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Abstract

We present an approach for learning to translate by exploiting cross-lingual link structure in mul-
tilingual document collections. We propose a new learning objective based on structured ramp
loss, which learns from graded relevance, explicitly including negative relevance information.
Our results on English-German translation of Wikipedia entries show small, but significant, im-
provements of our method over an unadapted baseline, even when only a weak relevance signal
is used. We also compare our method to monolingual language model adaptation and automatic
pseudo-parallel data extraction and find small improvements even over these strong baselines.

1 Introduction

Typically, parameters of an SMT system are learned on a small parallel data set from the domain or genre
of interest. However, while many multilingual data sets, especially in the realm of user-generated data,
contain document-level links, sentence-parallel training data are not always available. A small number
of sentences can be manually translated for in-domain parameter tuning, but this ignores most of the
available multilingual resource. Monolingual language model adaptation via concatenation or interpo-
lation is one viable solution which makes use of the target side part of a collection (see e.g. Koehn and
Schroeder (2007) or Foster and Kuhn (2007)). Additionally, there are several approaches to automatic
parallel data extraction from cross-lingual document-level links, such as Munteanu and Marcu (2005)’s
work on news data, or more recent work on Wikipedia by Wołk and Marasek (2015), and on websites
by Smith et al. (2013). We argue that these approaches work well if the cross-lingual links are a strong
signal for parallelism, but fail if the signal linking documents across languages is weaker. We propose a
method for tuning sparse lexicalized features on large amounts of multilingual data which contain some
cross-lingual document-level relevance annotation. We do so by re-formulating the structured ramp loss
objective proposed by Chiang (2012) and Gimpel and Smith (2012) to incorporate graded and negative
cross-lingual relevance signals. Using translation of Wikipedia entries as a running example, we evaluate
the efficacy of our method along with the traditional approaches on a manually created in-domain test set.
We show that our method is able to produce small, but significant, gains, even if only a weak relevance
signal is used.

Section 2 explains our learning objective and cost function. In Section 3 we describe the construction
of our training and evaluation data, including pseudo-parallel data extraction. Section 4 contains details
of our experimental setup and presents our experimental results. Section 5 concludes the paper.

2 Learning from graded relevance feedback

2.1 Learning objectives

We work within a scenario where we want to learn the parameters of an SMT system, but have no in-
domain reference translations available. What we have, is a large collection of source and target language
documents and a signal telling us that some target documents are more relevant to a source document
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than others. For example, in the multilingual Wikipedia, cross-lingual documents can be connected in
different ways. First, a link exists between two documents if they are connected by an interlanguage link
(we call this a mate relation). This is a very strong relevance signal. Second, a more indirect link exists
between a source language document and a target language document if the target language document is
connected to the source language document’s mate by a hyperlink (we call this a link relation). This is a
weaker relevance signal. A cross-lingual mate is more relevant to an input document than a document that
is only linked to by the mate. In turn, this linked document is more relevant to the input than a document
that has no direct link to the mate. Any Wikipedia document is more relevant than a document from a
different data set. We write relevance as d1 �f d2 (“d1 is more relevant to f than d2”). Another example
of graded relevance information, which has been used in information retrieval, occurs in multilingual
patent collections, where patent documents can be in a “family” relation if they contain publications of
the same patent, or be related to a lesser degree, if a target document is cited by a source document’s
family patent. Of course, other notions of relevance are conceivable, e.g. by document similarity, and we
plan to further investigate such notions in future work.

In order to incorporate graded relevance information, we modify the structured ramp loss objective by
Gimpel and Smith (2012) to also include negative relevance information. Ramp loss based SMT tuning
methods as presented by Gimpel and Smith (2012) and Chiang (2012) usually try to find parameters
that separate a “good” hypothesis with respect to the reference from one that is “bad” with respect to
the same reference. Goodness and badness are measured by an external cost function, or a cost function
combined with the model prediction. Equation 1 shows one version of the structured ramp loss (“ramp
loss 3”/equation 8 from Gimpel and Smith (2012)):

LGimpel(F; θ) =
∑
f∈F
−max

e
(score(e; θ)− cost(e))︸ ︷︷ ︸

hope derivation

+ max
e

(score(e; θ) + cost(e))︸ ︷︷ ︸
fear derivation

(1)

where F = {f1, f2 . . . fn} is a finite set of input examples, θ refers to the model parameters and e is
a translation hypothesis; score(e; θ) is the log-linear model score of the hypothesis, which is propor-
tional to the dot product between the feature vector associated with the hypothesis and the weight vector;
cost(e) is a cost function, which measures the quality of the current hypothesis. Usually, this function
is some per-sentence approximation of the BLEU score against one or more reference translations. Fol-
lowing Chiang (2012)’s terminology, this loss tries to maximize the distance between a hope derivation
– which has high model score and low cost – from a fear derivation – which has high model score, but
high cost.

We define two training objectives which are variations of this loss function, but which incorporate
positive and negative relevance information. Our intuition is that instead of trying to separate hope and
fear with respect to the same reference, we try to separate a hypothesis that has high model score and low
cost with respect to a relevant document from one that has high model score and low cost with respect to
a document that is irrelevant. Our first objective is given in Equation 2:

Lramp1(F; θ) =
∑
f∈F
−max

e
(score(e, f ; θ)− cost(e, d+

f ))︸ ︷︷ ︸
hope derivation w.r.t. d+

+ max
e

(score(e, f ; θ)− cost(e, d−f ))︸ ︷︷ ︸
hope derivation w.r.t. d−

(2)

In this objective, cost(e, d) ∈ [0, 1] is the cost of a hypothesis e with respect to a document d. d+ and
d− are documents, such that d+ �f d

−. Unlike LGimpel, this loss tries to separate two different hope
derivations. One potential weakness of Lramp1 is that it treats d+ and d− completely independently. This
could lead to very similar hypotheses being selected, if there exist hypotheses that have low cost in both
d+ and in d−. To solve this issue, we propose a second modification of the loss.

In the second variant we define “good” and “bad” hypotheses as those which have the largest difference
between the cost with respect to d+ and d−, i.e. hypotheses that best distinguish d+ from d−. This leads
to the following objective given in Equation 3.
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Lramp2(F; θ) =
∑
f∈F
−max

e
(score(e, f ; θ)− (cost diff(e, d+

f , d
−
f ))︸ ︷︷ ︸

derivation with lowest cost(d+) and highest cost(d−)

+ max
e

(score(e, f ; θ)− (cost diff(e, d−f , d
+
f ))︸ ︷︷ ︸

derivation with lowest cost(d−) and highest cost(d+)

(3)

where cost diff is defined as

cost diff(e, d1, d2) = cost(e, d1)− cost(e, d2) (4)

Note that with the above definition of cost diff , equation 3 can be reformulated as

Lramp2(F; θ) =
∑
f∈F
−max

e
(score(e, f ; θ)− cost diff(e, d+

f , d
−
f ))︸ ︷︷ ︸

hope derivation

+ max
e

(score(e, f ; θ) + cost diff(e, d+
f , d

−
f ))︸ ︷︷ ︸

fear derivation

(5)

which is identical to the original structured ramp loss (Equation 1), but still allows to include positive
and negative relevance signals via the cost function. We apply a linear scaling operation to squash our
new cost function to return values between 0 and 1.

2.2 Implementation and learning
Parallelized stochastic subgradient descent. Algorithm 1 shows our learning procedure. Optimiza-
tion is done using stochastic subgradient descent (SSD) as proposed for ramp loss by Keshet and
McAllester (2011). In order to be able to train on thousands of documents, we use the method described
in Algorithm 4 of Simianer et al. (2012), which splits training data into shards (line 1 in Algorithm 1),
trains one epoch on each shard (line 3 to 12), and then applies feature selection by `1/`2 regularization
(line 13) before starting the next epoch.

Sampling. For each training example, we first sample a document pair (d+, d−) (line 6). The sample()
procedure draws documents d+ from a set of relevant documentsD+ and d− from a set of “contrast doc-
uments”, D−, according to some cross-lingual relevance signal. In our experiments, we first use random
sampling. We also try out a weighted sampling strategy, if the relevance signal is weaker. In this case,
we want to sample a document more frequently from D+, if it is more similar to the input document.
We calculate cross-lingual document similarity by using document representations from bilingual word
embeddings. The embeddings are learned from the aligned parallel training corpus using the Bilingual
Skip-gram model of Luong et al. (2015).1 Document representations are computed by averaging over all
word representations in the document, weighted by the inverse document frequencies of the words. Co-
sine similarity is used to measure similarity between the current source document and the documents in
D+. We use weighted reservoir sampling (Efraimidis and Spirakis, 2006) to draw a document weighted
by its similarity to the current source document. The contrast document d− is drawn randomly fromD−,
but is re-drawn if d− is more similar to the input then d+.

Search. In lines 7 and 8 we identify the “good” and “bad” hypotheses h+ and h− by running search().
Most tuning algorithms use k-best lists to approximate the search space over possible translation hy-
potheses. However, k-best lists cover only a very small portion of the possible hypothesis space and
often contain very similar hypotheses. Since we may not have a strong enough signal to differentiate
between those hypotheses, we also experiment with using the entire search space, which in hierarchi-
cal phrase-based translation can be represented by a packed hypothesis forest, or hypergraph. In this
scenario, search() amounts to finding the Viterbi derivation after annotating the translation hypergraph

1github.com/lmthang/bivec
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Algorithm 1 SSD

Require: input X , epochs T , initial weights w0, cost function cost , document collection D+, D−,
stepsize η, regularization strength C, number of shards S

1: {X1 . . . XS} ← make shards(S,X) . Create shards for parallel training
2: for t = 1 to T do
3: for s = 1 to S parallel do
4: w

(0)
s,t−1 ← wt−1

5: for i = 1 to |Xs| do
6: (d+, d−)← sample(X(i)

s , D+, D−) . Sample relevant and irrelevant document
7: (h+, h−)← search(X(i)

s , w
(i−1)
s,t−1 , cost, d

+, d−) . Find hope and fear

8: w
(i)
s,t−1 ← w

(i−1)
s,t−1 + η(φ(h+)− φ(h−))− ηC(

w
(i−1)
s,t−1−w0

|X| ) . Update weights
9: end for

10: ws,t ← w
(|X|)
s,t−1

11: end for
12: wt ← select(w1,t . . . wS,t) . Select features by `1/`2 regularization
13: end for

edges with the cost for each edge. This requires a cost function which decomposes over edges, as will be
detailed in section 2.3. We run experiments both using a k-best lists and the full search space.

Finally, the weights are updated in line 9 by adding the negative subgradient multiplied by learning
rate η and a regularization term which is obtained from adding C 1

2|X|‖(w − w0)2‖ to the ramp loss
objective.

2.3 Cost function

So far, we have not yet specified the cost function. Usually, 1 − psBLEU(e, r) is used as a cost
function, where r is a reference translation and psBLEU is a per-sentence approximation of the BLEU
score. Since we do not have reference translations as feedback, we need to use a cost function that will
evaluate the quality of a hypothesis with respect to a relevant document. Like BLEU we use average
n-gram precision. Unlike BLEU, we cannot use reference length to control the length of the produced
translation. Our solution is to use the source length, multiplied by the average source-target length ratio
r which can be empirically determined on the training set.

For k-best training, where we can evaluate complete sentences, we use average n-gram precision:

nprec(e, f , d) =
1
N

N∑
n=1

∑
un
cun(e) · δun(d)∑

un
cun(e)

·min(1,
r · |e|
|f | )

where N is the maximum n-gram size, un are n-grams present in e, cun(e) counts the occurrences
of un in e and δun(d) returns 1 if un is present in document d and 0 otherwise. The second term is
the brevity penalty. As a cost function, this becomes 1 − nprec. BLEU uses the geometric mean to
account for the exponentially decaying precision, as n increases. When calculating per-sentence BLEU,
we might face the problem of zero-precision, as n increases. Since BLEU is measured over a corpus and
not over a sentence, the case of zero-values was not taken into consideration. A common solution to this
is count smoothing. We use the arithmetic instead of the geometric mean, since it avoids the problem of
zeros, and will return the same ranking as the geometric mean.

When training on hypergraphs, we are facing the problem that n-gram precision is not edge-
decomposable. For our hypergraph experiments, we tried the simplest possible approach, which is to
compute nprec at edge level:

nprec(e, f , d) =
∑
ē∈e

nprec(ē, f̄ , d)
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Figure 1: Learning curves on training and heldout data when training on references. The left side uses
the loss from equation 2, the right side uses the loss from equation 3.

In order to test the proposed loss and cost functions, we look at how they perform in a case, where
we are learning translation model weights from a perfect signal, i.e. reference translation. Instead of
sampling d+ from a set of relevant documents D+ , we use the reference translation of input fi. For the
contrast set d−, we sample another sentence from the target side of the training data. We train on 500-best
lists for 20 epochs. We conduct this experiment on the IWSLT evaluation data, using IWSLT tst2010 for
training and tst2013 for evaluation. The model is trained on out-of-domain data in the same way as the
model described in 4.1. Figure 1 shows learning curves for Lramp1 which uses cost and Lramp2 which
uses cost diff . We found cost diff to perform much better than cost on both train and heldout data. Why
does cost do so much worse? Remember, that in this scenario we select two hope-derivations. What is
more, we only select them from a small k-best list (500 translations). With the cost diff function we are
required to choose hypotheses that distinguish most between d+ and d−. This will select a h− that is far
away from the reference (similar to a fear derivation). While with cost, there is no guarantee that h−

will differ from h+.

3 Data preparation and extraction

3.1 Initial Wikipedia data set

Wikipedia is internally structured by cross-lingual links and inter-article links. We use the German-
English WikiCLIR collection by Schamoni et al. (2014), along with their definition of cross-lingual
relevance levels: A target language document has relevance level 3 if it is the cross-lingual mate of an
input document. It is assigned relevance level 2, if there is a bidirectional link relation between the cross-
lingual mate and the document. WikiCLIR contains a total of 225,294 mate relations with 1 average
German mate per English document, and over 1.7 million bidirectional link relations, with on average
8.5 links per English document. We use the link information provided by WikiCLIR, but we work with
the full Wikipedia documents rather than WikiCLIR’s abbreviated queries.

3.2 Automatic sentence alignment

The cross-lingual mate relation in Wikipedia is a strong indicator for parallelism. However, Wikipedia
entries in different languages are not necessarily translations of each other, but can be edited indepen-
dently. In order to find parallel sentences, we use an automated extraction method. We do this for three
purposes:

1. To identify nearly parallel document pairs for the construction of a clean in-domain evaluation set
without having to rely on manual translation.

2. To examine whether bidirectional links provide a strong enough signal for extracting pseudo-parallel
training data.
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Figure 2: Number of documents (y-axis, on log-scale) from which n lines were extracted (x-axis).
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Figure 3: Sentence aligner precision for mates and links.

3. To compare our method to automatic parallel data extraction based on relevance annotation.

We use the modified yalign method described by Wołk and Marasek (2015) for pseudo-parallel data
extraction.We adapt their software to handle the WikiCLIR format. yalign requires a bilingual dic-
tionary with translation probabilities. Following Wołk and Marasek (2015), we use a lexical translation
table created from the TED parallel training data2 as our bilingual dictionary. We filter the dictionary for
punctuation and numerals and discard all entries whose lexical translation probability is smaller than 0.3.

Figure 2 shows the frequency histogram of the number of extracted lines per document pair for doc-
ument pairs with a mate relation. For most document pairs, only a single sentence pair was extracted.
However, there were a few document pairs that yielded several hundred sentence pairs. In total, 533,516
sentence pairs were extracted.

Figure 3 shows our evaluation of yalign’s precision for the mate and link relations. We manually
evaluated a sample of 200 automatically aligned sentence pairs. The sentence pairs were annotated
using four categories: “fully parallel”, “almost parallel” – this category contains sentence pairs that have
parallel segments, with other segments missing from the aligned part, “similar” – for sentence pairs that
have similar content or wording but differ factually –, and “non parallel”. While 65.5% of sentence
pairs from the mate relation were similar or parallel, the link relation yielded only 2.6% sentence pairs
that were at least similar. We conclude that the bidirectional link relation is too weak to extract useful
pseudo-parallel data.

2https://wit3.fbk.eu/
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Set Length # parallel Title

set1

323 285 Polish culture during World War II
710 677 Black-figure pottery
457 375 Ulm Hauptbahnhof
587 375 Characters of Carnivàle

Total 1712

set2

360 268 J-pop
501 388 Schüttorf
549 438 Military history of Australia during World War II
676 432 Arab citizens of Israel

Total 1526

Table 1: Wikipedia development and test documents.

3.3 Evaluation data construction

To construct our in-domain evaluation data, we sorted all automatically aligned documents by the num-
ber of aligned sentences up to a limit of 10,000 sentences. We then selected eight documents for manual
alignment, discarding other document pairs which appeared to have been machine-translated, only con-
tained few parallel sentences, or consisted of lists of proper names. During manual alignment, we also
fixed sentence splitting errors and removed image captions and references. We split the documents into
two groups of four, making sure to keep the sets diverse. Table 1 shows the two sets of extracted doc-
uments. They are topically diverse, similar in length, and contain a considerable percentage of parallel
sentences.

4 Experiments

4.1 Out-of-domain translation system

Our baseline English-German translation system is trained on 2.1 million sentence pairs (61/59
million English/German tokens) from the Europarl v73 corpus (1.78 million sentence pairs), the
News Commentary v104 corpus (200K sentence pairs) and the MultiUN v15 corpus (150K sentence
pairs). Word alignments are computed using MGIZA++6, alignments are symmetrized using the
grow-diag-final-end heuristic. A 4-gram count-based language model is estimated from the
target side of the training data using lmplz (Heafield et al., 2013). All experiments use the hierarchical
phrase-based decoder cdec (Dyer et al., 2010). Hierarchical phrase rules are extracted using cdec’s
implementation of the suffix array extractor by Lopez (2007) with default settings. Our baselines use
21 decoder features (7 translation model features, 2 language model features, 7 pass through features, 3
arity penalty features, word penalty and glue rule count features), which are implemented in cdec. Fea-
ture weights are optimized on the WMT Newstest 2014 data set (3003 sentence pairs) using the pairwise
ranking optimizer dtrain7. We run dtrain for 15 epochs with the hyperparameters k-best size=100,
loss-margin=1, and a learning rate of 1e−5. The final weights are averaged over all epochs. Performance
of our baseline system (baseline 1) is given in the first row of Table 2.

4.2 Translation model and language model adaptation

For translation model (TM) adaptation we add the automatically extracted pseudo-parallel Wikipedia
data (see Section 3) to our baseline training data and re-train the translation model. For language model
(LM) adaptation, we sample 500,000 sentences from the German Wikipedia data, which we add to the
out-of-domain language model data to re-build a combined 4-gram language model. Both language
model and translation model adaptation boosted performance. Rows 1 and 3 in Table 3 show BLEU

3www.statmt.org/europarl/, see (Koehn, 2005)
4www.statmt.org/wmt15/training-parallel-nc-v10.tgz
5www.euromatrixplus.net/multi-un/, see (Eisele and Chen, 2010)
6www.cs.cmu.edu/ qing/giza/
7https://github.com/pks/cdec-dtrain
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Figure 4: Performance on heldout set1 for mates and links.

Experiment %BLEU set2

baseline 1 (out-of-domain) 12.46
kbest-train (mates, cost diff) 12.57 (+0.11)
hypergraph-train (mates, cost diff) 13.05* (+0.59)
hypergraph-train (mates, cost) 12.81* (+0.34)
hypergraph-train (mates+links, cost diff) 12.85* (+0.38)
hypergraph-train (links, cost diff, random sampling) 12.67 (+0.21)
hypergraph-train (links, cost diff, weighted sampling) 12.77* (+0.31)

Table 2: Results for training on Wikipedia with out-of-domain model. * indicates a significant difference
to the baseline at a significance level of 0.05.

scores for an LM-adapted model (baseline 2) and a model with both LM and TM adaptation (baseline
3). The good performance of TM adaptation leads to the conclusion that if there is a strong signal for
potential parallelism like in the Wikipedia data, automatic pseudo-parallel data extraction works well.

4.3 Learning from Wikipedia mates and links

We train our method on 10,000 input sentences sampled from the English WikiCLIR documents. Each
input sentence is annotated with a document identifier in order to sample positive and negative examples.
The relevant document collection D+ includes all German documents which are linked to an English
document by a mate or bidirectional link relation. For the contrast documents D− we use the News
Commentary corpus, split into documents. In a pre-processing step, we extract n-grams up to order
3 from each document, which we need to calculate n-gram precision. We also experimented with a
larger training set of 200,000 input sentences but found no significant improvement. All experiments use
the same 21 features as the baseline, keeping those weights fixed, but train sparse lexicalized features
(rule identifiers, rule source and target bigrams and lexical alignment features described in Simianer et al.
(2012)) in parallel on 10 shards, followed by an `1/`2 feature selection step which keeps at most 100,000
features. We use a constant learning rate of η = 1e−4 and regularization strength C = 1. Experiments
were run for up to 20 epochs and performance on the heldout set1 was used as an early stopping criterion.

Table 2 reports BLEU scores on set2, when our model is trained on an unadapted baseline model
(baseline 1). Significance tests were conducted by multeval (Clark et al., 2011). While training
on k-best lists produced a small incremental gain, training on hypergraphs improved up to 0.6 BLEU
over the baseline. Both cost and cost diff produced an improvement over the baseline, however, cost diff
performed slightly better. As expected, using the strongest signal, the cross-lingual mate relation, worked
best. When only the link relation was used, only the experiment with the weighted sampling strategy
produced a significant improvement. Figure 4 shows learning curves over epochs on heldout set1 for
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Experiment %BLEU set2

baseline 2 (LM adaptation) 13.62
hypergraph-train (mates, cost diff) 13.93* (+0.31)

baseline 3 (LM and TM adaptation) 14.96
hypergraph-train (mates, cost diff) 15.17* (+0.21)

Table 3: Results for training on Wikipedia with adapted model. * indicates a significant difference to the
baseline at a significance level of 0.05.

training on mates and links (both with random sampling).
Table 3 shows results for training on mates with an adapted baseline model. In both experiments, there

was a small, yet significant, improvement over the adapted model, showing that additional information
can be learned from the relevance signal.

Examples. To give a better impression what is learned by our method, Table 4 contains some exam-
ple translations from baseline 1 and the best adapted model from Table 2. Spans in which our model
performed better are marked in boldface. Example 1 shows that our model fixed word order mistakes
made by the baseline, such as “Apartheid zionistischen”, which is fixed to “zionistischen Apartheid”.
The same is true for the proper name and attribution “Thomas Michael Hamerlik ( CDU )” in Example
2. Both examples suggest that by training on Wikipedia documents, which include frequent parentheses,
quotations and named entities, our model becomes better at handling these types of phrases. Example
3 is interesting, because in this case the baseline produced an idiomatic, rather informal translation for
“postponed indefinitely” (“auf den Sankt - Nimmerleins - Tag verschoben”) which would be correct in a
spoken language context but strange to use in a Wikipedia article, while our model produced the correct
translation (“auf unbestimmte Zeit verschoben”).

5 Conclusion and future work

In this paper we have presented a new objective for learning translation model parameters from graded
and negative relevance signals. Using Wikipedia translation as an example, we were able to achieve
significant improvements over an unadapted baseline. As expected, a stronger relevance signal produced
larger gains, but we were able to produce small, but significant, improvements, even when learning only
from indirect links. We compare our method to baselines that use monolingual data to adapt the language
model or rely on strong parallelism signals to adapt the translation model. Our approach was able to yield
a small gain even when combined with these strong baselines.

It is worth mentioning that our approach is not restricted to Wikipedia data, but could be applied
to other large multilingual collections where cross-lingual relevance information can be extracted. For
example, cross-lingual mates could be extracted for multilingual patent corpora through patent family
relations (i.e. versions of the same patent submitted to different patent organizations). In addition, weaker
links are given by the international patent classification system, or by citations between patents. Another
application scenario could be social media data which use the same hashtags across languages. If no
explicit signals are available, or if they are not strong enough, one could also use unsupervised document
similarity metrics or cross-language information retrieval techniques to detect relevant documents in
a target language collection and use these documents as positive examples. We plan to explore these
directions in the future.

Since our general learning setup and objective is agnostic about the type of translation system we also
plan to apply it to neural machine translation.
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Example 1
Source political demands include “ the return of all Palestinian refugees to their homes

and lands , [ an ] end [ to ] the Israeli occupation and Zionist apartheid and the
establishment [ of ] a democratic secular state in Palestine as the ultimate solution to
the Arab - Zionist conflict . ”

Baseline 1 politische Forderungen : “ alle palästinensischen Flüchtlingen die Rückkehr an
ihre Heimstätten und Land beenden , [ an ] [ . . . ] der israelischen Besatzung und
Apartheid zionistischen [ der ] sowie die Einrichtung einer demokratischen säkularen
Staat in Palästina als die ultimative Lösung für das arabisch - zionistischen Konflikt .
”

Hypergraph-
train

politische Forderungen aufzunehmen “ die Rückkehr aller palästinensischen
Flüchtlinge in ihre Heimat und zu ihren Ländereien , [ an ] Ende [ . . . ] der
israelischen Besatzung und zionistischen Apartheid und die Einrichtung [ der ] einen
demokratischen säkularen Staat in Palästina als die ultimative Lösung des arabisch -
zionistischen Konflikt . ”

Reference politische Forderungen von Abnaa el-Balad sind u. a. “ ... die Rückkehr aller
palästinensischen Flüchtlinge in ihre Heimat und auf ihr Land , [ ein ] Ende [
der ] israelischen Besatzung und zionistischen Apartheid und die Gründung eines
demokratischen säkularen Staates in Palästina als endgültige Lösung des arabisch -
zionistischen Konflikts .

Example 2
Source the current mayor is Thomas Michael Hamerlik ( CDU ) with two deputies :
Baseline 1 der derzeitige Bürgermeister Michael Hamerlik Thomas ist mit zwei Stellvertreter (

CDU ) :
Hypergraph-
train

der derzeitige Bürgermeister ist Thomas Michael Hamerlik ( CDU ) mit zwei Ab-
geordneten :

Reference Bürgermeister ist zurzeit Thomas Michael Hamerlik ( CDU ) mit zwei Stel-
lvertretern :

Example 3
Source this plan was frustrated by the Japanese defeat in the Battle of the Coral Sea and was

postponed indefinitely after the Battle of Midway .
Baseline 1 dieser Plan wurde von den Japanern frustriert Niederlage im Kampf der Coral See

und nach der Schlacht von Midway auf den Sankt - Nimmerleins - Tag verschoben
wurde .

Hypergraph-
train

dieser Plan wurde frustriert durch die japanische Niederlage im Kampf der Coral Meer
und nach der Schlacht von Midway auf unbestimmte Zeit verschoben wurde .

Reference der japanische Plan erlitt mit der Niederlage in der Schlacht im Korallenmeer einen
ersten Rückschlag und wurde nach der Niederlage in der Schlacht um Midway auf
unbestimmte Zeit verschoben .

Table 4: Translation examples from the test set, comparing the unadapted baseline to adaptation with our
method.
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