3). We prepared a buffer time (60 day maximum time shift) immediately preceding the experi-
mental periods to secure the time shift width.

3 Method

To estimate the current influenza epidemics (nowcast) and forecast the future ones, the number of in-
fluenza patients was derived from the following linear model.

ŷ(t) = x
(t−τ̂1)
1 β̂1 + x

(t−τ̂2)
2 β̂2 + · · ·+ x

(t−τ̂|V |)
|V | β̂|V |

Therein, ŷ(t) shows the estimated number of influenza patients at time t, x(t)
v stands for the count of

a word v at time t, and β̂ represents a weight estimated in the training phase, τ̂v denotes a suitable time
shift parameter for word v decided in the training phase, and |V | denotes the size of vocabulary.

This section first provides methods to explore the most suitable time shift width τ̂v for each word v
(Sec. 3.1). Then, the parameter estimation method is described (Sec. 3.2). Finally, the model of future
prediction based on the original model is explained (Sec. 3.3).

1http://sociocom.jp/˜iso/forecastword
2The tweet data dropout during June–October in 2013 and during June–October in 2014, because the Twitter API specifica-

tions were changed in those periods.
3http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
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(a) Ordinary Word Matrix.
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(b) Time Shifted Word Matrix.

Figure 2: Word matrix transformation. The Y -axis shows a timeline. The X-axis shows words with the
IDSC reports (right side).
3.1 Time Shift Estimation
The first problem to be solved is finding the optimal time shift width that achieves the best fit to the
target influenza timeline. Given the IDSC reports and wider range of tweets, Cross Correlation is used
to search for the most suitable time shift width for each word frequency as

rxv ,y(τ) =

T∑
t=1

(x(t−τ)
v − x̄(t−τ)

v )(y(t) − y)√
T∑
t=1

(x(t−τ)
v − x̄(t−τ)

v )2
T∑
t=1

(y(t) − ȳ)2
,

where τ is a time shift parameter (time shift width)4. The cross correlation rxv ,y(τ) measures the
similarity between (τ days) time shift variable xv and objective y. In this study, x(t−τ)

v is the count of
word v with time shift width τ days earlier from t and y = [y(1), . . . , y(T )]> is the number of patients
from the IDSC reports. It is formulated as τ̂v = argmax

τ
rxv ,y.

Next, we construct a matrix, X ∈ NT×V , where T stands for the timeline and V represents the
vocabulary, according to the Algorithm 1.

Algorithm 1: Time-shifted word matrix for nowcasting.
Set the maximum shift parameter τmax

for v ← 1 to |V | do
for τ ← 0 to τmax do

Calculate Cross Correlation rxv,y(τ)
end
τ̂v = argmax

τ∈{0,...,τmax}
rxv,y(τ)

Shift the word vector to maximize Cross Correlation x̂v ← [x
(1−τ̂v)
v , x

(2−τ̂v)
v , . . . , x

(T−τ̂v)
v ]

end
return Shifted Word Matrix X = [x̂1, . . . , x̂|V |]

The algorithm decides the optimal time shift width (τ̂xv ,y) based on the cross correlation for each
word. After time shifts for all words, a shifted word matrix X is constructed.

Figure 2a presents the initial (original) word matrix (τ = 0 for all words) of 50 words (randomly
selected). This matrix includes several low-correlated words, making several vertically irregular lines.
In contrast, the time shift operation arranges the irregular words to match the IDSC reports, producing a
beautiful horizontal line, as shown in Figure 2b.

3.2 Nowcasting
To construct the linear model (called nowcasting model), the parameter β is estimated as minimizing
the squared error. For this study, the vocabulary size |V | is of much larger order than sample size T

4The cross correlation is exactly the same as the Pearson’s correlation when τ = 0.
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so that the ordinary least squares estimator is not unique. It heavily overfits the data. According to the
previous study’s manner, parameters with a penalty are estimated as shown below.

β̂ = argmax
β

‖y −Xβ‖22 + P(β,λ)

In that equation, P(β,λ) is the penalty term.
In the case of Plasso(β,λ) = λ‖β‖1, the regularization method called the Least Absolute Shrinkage

and Selection Operator (Lasso) is a well-known method for selecting and estimating the parameters
simultaneously (Tibshirani, 1994). In earlier studies, Lasso was employed to model influenza epidemics
by Lampos and Cristianini (2010). However, in the case of vocabulary size |V |, which is much larger
order than sample size T , it has been observed empirically that the prediction performance of l1-penalized
regression, the Lasso is dominated by the l2-penalized one.

Therefore, we employ the Elastic Net (Zou and Hastie, 2005), which combines the l1-penalty and
l2-penalty Penet = λ(α‖β‖1 + (1 − α)‖β‖22), where α is called l1 ratio. The Elastic Net was already
employed for nowcasting influenza-like illness rates using search query log, not Twitter (Lampos et
al., 2015). In the case of α = 1, Elastic Net is exactly the same as Lasso and α = 0, Ridge (l2
regularization). Similarly to Lasso, the Elastic Net simultaneously does automatic variable selection and
continuous shrinkage. It has a l-2 regularization advantage that selects groups of correlated variables.
Elastic Net, as the generalized method of Lasso and Ridge, estimates with equal or better performance
compared to both.

3.3 Forecasting
Our nowcasting model can be extended naturally to forecasting model. To predict the number of future
patients ∆f days after, we force to shift the word frequency at least ∆f days. To do so, a setting
of the nowcasting model in Algorithm 1 is just changed to τmin = ∆f , as shown in Algorithm 2. It
enables forecasting of future epidemics, demonstrating a widely applicable methodology of the proposed
approach.

Algorithm 2: Time-shifted word matrix for forecasting.
Set the maximum shift parameter τmin, τmax

for v ← 1 to |V | do
for τ ← τmin to τmax do

Calculate Cross Correlation rxv,y(τ)
end
τ̂v = argmax

τ∈{τmin,...,τmax}
rxv,y(τ)

Shift the word vector to maximize Cross Correlation x̂v ← [x
(1−τ̂v)
v , x

(2−τ̂v)
v , . . . , x

(T−τ̂v)
v ]

end
return Shifted Word Matrix X = [x̂1, . . . , x̂|V |]

4 Experiment 1: Nowcasting

To assess the nowcasting performance, we used the actual influenza reports provided by the Japanese
IDSC.

4.1 Comparable Methods
We compared four linear methods for nowcasting as shown below:

• Lasso: l1-regularization method (Tibshirani, 1994; Lampos and Cristianini, 2010),

• Lasso+: Lasso and time shift combined method,

• ENet: Elastic-Net, which combines l1-, l2-regularization (Zou and Hastie, 2005),

• ENet+: Elastic-Net and time shift combined method.

All hyperparameters were tuned via five-fold cross validation in the training dataset.
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Train Season 2 Season 3 Season 1 Season 3 Season 1 Season 2
Avg.

Test Season 1 Season 2 Season 3

Lasso 0.854 0.916 0.768 0.894 0.770 0.753 0.826
Enet 0.900 0.927 0.809 0.914 0.792 0.805 0.858

Lasso+ 0.952 0.907 0.951 0.888 0.955 0.963 0.936
Enet+ 0.944 0.898 0.960 0.878 0.967 0.959 0.934

Table 1: Correlation between estimated values and the IDSC reports.
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(a) Train in Season 2; Test in Season 1.
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(b) Train in Season 1; Test in Season 2.
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(c) Train in Season 1; Test in Season 3.
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(d) Train in Season 3; Test in Season 1.
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(e) Train in Season 3; Test in Season 2.
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(f) Train in Season 2; Test in Season 3.

Figure 3: Timelines of estimated values obtained using the four methods for nowcasting.
4.2 Dataset and Evaluation Metric

The detailed dataset is described in Sec. 2. To construct the time-shifted word matrix, we set τmax = 60.
Our tweet corpus had a dropout period, so that we did not calculate the cross correlation with more than
a 60-day shift. We employed each season’s data as training data and others as test data.

The evaluation metric is based on correlation (Pearson correlation) between the estimated value and
the value of the IDSC reports.

4.3 Result

Results of modeling accuracy are presented in Table 1. Correlations of our baselines, Lasso and Enet,
were lower than those of previous studies. Results suggest that our dataset is more difficult than those
used in earlier studies.

In contrast, time-shifted models (Lasso+, Enet+) demonstrated about 0.1 point improvement than
their baseline models, indicating the contribution of time shift features.

It is noteworthy that Lasso type model and Enet type one did not differ so much. The whole trained
model chose l1 ratio parameter that is nearly equal to 1, so that the Enet type model became almost
identical as Lasso type model.

Overestimation
Results showed that values in Figure 3a were overestimated in mid-May. One reason is that tweets
related to news such as “Scientists create hybrid flu that can go airborne”5 were popular in social
media. Although tweets linked to web pages were removed during preprocessing, many tweets without
links to web pages were posted by many people worried about the news. An example of such tweets is
the following:

5http://go.nature.com/29ATqc9
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• What? In an attempt to make a vaccine for bird flu and swine flu had created a new strain of
influenza virus? What are you doing?

In addition, the model trained in Season 2 included the word “bird” as one feature. This word’s time
shift was 15 days. Consequently, this peak occurred.

In most cases, these kinds of outlier words are not selected through model selection, but preprocessing
will play an crucial role to prevent these kinds of outlier.

5 Experiment 2: Forecasting

We evaluate the forecasting performance described in Sec 3.3.

5.1 Comparable methods

Lasso and Enet have no features for predicting future values. Therefore, we use Lasso+ and Enet+
for forecasting. Additionally, we employ the following baseline model of BaseLine: ŷ(t)

test = y
(t)

train
for comparison with our proposed models.

5.2 Dataset and Evaluation Metric

To evaluate the forecasting performance, we used the same dataset and evaluation metric as Experiment
1, except that we set the minimum time shift τmin from 1 day to 30 days.

5.3 Result

Results of forecasting accuracy are presented in Figure 4. In both models, the accuracy was superior
to the baseline until around 3 weeks into the future. In addition, the accuracy for prediction one week
into the future was almost identical to that in the case of τmin = 0. That result might occur because the
accuracy about one week future was nearly the same as that for the current state. In addition, there were
many highly correlated features by shifting around 10 days into the future. Consequently, our model
demonstrated equivalent performance up to 10 days into the future.

Furthermore, the forecasting performance decreased dramatically along with the increase of τmin, as
shown in Figure 4e. We discuss that point further in Sec. 6.

Figure 5 presents timeline plots of examples. From Figure 5a to Figure 5d are shown the values
estimated by the forecasting models trained in Season 2 and tested in Season 1 for τmin ∈ {7, 14, 21, 28}.
The estimated values showed a consistently similar shape to that of the IDSC report. In Figure 5c, the
same word, “bird”, occurred as described in Sec. 4.3. In contrast, the weight for “bird” decreased in
Figure 5d for that reason, the forecasting accuracy increased.

Then, from Figure 5e to Figure 5h show the values estimated by the forecasting models trained in
Season 3 and tested in Season 2 for the same τmin. Our models overestimated before outbreaks and
underestimated after the peak of influenza epidemics. For τmin = 28, this phenomenon was widely
evident. We discuss that point further in Sec. 6.

6 Discussion

In general, the proposed approach (time shift operation) fitted the IDSC reports, demonstrating the basic
feasibility. However, exceptions were apparent, as for the model trained in Season 3. One reason is that
a gap exists in the suitable time shift widths between the train (Season 3) and the other (Seasons 1 and
2). Lasso+ model trained in Season 3 selected the words, “fever” with τ̂fever = 16, “vaccination” with
τ̂vaccination = 55, “absent” with τ̂absent = 10, and others as features. These words have high correlations
only in Season 3, with poor correlation in other seasons. The most drastic example is “vaccination” with
τ̂vaccination, (over 0.849 correlation in Season 3). This word is adversely affected by other seasons (0.313
correlation in Season 1 and 0.04 correlation in Season 2). The reason for the lost correlation was that
τ̂vaccination in Season 3 differed from that of other seasons. This phenomenon suggests that “vaccination”
is just an annually cycling word. Neither the cycle of “vaccination” nor that of influenza is fixed, bringing
us different time lags.
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(a) Train in Season 2; Test in Season 1.
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(c) Train in Season 1; Test in Season 3.
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(d) Train in Season 3; Test in Season 1.
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(e) Train in Season 3; Test in Season 2.
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(f) Train in Season 2; Test in Season 3.

Figure 4: Correlation between estimated values using the two methods for forecasting.
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(a) τmin = 7 in Fig. 4a.
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(b) τmin = 14 in Fig. 4a.

Dec Jan
2013

Feb Mar Apr May
−50000

0

50000

100000

150000

200000

250000

300000

# 
of
 p
at
ie
nt
s

Lasso+
Enet+
IDSC report

(c) τmin = 21 in Fig. 4a.
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(d) τmin = 28 in Fig. 4a.
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(e) τmin = 7 in Fig. 4e.
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(f) τmin = 14 in Fig. 4e.
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(g) τmin = 21 in Fig. 4e.
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(h) τmin = 28 in Fig. 4e.

Figure 5: Timelines of values estimated using the two methods for forecasting and the IDSC reports in
each τmin.

This inconsistency of time shifts also affected the forecasting performance directly. As shown in
Figure 4e, the forecasting performance was decreased dramatically against the increase of τmin. In spite
of the word “shot” is the largest weighted feature in the case of τmin = 21 and Train in Season 3, these
word correlations were 0.310 in Season 1 and 0.03 in Season 2. Consequently, it caused a considerable
decrease of the forecasting accuracy. In contrast, some words, such as “fever” and “symptom”, showed
consistently similar time shifts.

A technique to distinguish actual forecasting words such as “fever”, and noises (simple year cycle
words), “vaccination” is highly anticipated for use in the near future. If multiple-year training sets were
available, one could filter out such noisy words.

Although some room for improvement remains, the basic feasibility of the proposed approach has
been demonstrated. The time shift was effective for social media based surveillance. In addition, the
model enables prediction.

7 Related Work

To date, numerous web based surveillance systems have been proposed, targeting the common cold
(Kitagawa et al., 2015), drug side effects (Bian et al., 2012), cholera (Chunara et al., 2012), E. Coli (Diaz-
Aviles et al., 2012), problem drinking (MA et al., 2012), smoking (Prier et al., 2011), campylobacteriosis
(Chester et al., 2011), dengue fever (Gomide et al., 2011), and HIV/AIDS (Ku et al., 2010). Influenza
has especially drawn much attention from earlier studies (Ginsberg et al., 2009; Polgreen et al., 2009;
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(c) Season 3.

Figure 6: Frequencies of “Shot” in respective seasons.
Hulth et al., 2009; Corley et al., 2010) to current Twitter-based studies (Aramaki et al., 2011; Collier et
al., 2011; Chew and Eysenbach, 2010; Lampos and Cristianini, 2010; Culotta, 2013).

Because of great variance in data resources and evaluation manner (region, year, only winter or all
seasons), a precise comparison would be difficult and meaningless, Culotta (Culotta, 2013) and Ginsberg
(Ginsberg et al., 2009) are apparently better than the others in US (correlation ratios = 0.96 and 0.94, re-
spectively). Aramaki et al. (2011) achieved the best score for Japan (correlation ratio = 0.89). This study
also examined Twitter data in Japan, and achieved competitive results for nowcasting. Another aspect of
reviews of related studies is the manner of tweet counting. In earlier studies, a simple word counting, the
direct number of tweets, is considered an index of the degree of disease epidemics. However, such a sim-
ple method is adversely affected by the huge numbers of noisy tweets. Currently, counting approaches
of two types have been developed: (1) a classification approach (Kanouchi et al., 2015; SUN et al., 2014;
Aramaki et al., 2011) aimed at extracting only tweets including patient information, and (2) a regression
approach (Lamb et al., 2013; Culotta, 2010; Lampos and Cristianini, 2010; Paul and Dredze, 2011) that
handles multiple words to build a precise regression model.

The proposed study fundamentally belongs among regression approaches, which explore optimal
weight perimeters for each word. An important difference is that this study handles one more parame-
ter for each word: time shift (days). To handle many parameters, we first ascertain the best time shift
widths. Then we explore weight parameters using L1 or elastic net. It is noteworthy that this study does
not employ any classification method, engaging a room to improve by incorporation with classification
techniques.

8 Conclusions

This study proposed a novel social media based influenza surveillance system using forecasting words
that appear in Twitter usage before main epidemics occur. First, for each word, the optimal time lag
was explored, which maximized the cross correlation to influenza epidemics. Then, we shifted a matrix
consisting of word frequencies at different time points by each optimal time lag. Using the time-shifted
word matrix, this study produced and evaluated a nowcasting model and forecasting model designed to
predict the number of influenza patients. In the experimentally obtained results, the proposed model
achieved the best nowcasting performance to date (correlation ratio 0.93) and practically sufficient fore-
casting performance (correlation ratio 0.91 in the 1-week future prediction, and correlation ratio 0.77
in 3-week future prediction). This report is the first of the relevant literature describing a model that
enables prediction of future epidemics. Furthermore, the model has much room for potential application
to prediction of other events.
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