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Abstract

Distributed word embeddings have shown superior performances in numerous Natural Language
Processing (NLP) tasks. However, their performances vary significantly across different tasks,
implying that the word embeddings learnt by those methods capture complementary aspects of
lexical semantics. Therefore, we believe that it is important to combine the existing word em-
beddings to produce more accurate and complete meta-embeddings of words. We model the
meta-embedding learning problem as an autoencoding problem, where we would like to learn
a meta-embedding space that can accurately reconstruct all source embeddings simultaneously.
Thereby, the meta-embedding space is enforced to capture complementary information in differ-
ent source embeddings via a coherent common embedding space. We propose three flavours
of autoencoded meta-embeddings motivated by different requirements that must be satisfied
by a meta-embedding. Our experimental results on a series of benchmark evaluations show
that the proposed autoencoded meta-embeddings outperform the existing state-of-the-art meta-
embeddings in multiple tasks.

1 Introduction

Representing the meanings of words is a fundamental task in Natural Language Processing (NLP). A
popular approach to represent the meaning of a word is to embed it in some fixed-dimensional vector
space (Turney and Pantel, 2010). In contrast to sparse and high-dimensional counting-based distri-
butional word representation methods that use co-occurring contexts of a word as its representation,
dense and low-dimensional prediction-based distributed word representations (Pennington et al., 2014;
Mikolov et al., 2013a; Huang et al., 2012; Collobert and Weston, 2008; Mnih and Hinton, 2009) have
obtained impressive performances in numerous NLP tasks such as sentiment classification (Socher et al.,
2013), and machine translation (Zou et al., 2013).

Previous works studying the differences in word embedding learning methods (Chen et al., 2013; Yin
and Schütze, 2016) have shown that word embeddings learnt using different methods and from differ-
ent resources have significant variation in quality and characteristics of the semantics captured. For
example, Hill et al. (2014; 2015) showed that the word embeddings trained from monolingual vs. bilin-
gual corpora capture different local neighbourhoods. Bansal et al. (2014) showed that an ensemble of
different word representations improves the accuracy of dependency parsing, implying the complemen-
tarity of the different word embeddings. This suggests the importance of meta-embedding – creating a
new embedding by combining different existing embeddings. We refer to the input word embeddings
to the meta-embedding process as the source embeddings. Yin and Schütze (2016) showed that by
meta-embedding five different pre-trained word embeddings, we can overcome the out-of-vocabulary
problem, and improve the accuracy of cross-domain part-of-speech (POS) tagging. Encouraged by the
above-mentioned prior results, we expect an ensemble containing multiple word embeddings to produce
better performances than the constituent individual embeddings in NLP tasks.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/



1651

Despite the above-mentioned benefits, learning a single meta-embedding from multiple source em-
beddings remains a challenging task due to several reasons. First, the algorithms used for learning the
source word embeddings often differ significantly and it is non-obvious how to reconcile their differ-
ences. Second, the resources used for training source embeddings such as text corpora or knowledge
bases are different, resulting in source embeddings that cover different types of information about the
words they embed. Third, the resources used to train a particular source embedding might not be pub-
licly available for us to train all source embeddings in a consistent manner. For example, the Google
news corpus containing 100 billion tokens on which the skip-gram embeddings are trained and released
originally by Mikolov et al. (2013b) is not publicly available for us to train other source embedding
learning methods on the same resource. Therefore, a meta-embedding learning method must be able to
learn meta-embeddings from the given set of source embeddings without assuming the availability of the
training resources.

Autoencoders (Kingma and Welling, 2014; Vincent et al., 2008) have gained popularity as a method for
learning feature representations from unlabelled data that can then be used for supervised learning tasks.
Autoencoders have been successfully applied in various NLP tasks such as domain adaptation (Chen et
al., 2012; Ziser and Reichart, 2016), similarity measurement (Li et al., 2015; Amiri et al., 2016), machine
translation (P et al., 2014; Li et al., 2013) and sentiment analysis (Socher et al., 2011). Autoencoder
attempts to reconstruct an input from a possibly noisy version of the input via a non-linear transformation.
The intermediate representation used by the autoencoder captures the essential information about the
input such that it can be accurately reconstructed. This setting is closely related to the meta-embedding
learning where we must reconstruct the information contained in individual source embeddings using a
single meta-embedding. However, unlike typical autoencoder learning where we have a single input, in
meta-embedding learning we must reconstruct multiple source embeddings.

We propose three types of autoencoders for the purpose of learning meta-embeddings. The three types
consider different levels of integrations among the source embeddings. To the best of our knowledge,
autoencoders have not been used for meta-embedding learning in prior work. We compare the proposed
autoencoded meta-embeddings (AEME) against previously proposed meta-embedding learning meth-
ods and competitive baselines using five benchmark tasks. Our experimental results show that AEME
outperforms the current state-of-the-art meta-embeddings in multiple tasks.

2 Related Work

Yin and Schütze (2016) proposed a meta-embedding learning method (1TON) that projects a meta-
embedding of a word into the source embeddings using separate projection matrices. The projection
matrices are learnt by minimising the sum of squared Euclidean distance between the projected source
embeddings and the corresponding original source embeddings for all the words in the vocabulary. They
propose an extension (1TON+) to their meta-embedding learning method that first predicts the source
word embeddings for out-of-vocabulary words in a particular source embedding, using the known word
embeddings. Next, 1TON method is applied to learn the meta-embeddings for the union of the vocabu-
laries covered by all of the source embeddings. Experimental results in semantic similarity prediction,
word analogy detection, and cross-domain POS tagging tasks show the effectiveness of both 1TON and
1TON+.

Although not learning any meta-embedding, several prior works have shown that incorporating mul-
tiple word embeddings learnt using different methods improve performance in various NLP tasks. For
example, Tsuboi (2014) showed that by using both word2vec and GloVe embeddings together in a POS
tagging task, it is possible to improve the tagging accuracy, if we had used only one of those embeddings.
Similarly, Turian et al. (2010) collectively used Brown clusters, CW and HLBL embeddings, to improve
the performance of named entity recognition and chucking tasks.

Luo et al. (2014) proposed a multi-view word embedding learning method that uses a two-sided neural
network. They adapt pre-trained CBOW (Mikolov et al., 2013b) embeddings from Wikipedia and click-
through data from a search engine. Their problem setting is different from ours because their source
embeddings are trained using the same word embedding learning method but on different resources
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whereas, we consider source embeddings trained using different word embedding learning methods and
resources. Although their method could be potentially extended to meta-embed different source embed-
dings, the unavailability of their implementation prevented us from exploring this possibility.

Goikoetxea et al. (2016) showed that concatenation of word embeddings learnt separately from a cor-
pus and the WordNet to produce superior word embeddings. Moreover, performing Principal Component
Analysis (PCA) on the concatenated embeddings slightly improved the performance on word similarity
tasks.

Chandar et al. (2015) proposed a correlation neural network that reconstruct an input using two views
such that their correlation in a hidden layer os maximised. The setting of this work, using multiple views
for reconstructing, is similar to our multiple source embeddings. However, we do not optimise simply
for correlation, but require reconstructing the sources from meta-embeddings. Moreover, Chandar et al.
(2015) did not consider meta-embedding learning, which is the focus of this paper.

3 Autoencoded Meta-Embeddings

To simplify the disposition of the proposed method, we focus on the problem of learning a single meta-
embedding from two given source embeddings. The autoencoding methods we propose in this paper can
be easily generalised to more than two source embeddings. Let us denote the two source embeddings by
S1 and S2. Moreover, the dimensionalities of two source embeddings S1 and S2 are given respectively d1
and d2. Note that we do not assume d1 and d2 to be equal. The two word embeddings of a word w ∈ V
is given respectively by s1(w) ∈ Rd1 and s2(w) ∈ Rd2 . Here, the vocabulary V is the intersection set of
two vocabularies V1 and V2 of source embeddings S1 and S2, i.e. V = V1 ∩ V2. For out of vocabulary
words, we can first train a regression model using source embeddings for the common vocabulary as
done by Yin and Schütze (2016) and then use it to predict the source embeddings for the words that do
not occur in the intersection of the vocabularies.

Next, let us consider two encoders E1 and E2, which encode the two source embeddings to a common
meta-embedding space M with dimensionality dm for each word w ∈ V . Dimensionalities of the
encoded source embeddings are denoted respectively by d′1 and d′2. We denote the meta-embedding of a
word w ∈ V as m(w) ∈ Rdm . Correspondingly, we have two decoders D1 and D2, which will decode
each word w ∈ V in the meta-embedding spaceM back to the two original source embeddings S1 and
S2. Both encoders and decoders can be single or multi-layer neural networks.

We consider the problem of learning E1, E2, D1 and D2 such that we can learn a meta-embedding
m(w) for a word w considering the complementary information from its source embeddings s1(w) and
s2(w). We propose three different autoencoding methods for this purpose. The architectures of the three
autoencodes are visualised in Figure 1.

3.1 Decoupled Autoencoded Meta-Embedding (DAEME)
In DAEME, the meta-embedding m(w) is represented as the concatenation of two encoded source em-
beddings E1(s1(w)) and E2(s2(w)) for each word w ∈ V , as given by (1).

m(w) = E1(s1(w))⊕ E2(s2(w)) (1)

Concatenation has been found to be a simple yet effective baseline for creating meta-embeddings from
multiple source embeddings. DAEME can be seen as an extension of concatenation that has non-linear
neural networks applied on the raw model. Here, each encoder can be seen as independently performing
a transformation to the respective source embedding so that it can learn to retain essential information
rather than simply concatenate features.

The dimensionality of meta-embedding spaceM is therefore computed as the sum of dimensionalities
of source embeddings S1 and S2 after encoding, i.e. dm = d′1+d

′
2. We then decode the meta-embedding

to reconstruct the original source embeddings as ŝ1(w) and ŝ2(w) using two decoders. Specifically, we
reconstruct the two components of the meta-embedding m(w) in (1) independently to the corresponding
source embeddings. Because of this behaviour we call this approach decoupled autoencoded meta-
embedding.
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Figure 1: The architectures of proposed AEMEs. Rectangles represent word vectors, circles represent a
single dimension of a word vector, and filled circles represent source of word embeddings. In (c), greyed
circles in m(w) indicates mixing of vectors from the two source embeddings.

The reconstructed versions of the two source embeddings are given by (2) and (3).

ŝ1(w) = D1(E1(s1(w))) (2)

ŝ2(w) = D2(E2(s2(w))) (3)

To encourage encoded embeddings share common information from the two sources, while retaining
complementary information, we propose the loss given by (4).

L(E1, E2, D1, D2) =
∑
w∈V

(
λ1 ||E1(s1(w))− E2(s2(w))||2 (4)

+ λ2 ||ŝ1(w)− s1(w)||2 + λ3 ||ŝ2(w)− s2(w)||2
)

The first term in the RHS of (4) emphasises the common information to the two source, whereas the
second and third terms force the meta-embedding to retain sufficient information to reconstruct the two
source embeddings. The coefficients λ1, λ2, and λ3 in (4) can be used to control the effect of the three
errors on the overall objective. Later in our experiments, we set these coefficients using validation data.
We jointly learn E1, E2, D1 and D2 such that the total reconstruction error given by (4) is minimised.
To prevent the weight matrices of the autoencoders degrading to the identity matrix I during training, we
use a non-linear activation function (ReLU in our experiments) in encoders.

3.2 Concatenated Autoencoded Meta-Embedding (CAEME)
Similar to DAEME, the meta-embedding in CAEME is also constructed as the concatenation of two
encoded source embeddings as described in (1). However, instead of treating the meta-embedding as two
individual components, CAEME reconstructs the source embeddings from the same meta-embedding,
thereby implicitly using both common and complementary information in the source embeddings. The
reconstructed source embeddings for CAEME are given by (5) and (6).

ŝ1(w) = D1(m(w)) (5)

ŝ2(w) = D2(m(w)) (6)
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In CAEME, the dimensionality of the meta-embedding spaceM is identical to that of DAEME, which
is dm = d′1 + d′2. The overall objective of CAEME is given by (7). Similar to DAEME, the coefficients
λ1 and λ2 can be used to give different emphasis to the reconstruction of the two sources. For example,
if we would like to emphasis reconstructing S2 more than S1 in the meta-embedding process, we can set
λ2 > λ1. The coefficients are also tuned experimentally using validation data.

L(E1, E2, D1, D2) =
∑
w∈V

(
λ1 ||ŝ1(w)− s1(w)||2 + λ2 ||ŝ2(w)− s2(w)||2

)
(7)

Compared to DAEME, CAEME imposes a tighter integration between the two sources in their meta-
embedding. We jointly learn E1, E2, D1 and D2 that minimises the total reconstruction error given by
(7).

3.3 Averaged Autoencoded Meta-Embedding (AAEME)
AAEME can be seen as a special case of CAEME, where we compute the meta-embedding by averaging
the two encoded sources in (1) instead by their concatenation. A recent work (Coates and Bollegala,
2018) shows that for approximately orthogonal source embedding spaces, averaging performs compa-
rably to concatenation, without increasing the dimensionality. However, our AAEME can be seen as a
more general version of averaging in the sense that we first transform each source embedding indepen-
dently using two encoders before we compute their average. This operation has the benefit that we can
transform the sources such that they could be averaged in the same vector space, and also guarantees
orthogonality between the encoded vectors. AAEME computes the meta-embedding of a word w from
its two source embeddings s1(w) and s2(w) as the `2-normalised 1 sum of two encoded versions of the
source embeddings E1(s1(w)) and E2(s2(w)), given by (8).

m(w) =
E1(s1(w)) + E2(s2(w))

||E1(s1(w)) + E2(s2(w))||2
(8)

Note that unlike CAEME, where the outputs of the two encoders might be of different dimension-
alities, in AAEME they should be equal in order to facilitate summation. One could set the output
dimensionalities of the two encoders to be different and pad zeros to the shorter output vector. However,
we did not find this trick to perform well empirically in our preliminary experiments and do not consider
output encodings of different dimensionalities in AAEME. Similar to CAEME, the two source embed-
dings are reconstructed from the same meta-embedding using two separate decoders D1 and D2 as given
by (5) and (6). The overall reconstruction error for AAEME is the same as in (7).

4 Experiments

4.1 Source Word Embeddings
We use the following two source embeddings in our experiments:

CBOW: The Continuous Bag-Of-Words (CBOW) embeddings proposed by Mikolov et al. (2013a). The
released version we used contains 929,019 word embeddings (phrase embeddings are discarded)
with dimensionality of 300, and is trained on Google News corpus (about 100 billion words).

GloVe: The Global Vectors for word representation proposed by Pennington et al. (2014). The released
version we used contains 1,917,494 word embeddings with dimensionality of 300 that is trained on
Common Crawl dataset.

The intersection of two vocabularies contains 154,076 words for which we create meta-embeddings.
We choose CBOW and GloVe as the source embeddings because according to Yin and Schütze (2016),
CBOW and GloVe outperform other previously proposed word embeddings such as HLBL (Mnih and
Hinton, 2009) and Huang (Huang et al., 2012) in several benchmark tasks such as semantic similarity
measurement and word analogy prediction. However, we emphasise that all three proposed methods can
be trained with more than two source embeddings.

1In our preliminary experiments we found `2-normalisation to improve performance.
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4.2 Training Details
In our experiments, each autoencoder is implemented as a neural network with a single hidden layer. The
weights of the encoders and decoders are randomly initialised by sampling from a Gaussian with zero
mean and 0.01 standard deviation. We use Adam (Kingma and Ba, 2014) with mini-batches of size 128
for minimising the reconstruction error in each variant of AEME. Masking noises (MN) (Vincent et al.,
2010) is applied during training, which will randomly set a fraction of the elements in an input vector
to zero. Table 1 summarises hyperparameters, overall trainable parameters, and the time consumed by
each method. The optimal hyperparameters were found using the Miller-Charles dataset as a validation
dataset. Code implementing AEMEs is publicly available 2.

Method bs lr epoch activation noise λ1 λ2 λ3 hidden neurons parameters time used (on CPU)

DAEME 128 0.001 500 ReLU 5% MN 1.0 1.0 5.0 600 361,200 3h 57min

CAEME 128 0.001 500 Sigmoid / ReLU 5% MN 1.0 1.0 / 600 541,200 6h 53min

AAEME 128 0.001 500 Sigmoid / ReLU 5% MN 1.0 1.0 / 600 361,200 2h 10min

Table 1: Training details. bs: batch size. lr: learning rate. Both Sigmoid and ReLU activations per-
formed comparably for CAEME and AAEME in our experiments.

4.3 Evaluation Tasks
Following the common practice for evaluating word embeddings, we use the meta-embeddings created
by the proposed method in a set of NLP tasks and measure the increase/decrease of the performance of
those tasks. If a meta-embedding can improve the performance of an NLP task, then it can be considered
as an accurate semantic representation for the words. All meta-embeddings compared in our experiments
cover the same subset of words that appear in the benchmark dataset. Therefore, there is no unfair
advantage to a particular meta-embedding method due to its coverage of the vocabulary. We use the
following five evaluation tasks:

Semantic Similarity: The semantic similarity between two words is measured as the cosine similarity
between the corresponding word embeddings. The computed semantic similarity scores are com-
pared against human-rated similarity scores using the Spearman correlation coefficient. A high
degree of correlation with the human ratings is considered as an indication of the accuracy of the
word embeddings. We use the following benchmark datasets for this evaluation: Word Similar-
ity 353 dataset (WS, 2023 word pairs) (Finkelstein et al., 2002), Rubenstein-Goodenough dataset
(RG, 65 word pairs) (Rubenstein and Goodenough, 1965), Miller-Charles dataset (MC, 30 word
pairs) (Miller and Charles, 1998), and the MEN dataset (3000 word pairs) (Bruni et al., 2012).

Word Analogy: Word analogy task consists of questions like “a to b is c to what?”. Different methods
have been proposed in the literature for finding fourth word d that completes an analogy. In our
experiments we use the CosAdd method, which finds d such that the cosine similarity between the
vector (b − a + c) and d is maximised. We use the following benchmark datasets for this task:
Google dataset (GL) (Mikolov et al., 2013b), MSR dataset (Levy and Goldberg, 2014), SemEval
2012 Task 2 dataset (SE) (Jurgens et al., 2012), and the SAT (Slack, 1980) dataset. The evaluation
measure is the ratio of the questions that were answered correctly in each dataset using a particular
word embedding.

Relation Classification: The DiffVec dataset (DV) (Vylomova et al., 2016) contains 12,458 triples of
the form (r, w1, w2), where the relation r exists between the two words w1 and w2. DiffVec dataset
contains tuples covering 15 different relation types. The task is to predict the relation that exists
between two words w1 and w2 from the 15 relation types in the dataset. The relation classification
accuracy is computed as the ratio of the correctly predicted instances to the total instances in the

2https://github.com/CongBao/AutoencodedMetaEmbedding
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DiffVec dataset. We represent the relation between two words as the vector offset, w1−w2, between
the corresponding word embeddings. Next, we measure cosine similarity between the target test
word-pair and word-pairs in the training dataset and use a 1-nearest neighbour classifier to predict
the relation for the test word-pair.

Short-text Classification: In the short-text classification task, a text is represented by the centroid of
the embeddings of the words contained in that text. All datasets used in the short-text classification
tasks contain binary target labels. We train a binary logistic regression classifier using the train part
of each dataset and the classification accuracy is measured on the test part of the corresponding
dataset. We use the following short-text classification datasets in our experiments: Stanford Sen-
timent Treebank (TR) (Socher et al., 2013), Movie Review dataset (MR) (Pang and Lee, 2005),
Customer Review dataset (CR) (Hu and Liu, 2004), and Subjectivity dataset (SUBJ) (Pang and
Lee, 2004).

Psycholinguistic Score Prediction: Word embeddings can be used as features for predicting psycholin-
guistic ratings of a word (Paetzold and Specia, 2016). We use the learnt meta-embeddings in a neu-
ral network (containing a single hidden layer of 100 neurones and ReLU as the activation function)
to learn a regression model for predicting different psycholinguistic ratings. We use a randomly
selected 80% of words from the MRC database 3 and the ANEW dataset (Beth Warriner et al.,
2013) to train regression models for arousal (AS), valence (VAL), and dominance (DOM). Pearson
correlation between the predicted ratings and human ratings is used as the evaluation measure.

4.4 Baselines

We compare the meta-embeddings produced by the proposed methods against the following baselines:

Concatenation (CONC): Concatenation of the source embeddings for a particular word has been found
to be an effective method for creating meta-embeddings citeYin:ACL:2016. Despite being simple,
meta-embeddings created via concatenation have shown good performance in benchmark tasks such
as semantic similarity measurement and word analogy detection. We create meta-embeddings by
first `2 normalising the CBOW and GloVe embeddings for a word, and then concatenating the
normalised embeddings. The normalisation operation gives an equal importance to the source em-
beddings when we measure cosine similarity using the concatenated meta-embeddings.

Singular Value Decomposition (SVD): A disadvantage of concatenation as a method for creating meta-
embeddings is that it increases the dimensionality of the meta-embedding space. For example, if we
concatenated two source embeddings of dimensionalities d1 and d2, the resultant meta-embedding
will have a dimensionality of (d1 + d2). SVD has been used in various tasks in NLP such as
latent semantic analysis (Deerwester et al., 1990) and latent relational analysis (Turney, 2005) as
a technique to reduce the dimensionality of a feature space. Yin and Schütze (2016) proposed
the use of SVD to reduce the dimensionality of the meta-embeddings created from concatenation.
Specifically, let N represents the number of words common to the vocabularies of CBOW and
GloVe embeddings. We first create anN × (d1+d2) matrix C representing the concatenation meta-
embedding of all words in V . Next, we perform SVD decomposition on C = UΣV>, where U
and V are unitary matrices and Σ is a diagonal matrix containing the singular values of C. We then
select largest k singular values from Σ to construct a diagonal matrix Σk, and the corresponding
left singular vectors from U to construct a matrix Uk. Finally, we obtain our k-dimensional meta-
embeddings given by the rows of Ck = UkΣk. SVD is guaranteed to produce the best (in the sense
of least square error) rank k approximation of a matrix. In our experiments, we use CBOW and
GloVe source embeddings of 300 dimensions (d1 = d2 = 300) and created k = 300 dimensional
SVD meta-embeddings.

3http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
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Averaging (AVG): Coates and Bollegala (2018) proposed averaging the source embeddings for a word
as a method for creating meta-embeddings. Source embeddings are often trained independently and
their vector spaces as well as dimensionalities are different, which is problematic when computing
averages. Although it is possible to pad a source embeddings that have fewer dimensions with zero
such that all source embeddings have the equal dimensionality, it is still not mathematically valid to
add vectors in different spaces. Surprisingly however, Coates and Bollegala (2018) show that aver-
aging performs well in a series of benchmark tasks. Moreover, they prove that if word embeddings
can be shown to be approximately orthogonal, then averaging will approximate the same informa-
tion as concatenation, without increasing the dimensionality. Averaging can be seen as a special
case of AAEME. Similar to concatenation, we first perform `2-normalisation on both CBOW and
GloVe embeddings prior to averaging them to create meta-embeddings. Since averaging of em-
bedding does not increase the dimensionality, the final dimension of averaged meta-embedding in
our experiments is dm = 300, the same as the dimensionalities of the CBOW and GloVe source
embeddings.

4.5 Evaluation Results

The evaluation results of different embeddings on different tasks or datasets are summarised in Table 2.
In Table 2, rows 1 and 2 show the performance of the source embeddings. Performance of baseline
methods are shown in rows 3-5, and rows 8-10 are the results for the proposed method. We also include
1TON and 1TON+ proposed by Yin and Schütze (2016) in rows 6 and 7 as a comparison, which is
the current state-of-the-art. To make a fair comparison, we use the publicly available meta-embeddings
released by Yin and Schütze (2016) in our evaluation and do not retrain their method.

Model WS RG MC MEN GL MSR SE SAT DV TR MR CR SUBJ AS VAL DOM

so
ur

ce
s

1 CBOW 69.1 76.0 82.2 78.2 68.2 76.3 43.4 30.2 88.5 80.3 76.2 79.2 90.6 1.97 0.26 2.70

2 GloVe 75.4 82.9 87.0 81.7 70.7 72.3 41.6 27.0 87.8 80.0 75.9 81.5 90.0 3.66 1.19 0.85

en
se

m
bl

e

3 CONC 76.4 83.0 88.8 82.5 75.5 79.4 43.5 29.7 88.5 80.6 76.5 80.9 90.7 2.29 1.98 0.00

4 SVD 76.8 83.3 86.7 82.6 76.9 79.8 43.2 30.7 89.5 80.3 77.0 80.9 90.1 1.29 2.07 0.64

5 AVG 76.4 83.0 88.8 82.5 75.5 79.4 43.5 29.7 88.5 81.1 76.8 81.2 90.7 3.18 0.11 0.00

6 1TON 76.5 83.2 88.1 82.8 74.6 78.0 42.3 22.5 87.6 80.7 75.6 81.5 88.7 1.24 5.73 2.74

7 1TON+ 76.8 79.4 85.7 81.8 68.1 72.2 40.1 21.7 83.9 79.4 74.2 68.5 87.1 2.28 11.7 8.27
8 DAEME 77.3 83.0 89.1 83.0 75.9∗ 79.4∗ 43.7 39.3∗ 88.6∗ 82.3 76.6 84.2 90.8∗ 6.97∗ 13.3∗ 6.76

9 CAEME 76.4 84.0 89.3 82.3 74.8 78.6 43.9 38.0∗ 88.2∗ 80.5 76.7 78.9 90.3∗ 5.27∗ 12.1 6.41

10 AAEME 76.1 82.7 88.8 83.2 76.9∗ 80.0∗ 43.8 38.0∗ 89.5∗ 81.4 76.8 82.6 90.3∗ 7.03∗ 13.6∗ 7.35

Table 2: Results on the benchmark tasks. Best results are in bold, whereas statistical significance over
1TON is indicated by an asterisk.

From Table 2, we see that the ensemble methods (3-10) outperform the individual source embed-
dings (1-2) in most tasks. Among the proposed methods, DAEME performs best in short-text classifica-
tion tasks, while CAEME is competitive in semantic similarity measurement tasks. On the other hand,
AAEME performs overall well and obtains the best performance in word analogy, relation classification,
and psycholinguistic score prediction tasks. We evaluate statistical significance against both 1TON and
1TON+. For the semantic similarity and psycholinguistic score prediction benchmarks we use Fisher
transformation to compute p < 0.05 confidence intervals for Spearman correlation coefficients. In all
other datasets, we use Clopper-Pearson binomial exact confidence intervals at p < 0.05.

Comparing DAEME, CAEME, and CONC, we see that using auto-encoder with nonlinear neural net-
work can achieve better performance in most tasks as they combine complementary information from
sources and also reduce probability that features from two source embedding counteract with each other.
If we compare AAEME with AVG, we see that AAEME improves the performance of most tasks, es-
pecially in psycholinguistic score prediction. This result shows that nonlinear transformation helps to
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ensure orthogonality between feature vectors, which is the reason to outperform AVG.
Concerning dimensionality, we see that performing SVD on CONC does not reduce the performance

of most tasks, and even outperforms other methods in tasks such as GL, DV, and MR. Among the three
proposed methods, both DAEME and CAEME have dimensionality of 600, and AAEME has dimen-
sionality of 300. Although AAEME has smaller dimensionality, it performs similarly to DAEME and
CAEME and outperforms them in 6 tasks. Considering the smaller dimensionality and the robust per-
formance, among the three variants of AEME proposed in the paper, AAEME is the recommended
meta-embedding for practical applications.

Prior work on word embedding learning shows that the dimensionality of the embedding can affect
the performance of a downstream NLP application that uses the word embeddings as features (Bolle-
gala et al., 2015; Bollegala et al., 2016). In order to directly compare the proposed meta-embedding
learning methods against the current state-of-the-art meta-embedding learning methods under the same
dimensionality, we reduce the dimensionality of the meta-embeddings created by the proposed methods
to 200 dimensions using SVD, which is the dimensionality of the publicly released 1TON and 1TON+
meta-embeddings. Table 3 shows the results for this evaluation.

From Table 3, we see that the proposed AEMEs still perform well in tasks of word analogy, relation
classification, and short-text classification. Comparing with the results in Table 2, we see that the re-
duction of dimensionality has not significantly affected the performance on those benchmark datasets.
On the other hand, there is a slight drop in performance for the semantic similarity and psycholinguis-
tic score prediction tasks when the dimensionality is reduced. Nevertheless, the proposed methods still
outperforms 1TON and 1TON+ in majority of the tasks, which shows that the nonlinear transformations
learnt by autoencoders to be superior to the linear transformations learnt by 1TON and 1TON+.

Model WS RG MC MEN GL MSR SE SAT DV TR MR CR SUBJ AS VAL DOM

en
se

m
bl

e

1 1TON 76.5 83.2 88.1 82.8 74.6 78.0 42.3 22.5 87.6 80.7 75.6 81.5 88.7 1.24 5.73 2.74

2 1TON+ 76.8 79.4 85.7 81.8 68.1 72.2 40.1 21.7 83.9 79.4 74.2 68.5 87.1 2.28 11.7 8.27
3 DAEME 74.0 81.7 83.7 82.4 77.5∗ 79.2∗ 43.1 38.0∗ 89.7∗ 81.5 76.1 82.9 90.7∗ 5.85∗ 8.81 7.13

4 CAEME 73.7 82.9 85.8 82.5 77.5∗ 80.2∗ 43.6 36.9∗ 89.7∗ 80.6 75.9 79.5 89.8 3.85∗ 0.00 3.20

5 AAEME 74.5 82.0 86.1 82.5 77.6∗ 80.8∗ 43.6 35.0∗ 89.7∗ 81.4 76.4 83.2 90.5∗ 4.13 7.63∗ 6.41

Table 3: Results on the benchmark tasks for 200 dimensional meta-embeddings. Best results are in bold,
whereas statistical significance over 1TON is indicated by an asterisk.

5 Conclusion

We proposed three autoencoder-based approaches DAEME, CAEME, and AAEME for learning meta-
embeddings from multiple pre-trained source embeddings. The experimental results on a series of bench-
mark datasets show that AEME outperforms previously proposed meta-embeddings on multiple tasks.
We plan to extend the proposed method to create meta-embeddings from multi-lingual word embeddings.
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