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Abstract

Evaluating the quality of output from language processing systems such as machine translation
or speech recognition is an essential step in ensuring that they are sufficient for practical use.
However, depending on the practical requirements, evaluation approaches can differ strongly.
Often, reference-based evaluation measures (such as BLEU or WER) are appealing because they
are cheap and allow rapid quantitative comparison. On the other hand, practitioners often focus
on manual evaluation because they must deal with frequently changing domains and quality
standards requested by customers, for which reference-based evaluation is insufficient or not
possible due to missing in-domain reference data (Harris et al., 2016). In this paper, we attempt
to bridge this gap by proposing a framework for lightly supervised quality estimation. We collect
manually annotated scores for a small number of segments in a test corpus or document, and
combine them with automatically predicted quality scores for the remaining segments to predict
an overall quality estimate. An evaluation shows that our framework estimates quality more
reliably than using fully automatic quality estimation approaches, while keeping annotation effort
low by not requiring full references to be available for the particular domain.

1 Introduction

Quality evaluation is a key requirement for developing and employing language technology, enabling
users and engineers to judge overall quality of the output, detect key problems, improve systems, and
choose among competing systems. Although most users and engineers share these goals, the chosen
evaluation approaches can differ strongly, with some people resorting to automatic, reference-based eval-
uation, while others rely on manual evaluation for their purposes. This is especially pronounced in the
case of machine translation (MT), as pointed out by Harris et al. (2016). On one hand, much research
effort has been devoted to devising reference-based methods such as BLEU (Papineni et al., 2002) that
are well-correlated with human judgment. On the other hand, practitioners need to react to changing
domains from customer to customer, and reflect multi-faceted quality requirements that are difficult to
measure in a single, generic score, often leaving manual evaluation as the only choice.

In recent years, automatic quality estimation (QE) has emerged as a method that could potentially
address the lack of flexibility of reference-based evaluation to deal with changing requirements, and the
high effort of manual evaluation. Automatic QE uses machine learning techniques that are trained on a
dataset of output-quality pairs in order to predict the quality of some new system output. It can be used
to predict arbitrary quality metrics, provided that suitably labeled training data is available. However, in
practice automatic QE has been found difficult and not reliable enough when applied to new domains or
unknown systems, e.g. in MT (de Souza et al., 2015a) and automatic speech recognition (ASR) (Negri
et al., 2014).

In this work, we explore a middle ground between automatic QE and manual evaluation, aiming to
allow the QE system to adapt to the particular test data under consideration while keeping manual effort
at an affordable level. We refer to this approach as lightly supervised1 QE. Our general approach is

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1In this paper, the terms supervised and unsupervised refer to whether or not manual annotation is necessary at test time.
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to divide the test data into smaller segments such as sentences or utterances, obtain automatic quality
estimates for all these segments, and manually annotate only a small number of segments. We then
compute aggregated quality estimates by averaging over segment-level scores, and explore two ways to
aggregate manual and automatic scores.

The first aggregation approach computes the overall quality by averaging over only the automatic
segment scores, using the manual annotations to adapt the automatic QE regressor. The method has the
potential to improve predictions by reflecting not only the topical domain, but also the particular ASR or
MT system, and even use-case specific quality standards.

The second aggregation approach computes quality by averaging over only the collected manual seg-
ment scores, using the automatic scores to choose what segments should be manually evaluated. In
particular, we expect segments that are predicted to be close to the average across segments to be most
indicative of overall quality. Instead of QE predictions, this aggregation approach can also directly ex-
ploit confidence scores from the decoder, eliminating the need for training a QE regressor.

We evaluate our approach for a variety of situations, focusing on the output of MT and ASR systems.
We find that for MT, we can achieve a desired accuracy of quality estimation with much less effort
compared to fully manual annotation. For instance, when annotating 100 words, in an in-domain setting
we reduce the error by 22% and 19% relative over a fully automatic and a fully manual baseline. In an
out-of-domain setting, relative improvements are 10% and 71%. For ASR, we obtain no improvements
using the regression approach, but obtain promising results when using confidence scores instead: At
100 annotated words, the relative improvements are 59% and 54%.

2 Lightly Supervised Estimation Framework

This section outlines our lightly supervised estimation framework. The input to the framework is the
hypothesized translation (transcription) of some MT (ASR) system given some particular input document
(audio). We will refer to these as hypothesis, system, and document throughout the paper. Here, the
document can be any form of test corpus that is representative of our targeted application, such as a
document written in a particular style, data from one or several speakers, or a topical domain. Our goal
is to estimate the average quality of the generated target sentences for a particular document with respect
to some evaluation measure. The evaluation measure can be chosen arbitrarily, the only requirement
being that it can be assigned on a per-sentence level. Possible examples are translation edit rate (TER)
or sentence-level BLEU for MT, word error rate (WER) for ASR, or human ratings. We assume that the
hypothesis is segmented in some way. The choice of segmentation is arbitrary, but sentence or utterance
boundaries are a natural choice.

For purposes of this paper, we define document-level quality as the weighted average of the segment-
level scores. Let ALL denote the index set of all segments in our document, yi and wi the true quality
and weight of the i-th segment. The overall quality Q(true) to be estimated is defined as:

Q(true) :=
∑

i∈ALL

wiyi (1)

Note that this definition does not aim to handle document-level discourse phenomena such as coher-
ence, cohesion, and and consistency, but estimates the average sentence-level quality for the document
in order to evaluate the overall quality of the whole output hypothesis. In this paper, we weigh segments
proportionally to their length, although future work may investigate more sophisticated notions of seg-
ment importance. Our definition of document quality is simplistic, but widely used in both MT and ASR
communities, e.g. document- or corpus-level WER, TER, METEOR (Banerjee and Lavie, 2005), and
human rankings are usually computed this way. BLEU is computed on the corpus level and thus not
directly usable with our approach, but we can instead resort to computing average sentence-level BLEU
variants such as BLEU+1 (Lin and Och, 2004) that essentially differ only in the smoothing details.

Our lightly supervised estimation framework determines document quality in several steps. The first
step is to automatically estimate the quality for each segment in the hypothesis (§4). This can be achieved
by training a regressor with the desired target measure, as discussed in numerous previous works. The
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second step is then to manually annotate the quality score for a certain number of segments. In our
evaluation (§5), we experiment with typical amounts of tens to hundreds of annotated words. The final
step is to aggregate manual and automatic scores into a document-level estimate (§3).

3 Aggregation of Manual and Automatic Scores

We assume for a moment that we know how to collect automatic and manual segment-level scores,
and discuss how they may be aggregated into a document-level estimate. Let pi, ∀i ∈ ALL denote the
automatically predicted scores for all segments in the document, corresponding to the index set ALL. Let
yi,∀i ∈ SEL denote the manually annotated segment scores for a subset of all segments in a document,
with indices SEL ⊆ ALL. wi is the number of tokens in the system output for the i-th segment, and Z(S)

is the total length of all segments indexed by S. Q(true) is the true document quality to be estimated.

3.1 Baselines
First, consider a fully manual baseline: Here, we randomly select segments from ALL to create SEL,
and use the weighted average of manually annotated quality scores over these segments. Note that even
though the segment-level scores yi are reliable, the aggregate Q(man) will be inaccurate if we keep the
size of the annotated sample SEL small, as desired:

Q(man) =
1

Z(SEL)

∑
i∈SEL

wiyi (2)

In contrast, the fully automatic baseline uses only the automatically predicted scores. Because au-
tomatic scores are available for all segments, the sample size is much bigger. On the other hand, the
regressor used for prediction is often biased to predicting values pi close to those indicated by the train-
ing data, which may differ considerably from the true values for yi, especially for documents that are
less similar to the training data. The formula is as follows:

Q(auto) =
1

Z(ALL)

∑
i∈ALL

wipi (3)

3.2 Bias vs. Variance: Why Aggregation is Challenging
Our goal is to improve over these baselines, and to motivate our methods we first frame these baselines
in the context of the bias-variance tradeoff widely discussed in machine learning (Hastie et al., 2009).
Here, the bias = E

[
Q(est) − Q(true)

]2 describes the (squared) average error of the document-level
estimate, with the expectation averaging over the randomness in the selection of annotated segments
SEL, and other factors that one would consider random, such as particular training data for automatic
QE, or randomness in the document that one might want to abstract from. The variance = E

[(
Q(est) −

E[Q(est)]
)2] describes by how much the estimates vary from one another, by again taking into account

the randomness in the selection of segments, data, etc.
Based on these definitions, we observe that Q(man) is subject to high variance, because the small

sample size makes it sensitive to the randomness of the data. On the other hand, its bias is zero, since
averaging over all randomness would cancel out estimation errors exactly. Q(auto), on the other hand,
has low variance because it always considers the whole document, but high bias for documents that are
less similar to the data used to train the regressor. Figure 1 illustrates this interplay.

A straight-forward way to combine automatic and manual scores would be some form of interpolation:

Q(interp) = αQ(man) + (1− α)Q(auto) (4)

We experimented with several interpolation approaches in this spirit, but found that they do not work,
because the high bias of the automatic estimate hurts accuracy more than could be compensated for by
reduced variance of the interpolated estimate. The following subsections describe our refined aggregation
strategies, which are more suited to solving this problem.
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Figure 1: Schematic interplay between annotated and predicted estimates. The automatic aggregate has
low variance because it includes all segments, but regressor-training data mismatch can lead to severely
biased estimates. On the other hand, the manual annotations are unbiased per definition, but the poten-
tially small number of samples causes high variance in the aggregate.

3.3 Proposed Strategy 1: Regressor Adaptation

In our first strategy, we use the annotated segments to adapt the regressor. This is done by casting the
aggregation as a domain adaptation problem, in which we treat the original training data as background
data, and the annotated segments of our document as in-domain data. Details for how the domain adapta-
tion is performed are given in §4.1. As in the fully manual baseline, segments for annotation are selected
at random. The document estimate is as in the fully automatic baseline, except that we now use the
adapted regressor to produce the automatic scores p(adapt)

i . The hope is that the adaptation will reduce
the regressor bias by shifting predictions closer to the document mean. The formula is as below:

Q(adapt) =
1

Z(ALL)

∑
i∈ALL

wip
(adapt)
i (5)

3.4 Proposed Strategy 2: Active Selection of Segments for Annotation

This approach attempts to select segments for manual annotation that are representative of the whole
document. As a proxy for representativeness, we compute how close a segment’s predicted quality is to
the median prediction across the document. This choice is motivated by our definition of overall quality
as the averaged segment-level quality. Specifically, we sort the segments by their automatic scores, and
add the median2 segment to SEL, the set of segments to annotate. Then, we add an equal number of
segments to the left and to right according to this ordering, until the desired number of segments is
reached. The document estimate is then calculated in the same manner as Equation 2.

The hope is that the active selection of annotated segments will reduce the sample variance. Note
that unlike the first strategy, this one does not restrict the metric of the automatic scores to correspond
to the target evaluation metric, because pi does not appear directly in the sum. For instance, it would
be possible to use segment-level BLEU scores or even confidence scores to compute SEL, despite our
evaluation target being TER or human rating. The only requirement is that the predicted scores correlate
with the target metric to some extent.

4 Automatic Segment Scores

4.1 Regression-based Approach

The first class of segment-level automatic scores we consider are QE scores obtained by a black box
regressor that uses only surface features derived from the system input and output. It has the advantage
of being agnostic to the interiors of the system that was used, and being able to predict any desired metric.

Features: We follow previous works for feature extraction. For MT, we use the 17 baseline features
from the WMT QE shared task (Bojar et al., 2015), extracted using the QUEST toolkit (Specia et al.,
2013). For ASR, we extracted signal-, hybrid-, and textual features as described in (Negri et al., 2014).

2We found the median criterion to outperform a mean criterion and other alternatives.
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Regression Algorithm: We use extremely randomized trees (XTs) (Geurts et al., 2006), following
Negri et al. (2014). XTs are a tree ensemble with a high amount of randomization, which has been re-
ported to effectively reduce prediction variance, and can be trained quickly. Negri et al. (2014) report
slight improvements for XTs over support vector regression (suggested by Bojar et al. (2015) as a base-
line). In addition, our preliminary experiments indicate that XTs have more stable adaptation behavior.

Domain Adaptation: Our regressor adaptation aggregation strategy requires adapting the regressor
using the collected manual labels. Our adaptation approach is to add binary indicator features for every
document and system, including the document and system currently evaluated. Formally, we perform a
projection Φi,j : RF → RF+D+S from the original F -dimensional feature space into an (F +D + S)-
dimensional augmented feature space. Here, F is the number of original features, D is the number of
training documents plus one for the document under test, and S is the number of training systems plus
one for the system under test. Further, i is the index of the particular training- or test-document, j is the
index of the particular training- or test-system. The projection is defined as

Φij(x) = 〈x, ei, ej〉 (6)

with ei being theD-dimensional zero-vector with only the i-th position set to one, and ej an analogously
defined S-dimensional vector.

We hope that this approach enables decoupled learning of the overall quality of a document or system
(via the indicator features), and learning to distinguish quality between segments (via the original fea-
tures). In general, the indicator features permit the regressor more flexibility to deal with the in-domain
training samples, whose number is much smaller than that of the background data. We found the indica-
tors to be helpful also when no adaptation is performed, possibly because it allows a form of multitask
learning over the different documents and systems. Therefore, we use indicator features for both aggre-
gation strategies. Our indicator features can be seen as a simplification of Daumé III (2007)’s method:
here, in a typical adaptation scenario with in-domain and out-of-domain data, all features are replicated
for both domains. In our case we deal with a potentially large number of domains (for each document
and system), and feature replication would greatly enlarge the feature space and risk overfitting. Hence,
we deem the proposed indicator features more appropriate for our purposes.

Predicting Deviation from the Document-Mean: Our active selection strategy only makes use of
relative differences between segment scores. Therefore, at training time, we replace the label yji for the
i-th segment of the j-th document (system output) by yji − Q(true)

j , where Q(true)
j is the true overall

quality of the j-th document. In this way, the regressor only needs to predict by how far (and in what
direction) the segment deviates from the document mean, and the training objective becomes more di-
rectly meaningful. The indicator features are particular helpful here as they allow the model to learn and
factor out the overall document quality. Note that predicting deviations is not useful for the regressor
adaptation strategy, because the automatic scores are no longer meaningful in absolute terms.

4.2 Confidence-based Approach

The second class of automatic segment-level scores are confidence scores obtained directly from the sys-
tem. Confidence scores are better-informed and potentially better correlated with true segment quality.
However, unlike the regressor outputs, confidence scores do not share the same unit as the target evalua-
tion metric. It would be possible to add these as a feature to a regressor as above, but at least for the QE
training data used in our experiments, confidence scores were not available for all systems.

Instead, we propose using confidence scores as-is, which frees us from having to train a regressor and
collecting training data for it. This approach can only be used with the active selection aggregation strat-
egy. In this paper, we use confidence scores only in the ASR setting, and compute segment confidences
as average word-level posterior probabilities derived from lattice- or consensus decoding.

5 Experiments

We conduct experiments to answer the following research questions:
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Name Description # systems # documents # segments

MT.in-domain
WMT 2015 submissions,
English to German news task

20 81 43380

MT.out-of-domain
WMT 2014 submissions, English to
German medical task (khreshmoi testset)

6 1 6000

ASR.in-domain
IWSLT 2013 submissions,
English TED task

13 28 28496

ASR.out-of-domain
English KIT lectures, decoded
with a standard in-house ASR system

1 6 1849

ASR.conf-task
Mixed ASR data for which confidence
scores were available

4 21 2431

Table 1: Data used in our experiments.

• How much effort is needed to produce quality estimates of a certain accuracy?
• Can we reduce effort, compared to the baselines, using our two proposed strategies?
• How effective are the proposed features, such as indicator features, predicting deviations, and using

black box regression or confidences?
• Are there difference between in-domain and out-of-domain settings, or between MT and ASR?

We restrict ourselves to reference-based metrics for simplicity, namely TER for MT, and WER for
ASR. Our experiments are simulated in the sense that we have reference translations/transcriptions avail-
able, and simulate a human annotator who replicates these exactly. Our main evaluation measure is mean
absolute error (MAE)3 between the predicted and true document-level TER/WER.

We use 5 datasets as indicated in Table 1, with testing data varying over all datasets, but only the ones
labeled “in-domain” used for regressor training. Moreover, for each evaluated document the QE regressor
was retrained with training data excluding that which corresponded to the same system or document
currently tested (for in-domain tests). This makes even our in-domain scenario more challenging than
some of the previous works on automatic QE (Specia et al., 2015).

We use scikit-learn (Pedregosa et al., 2011) for regressor training. We assign weights to training
samples proportional to their segment length, because longer segments are weighted more strongly in
our aggregation strategies (§3) and are thus more important to be accurately predicted. We perform
random search with 20 iterations to optimize hyper-parameters (namely, the max-depth and min-samples-
split parameters of XTs) in terms of mean squared error.4 Tuning is conducted separately for every
test document, using 10-fold cross validation on the respective training data. For regressor adaptation,
we experimented with different weights for the adaptation samples, but observed only minor gains and
decided to weight all data equally for simplicity.

5.1 Evaluation of Automatic Scores
We first analyze the performance of the fully automatic scores in terms of MAE and Pearson linear
correlation coefficients. We investigate both segment-level and document-level performance, the latter
being identical to the fully automatic baseline (§3.1). For comparison, we evaluate a mean-predictor
baseline that always predicts the training mean, regardless of the input features. This baseline has been
found surprisingly strong previously (Negri et al., 2014; Specia et al., 2015), which we confirm in Table 2.
On segment-level, gains over the mean-predictor baseline are clearly visible only for the ASR setting. As
expected, the out-of-domain tasks appear much more difficult than the in-domain setting. Note that even
though the mean baseline sometimes achieves lower MAE, the XT regressor maintains the advantages

3Graham (2015) argues that correlation is better for evaluating sentence-level QE, because MAE can be improved by trans-
formation to match estimated global mean and variance. However, we find MAE more indicative for our purpose as it measures
not only how well systems are compared against one another, but also how well overall quality is judged in absolute terms.
Moreover, collecting global statistics for transformation seems problematic when flexibility for domain changes is required.

4Tuning directly for MAE yielded similar results.
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Segment level Document level
↓MAE ↓MAE ↑Pearson ↓MAE ↓MAE ↑Pearson
mean XT XT mean XT XT

MT.in-domain 21.0 21.2 0.13 7.3 5.8 0.16
MT.out-of-domain 14.9 15.8 0.04 3.4 3.6 0.12
ASR.in-domain 15.4 14.0 0.35 9.6 9.0 0.29
ASR.out-of-domain 58.2 52.9 0.10 42.8 37.7 0.23

Table 2: Black box regression accuracy. Lowest MAE is in bold font if statistically significant (p=0.05)
according to the bootstrap resampling significance test (Koehn, 2004).

Pearson correlation Segment-level (all) Segment-level (within document) Document-level
Black box regressor 0.23 0.09 0.44
Negative confidence 0.34 0.61 0.12

Table 3: Correlation for black box regressor vs. confidence scores with true WER labels on the ASR.conf-
task dataset. Confidence scores are strong especially when evaluating the correlation on a per-document
basis (averaging over documents), indicating that they may be more suitable for the active selection
strategy than the black box approach.

of achieving positive segment correlation and supporting adaptation (§4.1). On document-level, the
XT regressor outperforms the baseline in all but the MT.out-of-domain setting in terms of MAE, and
correlation is stronger as well.

In Table 3 we also evaluate the performance of ASR confidence scores on the ASR.conf-task dataset.
Since regressor outputs and confidences have different units, we compare them in terms of Pearson
correlation. Compared to the black box regressor, it can be seen that confidence scores excel especially
for the average within-document correlation. We would thus expect confidence scores to outperform
black box regression for the active selection strategy.

5.2 MT Setting

Figure 2 shows the results for the lightly supervised scenario for the MT datasets. Note that the fully
automatic baseline corresponds to the leftmost point of the regressor adaptation curve. While the active
selection strategy did not clearly outperform the fully manual baseline, regressor adaptation with enabled
indicator features performed well. It can be seen that even a moderate amount of annotation improved the
estimates, and the advantage over the fully manual baseline was especially strong for the out-of-domain
setting. When removing the indicator features, regressor adaptation performs poorly in the in-domain
setting. For the out-of-domain setting, performance changes only slightly. In both settings, it seems that
the indicator features help to reach similar performance as the fully manual baseline for larger amounts
of annotated data, suggesting that they help improve adaptation behavior.
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Figure 2: Lightly supervised setting for MT.
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Figure 3: Lightly supervised setting for ASR.
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Figure 4: Active selection on the ASR.conf-task dataset, comparing the baseline and selection via XT
regression scores and confidence scores.

5.3 ASR Setting

Figure 3 shows the results for the ASR datasets. The regressor adaptation strategy performs rather
poorly. For active selection, we evaluate predicting deviations (§4.1), and observe small but consistent
gains compared to the unaltered objective function. In result, we slightly outperform the fully manual
baseline for the in-domain setting, and perform on par with the baseline for the out-of-domain setting.

However, the observed gains are probably too small to be considered worthwhile. We therefore also
investigate replacing the XT regression scores by confidence scores provided directly by the ASR (§4.2).
Here, XT regression was trained on data similar as in the test (in-domain setting), but again excluding
all data from the particular document and system being tested. For the confidence scores, there is no dis-
tinction between in-domain and out-of-domain. Figure 4 reveals the more solid gains over both the fully
manual baseline and active selection based on XT regression scores. We conclude that confidence scores
are a promising way of reducing labeling effort in our slightly supervised quality estimation framework.

5.4 Discussion

As was seen in the above experiments, the proposed regressor adaptation strategy performed well for
MT but not for ASR, whereas for the proposed active selection strategy it was the other way around. We
also observe that for the MT datasets, there was relatively high between-segment variance compared to
a relatively low between-document variance. This puts the fully manual baseline at a disadvantage, and
may be the reason for the good regression-based results (fully automatic and regressor adaptation). In
contrast, for the ASR datasets we observed relatively low between-segment variance and high between-
document variance, which would put the annotation-based strategies at an advantage (fully manual and
active selection). Scarton et al. (2015) made similar observations for MT, and we expect these findings
to hold for other datasets. We also confirmed that results are similar when using BLEU+1 (Lin and
Och, 2004) as the metric, instead of TER. Whether or not the situation changes when switching to very
different metrics, such as non reference-based metrics, is left as a question for future work.
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6 Relation to Prior Work

A good overview over the state-of-the-art in automatic QE for MT is given by Bojar et al. (2015) and
Bojar et al. (2016), and for ASR by Ogawa et al. (2012) and Negri et al. (2014). Document-level QE
was first explored by Soricut and Echihabi (2010) by exploiting document-level features, and was later
improved by using sentence-level information (Soricut and Narsale, 2012; Specia et al., 2015; Bojar et
al., 2015). Scarton and Specia (2014) and Scarton et al. (2015) argue that document-level quality metrics
should consider discourse information that cannot be captured when processing segments individually,
and explore features for QE that capture discourse information. Quantitative assessment of discourse
information remains challenging (Bojar et al., 2016). Our aggregation approach supports only sentence-
level information.

The out-of-domain case investigated in this work, i.e. predicting quality for a previously unknown
system or task, has been found challenging in both ASR (Negri et al., 2014) and MT (de Souza et al.,
2015a). The WMT 2015 shared task on QE considered only the scenario of training and testing on
output produced by the same system (Bojar et al., 2015). The usual way to address domain mismatch
when training data for all domains is available is via adaptation/multitask learning (Beck et al., 2014; de
Souza et al., 2015b). Our indicator features can be seen as a form of multitask learning. A strategy for
the case where no in-domain training data is available is to obtain such training data cheaply via active
learning (Beck et al., 2013). This work is probably most similar in spirit to ours in that it attempts reliable
quality estimation at low labeling costs.

A different line of research, crowd-sourced annotation, critically depends on quality control, as well.
Approaches are usually based on comparing results between several workers (Passonneau and Carpenter,
2014), querying gold standard “testing” labels occasionally (Joglekar and Garcia-Molina, 2013), and/or
automatically predicting quality (Roy et al., 2010; Gao et al., 2015). Our work can be seen as a general-
ization of the latter two, with the gold labels corresponding to our fully manual baseline, the automatic
estimation corresponding to our fully automatic baseline, and the workers being our systems.

7 Conclusion

We proposed lightly supervised quality estimation at the document level, a framework that allows flexible
quality estimation across changing domains and quality requirements, while requiring only moderate hu-
man annotation effort. We suggested two strategies for combining manual and automatic segment-level
scores into a document-level estimate. The first strategy, regressor adaptation, was able to reduce annota-
tion effort considerably for TER-based quality estimation in MT. The second strategy, active selection of
segments for annotation, showed promising results for ASR quality estimation in terms of WER, when
confidence scores are available.

As future work, we suggest exploring further evaluation metrics, in particular non reference-based
metrics. Depending on the metrics, user interfaces that allow manual annotation at low effort should be
designed. Also, the confidence-based active selection strategy may be worth investigating for MT.
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