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Abstract

Multilingual machine translation addresses the task of translating between multiple source and
target languages. We propose task-specific attention models, a simple but effective technique
for improving the quality of sequence-to-sequence neural multilingual translation. Our approach
seeks to retain as much of the parameter sharing generalization of NMT models as possible,
while still allowing for language-specific specialization of the attention model to a particular
language-pair or task. Our experiments on four languages of the Europarl corpus show that
using a target-specific model of attention provides consistent gains in translation quality for all
possible translation directions, compared to a model in which all parameters are shared. We
observe improved translation quality even in the (extreme) low-resource zero-shot translation
directions for which the model never saw explicitly paired parallel data.

1 Introduction and Motivation

Multilingual machine translation is the task of building a system capable of translating between more
than just a single source and target language. The approach is motivated by the idea that learning to
translate between one pair of languages can help to improve the translation quality of related language
pairs. Multilingual MT can be divided into three main types according to the support for source and
target languages: (i) single source, multiple target (ii) multiple source, single target, and (iii) multiple
source, multiple target. Our work focuses on improving the quality of fully n-way multilingual NMT
models that can translate between multiple source and target languages.

Multinational organizations and companies increasingly publish content in a variety of languages. In
addition to exploiting multiple sources of parallel data and leveraging similarities across different lan-
guages, multilingual translation can considerably simplify deployment. Directly supporting all possible
translation directions for a set of n languages would require n(n − 1) sets of parallel data and trained
models. This is an expensive proposal, from both a data and deployment perspective. The number of
required systems can be reduced to n if translation by bridging is used. In contrast, a fully n-way mul-
tilingual system can be trained to translate between all known language pairs using a single model. It is
even possible to translate between language pairs that were never explicitly paired in the parallel training
data, so called zero-shot translation (Johnson et al., 2017).

Neural machine translation (NMT) (Bahdanau et al., 2014; Sutskever et al., 2014) has recently become
the standard model of translation due to the high levels of fluency and accuracy that it can achieve (Koehn
and Knowles, 2017). NMT is an excellent choice for multilingual translation since the neural architecture
is language-agnostic and capable of capturing translation properties, such as long-distance re-ordering,
between even highly dissimilar languages. One of the main advantages of NMT is that the model is
able to learn useful linguistic representations for many languages, and to share parameters and leverage
similarities in the abstractions learned by the embeddings and hidden layers of the model. Exploiting
multilingual data and representations is of particular interest in improving the quality of translation for
low-resource (or even zero-resource) language pairs.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/.
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In this paper, we describe a simple but effective extension to the attentional model of neural machine
translation that improves the quality of multilingual NMT. We seek to retain as much of the parameter
sharing of NMT models as possible, while allowing for language-specific specialization of the attention
model to a particular task. Our experiments on the Europarl corpus show that multilingual translation
quality is improved for all tested language pairs, with the largest improvements in the (extreme low-
resource) zero-shot directions.

The architecture of our sequence-to-sequence neural machine translation system is described in Sec-
tion 2. An overview of related work in multilingual machine translation and multi-task learning is pro-
vided in Section 3. In Section 4, we introduce three task-specific attention model variants that can be
used to improve the quality of multilingual NMT. Our experimental framework, implementation and re-
sults are described in Section 5, followed by an analysis and example translations with attention plots in
Section 6. We conclude with a discussion of possible future work in Section 7.

2 Sequence to Sequence Translation with Attention

Our NMT system is based on the sequence-to-sequence model of translation described by Bahdanau et
al. (2014), consisting of a recurrent neural network encoder and decoder with an attention mechanism.

The encoder uses bi-directional gated recurrent units (GRU) (Cho et al., 2014) to encode a source
sequence x = (x1, . . . , xl), where xi is the embedding vector for the i-th word of the source sentence
and l its length. The encoded form of the complete sentence is defined by the sequence of hidden states
h = (h1, . . . , hl), where each hi is computed as

hi =

[←−
h i−→
h i

]
=

[←−
f (xi,

←−
h i+1)−→

f (xi,
−→
h i−1)

]
, (1)

and
←−
f and

−→
f denote the operations of the right-to-left and left-to-right GRU cells, respectively.

Given the encoded representation of the source sentence h, the decoder produces the target translation
y by computing the sequence y = (y1, . . . , ym), wherem is the target sentence length. At each time-step
t, the probability of target word yt is computed as

p(yt|h, yt−1, . . . , y1) = g(st, yt−1, Ht), (2)

where g is a feed-forward network over the current decoder hidden state st, the word embedding of the
previously predicted target word yt−1, and a context vector Ht, followed by a softmax to predict the
probability distribution over the output vocabulary. The decoder states are updated according to

st = q(st−1, yt−1, Ht), (3)

where q implements the conditional GRU with attention of Sennrich et al. (2017) and Ht is an attention-
weighted representation of the encoded source sequence h. The attention-weighted source representation
at time-step t is defined as the weighted sum

Ht =

[∑l
i=1(αt,i ·

←−
h i)∑l

i=1(αt,i ·
−→
h i)

]
, (4)

where the normalized weights αt,i indicate the relative importance of the vector representation of each
source position hi when producing the next target word at time-step t. The weights are computed using
a two-layer feed-forward network r:

αt,i =
exp{r(st−1, hi, yt−1)}∑
k exp{r(st−1, hk, yt−1)}

. (5)
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3 Related Work

Early phrase-based approaches to multilingual MT focused on multi-source translation. Och and Ney
(2002) used a simple product or max rule to select at the sentence-level the single best hypothesis with
the highest translation score from multiple decoders. There is no sharing of parameters. Consensus net-
work decoding (Matusov et al., 2006) can also be used to combine the word-level output of translations
from multiple source languages. Such system combination techniques allow sharing of the words in the
candidate translations, but still require training individual models for each language pair of interest.

Training multilingual MT systems capable of translating between multiple languages can be consid-
ered an instance of multi-task learning (Caruana, 1997), which is the idea of solving synergistic tasks
while maximizing the number of shared parameters. Sharing parameters may be useful when attempt-
ing to solve different tasks, since we can minimize representation bias by learning a more regularized
representation (Baxter, 2000). The flexibility nature of neural architectures allows for selection of the
components of the model that are to be shared and those which are not.

Sequence to sequence models with attention are no exception. Each set of parameters provides differ-
ent levels of generalization (Reimers and Gurevych, 2017), which is evidenced in the synergistic task of
training multilingual translation models. For example, Dong et al. (2015) jointly train decoders while the
rest of the parameters are task-specific; Zoph and Knight (2016) jointly train the encoders while the rest
of the parameters are task-specific, and Johnson et al. (2017) train both encoders and decoders jointly
with language-specific tokens to guide learning as in (Ammar et al., 2016). These latter approaches are
the ones that we build on. We augment our decoder with a task-specific attention mechanism intended to
better capture word order and language-specific nuances while continuing to share the rest of the model
parameters (including token embeddings).

4 Task-Specific Attention Models

Fully n-way multilingual NMT systems need to support multiple source and target languages in the
encoder and decoder GRUs. Our work focuses on improving the use of attention in the decoder. At each
time-step t, the decoder computes the attention model weights αt,i of Equation (5) in order to quantify
the relative importance of the encoder states corresponding to each source position. To the extent that
attention can be considered an analogue of word alignment, we would expect to see different patterns of
attention for language-pairs with different word order and word-level alignments. Multilingual models
restricted to a single shared attention will struggle when decoding multiple languages with different word
orders, since the parts of the source sentence that should be attended to depend on the source and target
languages of the translation task.

Our task-specific attention models can be used to address this issue. We train and empirically eval-
uate three task-specific attention model variants: target-specific attention, source-specific attention, and
paired attention which is associated with a particular language pair (i.e. translation direction). Each of
our models introduces conditioning on the weights and biases used to compute the attention coefficients.
They differ only in the choice of the key used for conditioning attention:

• Target-specific: separate attention weights and bias for each target language

• Source-specific: separate attention weights and bias for each source language

• Paired: separate attention weights and bias for each source + target pair

Our multilingual NMT system follows Johnson et al. (2017) in using special tokens to indicate the
desired target language. These tokens can be considered to define the ‘task’ from a multi-task learning
perspective as shown in (Ammar et al., 2016; Kann et al., 2018). Since the encoder states are composed
from bi-directional GRUs, we augment the source side of our parallel training data with both prefix and
suffix task tokens. This ensures that the task token is not attenuated in the left-to-right encoder GRU.
Such tokens are sufficient to ensure that the multilingual decoder produces words in the correct target
language1. A French source sentence that is to be translated into English would be augmented as follows:

1We tried explicit softmax decoding constraints on the target vocabulary, but found them to be unnecessary.
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target-specific <ToEn>, <ToFr>, <ToEs>, <ToDe>
source-specific <FromEn>, <FromFr>, <FromEs>, <FromDe>

paired <FrEn>, <EnFr>, <EsEn>, <EnEs>, <DeEn>, <EnDe>

Table 1: Valid source-side task tokens for task-specific attention model training and decoding.

target-specific <ToFr> w1 w2 . . .wl <ToFr>
source-specific <FromFr> <ToEn> w1 w2 . . .wl <ToEn>

paired <FrEn> w1 w2 . . .wl <FrEn>

Table 2: Source side training data augmented with task-specific attention model tokens.

<ToEn> Guide des industries canadiennes : <ToEn>

During training and decoding, we dynamically construct the computation graph using the parameters
for each task. Table 1 defines the valid task tokens for target-specific, source-specific and paired attention
models, given the four languages supported by our multilingual model. See Section 5 for full details of
our experimental framework and supported language pairs.

The augmented source sides of the parallel training data for our three model variants take the abstract
forms shown in Table 2. The target-specific and paired attention models simply add the desired target
language or language pair prefix and suffix tokens. For the source-specific attention model, we want
to continue to allow for run-time selection of the desired target language so we introduce a second
prefix token to indicate the selection of the specific attention parameters. The first token for the source-
specific models is used only to select the parameters and stripped from the source sentence before using
it in training or decoding. This allows us to dynamically select the source-specific attention parameters
associated with translation from French, while (i) still allowing run-time selection of the target language,
(ii) supporting zero-shot directions, and (iii) ensuring that the multilingual model sees exactly the same
sequence of tokens as the target-specific model.

Note that only the target-specific and source-specific model variants enable zero-shot translation. The
paired form of attention model trains separate attention weights and biases for each of the translation
directions observed in the training data. It would be possible to use a separate prefix token for the
attention key (in a similar manner to that of source-specific attention), but there is no explicit set of
attention parameters that should be used for the zero-shot directions. The prefix token could specify that
the attention parameters associated with either the source or target language of the zero-shot direction
should be used.

All three of our task-specific attention model variants still share most of their encoder and decoder
parameters. The task-specific attention models require only a very small increase in the total number
of parameters. For hidden state dimensionality d, we add one additional set of attention weights (d × d
parameters) and bias (d parameters) for each supported task. For the neural network topology used in our
experiments (see Section 5, below), a target-specific attention model with support for four distinct target
languages (i.e. tasks) requires only a 1.2% increase in the total number of model parameters, compared
to the shared-attention version of the model.

5 Experiments

We evaluate the quality of our multilingual translation models using training data from the Europarl
Corpus2, Release V7. Our experiments focus on three primary language pairs: French-English, Spanish-
English and German-English. We include German with SOV-type word order to contrast the SVO-
type word order of the other languages. The source and target sides of the parallel training data are
processed with the standard tokenizer included in the Moses SMT Toolkit (Koehn et al., 2007). For

2http://www.statmt.org/europarl/
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Sentence Pairs Source Tokens Target Tokens
French-English 2.01m 62.6m 56.3m

Spanish-English 1.97m 57.1m 55.0m
German-English 1.92m 51.0m 53.6m

Merged 11.79m 335.6m 335.6m

Table 3: Tokenized corpus statistics for training single-data baselines and n-way multilingual models.

Fr-En Es-En De-En Merged
source (BPE) 35.3k 37.2k 43.1k 80.0k
target (BPE) 35.3k 35.2k 35.1k 80.0k

Table 4: Source and target vocabulary sizes for single-data baselines and n-way multilingual models.

training multilingual systems, we merge the parallel data for all available directions. The parallel data
for each language pair is thus included twice, once in each direction.

In order to support experiments on many-to-many multilingual translation using a single model, we
apply a jointly-learned set of 80k Byte-Pair Encoding (BPE) rules (Sennrich et al., 2015) obtained from
the merged source and target sides of the training data for all three language pairs. This ensures that all
experiments, including the single-language baselines, share exactly the same tokenization and sub-word
vocabularies. Tokenized corpus statistics for the parallel training data are summarized in Table 3, while
Table 4 compares the vocabulary sizes obtained from BPE processed data for the single-data baseline
and fully n-way multilingual models.

The Europarl evaluation data set dev2006 is used as our validation set, while devtest2006 and
test2007 are our blind test sets. We also evaluate the out-of-domain News Commentary test sets nc-
dev2007 and nc-devtest2007 in order to demonstrate the robustness of our approach to different kinds
of data. Case-sensitive single-reference BLEU scores (Papineni et al., 2002) are computed using the
multi-bleu.perl script included with Moses. Reimers and Gurevych (2017) have shown that re-
porting a single metric score can sometimes be misleading for many neural architectures. For this reason,
all BLEU scores reported in the tables are obtained by averaging the decoding results from five separate
models initialized with distinct random seeds.

5.1 Implementation Details

Our sequence-to-sequence NMT model with task-specific attention is implemented in C++ using DyNet3

(Neubig et al., 2017a). We use DyNet since the computation graph can be efficiently modified on a batch-
by-batch basis during training and decoding, allowing for the runtime selection of attention weights and
bias parameters according to the desired task.

We utilize the auto-batching feature (Neubig et al., 2017b) of DyNet for efficient matrix computa-
tions, but the parallel training data must still be separated into batches4 such that each batch consists of
sentences for a single task, e.g. <ToEn> for a batch of sentences that all use the same target-specific
attention model for translating into English. The entire training data and batches are shuffled at the be-
ginning of each epoch so that the order of tasks seen during training is random and that they occur in
proportion to their distribution in the training data.

We use 256 dimensions for our source and target word embeddings, and 256 dimensions for the hidden
states. A single recurrent layer is used for the encoder and decoder. The model parameters are optimized
using an unbiased Adam5 stochastic optimizer (Kingma and Ba, 2014) in order to minimize perplexity
on a held-out validation set. The validation set for the single-data baseline systems is simply the dev2006
portion of the official Europarl evaluation data for that language pair, e.g. dev2006.fr and dev2006.en for

3http://dynet.io/
4Each batch contains a combined maximum of 5000 source and target tokens.
5We use a learning rate of 0.001.
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Fr-En Es-En De-En
single-data 31.84 32.21 31.80 32.17 32.09 32.11 28.39 28.67 28.32

shared 29.99 30.34 30.12 30.99 30.87 30.78 26.30 26.52 26.06
target-specific 30.50 31.00 30.68 31.58 31.62 31.63 26.96 27.12 26.85

source-specific 30.47 30.87 30.36 31.47 31.54 31.51 26.75 27.13 26.70
paired 29.99 30.62 30.23 30.93 31.23 31.17 26.43 26.81 26.38

Table 5: BLEU scores for single-data baseline and task-specific attention model variants: xx-to-En

En-Fr En-Es En-De
single-data 32.24 32.44 32.87 32.60 32.60 33.18 22.15 22.55 22.36

shared 29.44 29.85 30.23 30.03 30.50 31.02 19.40 19.84 19.63
target-specific 30.06 30.38 30.92 30.62 30.93 31.56 20.16 20.51 20.27

source-specific 29.68 30.20 30.50 30.54 30.70 31.48 19.66 20.10 20.01
paired 29.19 29.68 30.07 30.17 30.40 31.07 19.62 20.13 19.97

Table 6: BLEU scores for single-data baseline and task-specific attention model variants: En-to-xx

French-to-English translation. For multilingual systems, we want the model to work well in all possible
directions so we merge the dev2006 data for all directions of interest. Combining all six directions gives
a validation set with a total of 6× 2000 = 12000 sentences.

5.2 Task-Specific Attention Model Decoding Results

Tables 5 and 6 show decoding results for the Foreign-to-English (xx-to-En) and English-to-Foreign (En-
to-xx) directions, respectively. In all six translation directions, the single-data baseline systems obtain
the highest overall BLEU scores. We expect these baseline models to perform well on their respective
test sets since the translation direction (i.e. task) of the test set exactly matches the parallel data and
validation set used to train the models.

The fully n-way multilingual system with a shared attention model shows degradations of up to -2.0
BLEU score, exhibiting a similar pattern to previously reported multilingual NMT results (Johnson et
al., 2017). When the encoder and decoder both support multiple languages, a single shared attention
model is harmful. Our multilingual NMT model with target-specific attention mitigates much of this
degradation. We observe gains of between +0.5 and +0.9 BLEU, with respect to the single attention
model shared across all language pairs.

Source-specific attention is also better than the shared attention model, but not as good as target-
specific attention. Paired attention (i.e. a separate set of attention weights and biases for each of the six
translation directions with explicitly paired parallel data) shows little change compared to the standard
shared attention model. The paired attention model has more tasks than the other models (6 for paired
attention vs. 4 for both target-specific and source-specific attention). It has therefore seen less data for
each task and benefits from no sharing of attention-related parameters. The paired model probably lacks
sufficient training data to learn a good separate attention for all tasks.

Table 7 shows BLEU scores on the out-of-domain News Commentary nc-dev2007 and nc-devtest2007
test sets. Our task-specific attention model again provides gains of between +0.6 to +1.2 BLEU showing
that the technique is robust even for test sets less closely matched to the parallel training data.

5.3 Zero-Shot Decoding Results

Table 8 shows decoding results for the six zero-shot translation pairs, i.e. those directions (such as
French-to-Spanish) never explicitly paired in the parallel data. Although the absolute numbers are lower
(as expected for zero-shot pairs), our target-specific attention model gives gains of between +1.0 and +1.5
BLEU over the model that shares attention parameters across all languages. Source-specific attention
does not work well for zero-shot translation.
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Fr-En Es-En De-En
shared 23.20 21.56 30.00 28.31 20.60 18.40

target-specific 23.82 22.45 30.95 29.47 21.65 19.40
En-Fr En-Es En-De

shared 26.05 24.95 31.74 30.36 16.20 14.44
target-specific 26.96 25.51 32.64 30.91 16.99 15.12

Table 7: BLEU scores for single-data baseline and task-specific attention model variants on out-of-
domain News Commentary testsets nc-dev2007 and nc-devtest2007.

Fr-Es Fr-De
shared 13.64 13.63 13.75 7.82 8.04 7.84

From Frtarget-specific 15.10 15.29 15.31 8.76 8.95 8.82
source-specific 12.27 12.35 12.31 6.99 7.01 6.82

Es-Fr Es-De
shared 13.43 13.33 13.48 7.57 7.82 7.57

From Estarget-specific 14.55 14.40 14.40 8.70 8.63 8.65
source-specific 12.53 12.35 12.26 7.07 6.88 6.86

De-Fr De-Es
shared 10.50 10.12 10.31 9.86 10.06 10.02

From Detarget-specific 11.53 11.24 11.38 11.28 11.31 11.29
source-specific 9.64 9.59 9.41 8.76 8.83 8.78

Table 8: BLEU scores for multilingual NMT ‘zero-shot’ translations comparing the baseline shared
attention model to target-specific and source-specific attention models.

No single-data baseline exists for zero-shot translation since we have no parallel data for those pairs.
However, we can pivot by data (i.e. find new parallel sentence pairs x : z from existing data x : y and
y : z, with common y) or translate by bridging (translate from x to y, and then from y to z) for the
zero-shot pairs. Pivoting by data is possible since there is a high degree of overlap amongst the various
languages of the Europarl Corpus.

Although our multilingual NMT model has not seen explicitly paired data in the zero-shot directions,
the encoder and decoder have seen many of the source or target sentences paired with other languages.
Our zero-shot experiments are designed to test the hypothesis that the target-specific attention model is
better than a model which shares attention parameters for all languages. Any benefit due to source or
target data similarity applies equally to each of these multilingual models.

6 Analysis and Examples

Learning curves for the shared attention and target-specific attention model variants are shown in Figure
1. The plot includes five curves for each model variant, corresponding to different random initializations.
Our target-specific attention model achieves much higher BLEU scores on the validation set in earlier
epochs. There is also considerably less variance. The first few times the validation set is decoded
with the shared attention model, the gap with respect to the target-specific attention model can be as
large as 10 points BLEU. Our validation set contains sentences from all six translation directions so it
is not surprising that a model with a single set of shared attention weights and biases performs poorly
when applied to the ‘wrong’ task. Even after a full epoch of training (11.8m sentence pairs), the shared
attention model continues to lag behind the target-specific attention model by almost one BLEU point.

The following example shows German-to-English translations obtained using a multilingual NMT sys-
tem with a shared or target-specific attention model. This is an interesting example since the model must
attend to the distant German source words “angesprochen worden ist” when producing the English trans-
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Figure 1: Multilingual validation set BLEU scores obtained during training for five different randomly
initialized seeds using a shared or target-specific attention model.

lation. The multilingual NMT system with a shared model of attention produces a deficient translation,
containing multiple repetitions of the word ‘report’ and omitting the important content word ‘aid’:

source Ich weise auch darauf hin , dass die Frage der Stein@@ koh@@ le
sowohl im Wettbewerbs@@ bericht als auch im Beihil@@ fen@@
bericht , ber den wir heute diskutieren , angesprochen worden ist .

reference I would also draw your attention to the fact that the coal issue is raised
both in the competition report and in the subsidy report that we are dis-
cussing today .

shared I also note that the issue of coal is raised by the coal report , both in the
report on the competitiveness report and on the report on which we are
debating today .

target-specific I would also point out that the issue of coal has been raised both in the
competition report and in the aid report we are discussing today .

The attention matrices computed during decoding for the shared and target-specific model variants
are shown in Figure 2. Rows correspond to the words of the German source sentence and columns to
the words of the English target translation. The target-specific attention model results in a sharper and
less diffuse attention over the words of the source sentence, especially at the beginning and end of the
sentence, and for the translation of the passive German construction “angesprochen worden ist” which
requires long-distance re-ordering.

For this example, the shared attention model leads to diffuse alignments since a single set of attention
weights and biases must be used to align the words of many target languages with disparate word orders.
Our target-specific attention model leads to more accurate alignments since the decoder is conditioned
for a single target language (as indicated by the ‘task’ token prefix). Given the target-specific set of
attention weights and biases, and the initialization of the decoder state using the RNN encoded source,
the decoder is able to more accurately attend to the correct source words when producing the words of
the target sentence at each time-step.
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(a) Attention model: shared (b) Attention model: target-specific

Figure 2: Attention plots obtained while decoding a German-to-English sentence pair in the test set.
Rows correspond to source words and columns to each target position. Target-specific attention results
in less diffuse alignments.

7 Conclusions and Future Work

We have described a simple but effective technique for improving the quality of multilingual NMT. Our
technique mitigates much of the loss that occurs when multiple source and target languages are supported
in a system with a single encoder and decoder. It is particularly effective in the zero-shot (i.e. extreme
low-resource) translation directions.

Our approach extends the use of target language prefix tokens described by Johnson et al. (2017)
to select a task-specific set of attention weights and biases for each task of interest. For NMT, where
attention can be considered an analogue of word alignment, the use of separate attention weights and
biases for language pairs with different word orders leads to improved BLEU scores in our multilingual
decoder. Our results show that multilingual NMT works best with a target-specific attention model,
i.e. a distinct set of attention weights and bias parameters for each supported target language. Our
improved model handles all possible translation directions with only a small increase in the total number
of parameters, compared to the single-data baseline or standard shared attention model systems.

In future work, we plan to apply our multilingual techniques to true low-resource language pairs,
with the goal of augmenting low-resource poor quality translation systems with knowledge obtained on
languages with richer resources. Given our results for zero-shot translation, we expect our approach
to work well. Our attention model variants can also be applied to multi-task learning frameworks, e.g.
to improve the quality of translation using knowledge learned from a variety of other natural language
processing tasks such as POS tagging and dependency parsing (Kiperwasser and Ballesteros, 2018).
Recent work on learning and unsupervised induction of multilingual word representations (Upadhyay et
al., 2016; Zhang et al., 2017) could also be used to improve multilingual translation since the models
share a single vocabulary for all source and target languages of interest.
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