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Abstract

Unsupervised pre-trained word embeddings are used effectively for many tasks in natural lan-
guage processing to leverage unlabeled textual data. Often these embeddings are either used
as initializations or as fixed word representations for task-specific classification models. In this
work, we extend our classification model’s task loss with an unsupervised auxiliary loss on the
word-embedding level of the model. This is to ensure that the learned word representations con-
tain both task-specific features, learned from the supervised loss component, and more general
features learned from the unsupervised loss component. We evaluate our approach on the task
of temporal relation extraction, in particular, narrative containment relation extraction from clin-
ical records, and show that continued training of the embeddings on the unsupervised objective
together with the task objective gives better task-specific embeddings, and results in an improve-
ment over the state of the art on the THYME dataset, using only a general-domain part-of-speech
tagger as linguistic resource.

1 Introduction

Word representations in the form of continuous vectors are often pre-trained on large amounts of raw
text to learn general word features, using unsupervised objectives. These representations are then used
in supervised models for various classification tasks. However, such tasks sometimes require very spe-
cific features that may not have been captured by the unsupervised objective. In other domains such as
computer vision, representations are often learned jointly from multiple resources for classification. In
this work, we explore the possibility to exploit learning signals from both settings to construct better
task-oriented word representations, and obtain a better relation classification model.

The main task in this work is the extraction of narrative containment relations (CR) from English
clinical texts, as annotation of clinical data is costly and it is therefor crucial to fully exploit both the
labeled as well as the unlabeled data that is available. The aim of CR extraction is to find if, given events
A and B, event A is temporally contained in event B (i.e. if event A happens within the time span of event
B). An example of such relation is given in Fig. 1, where the model should predict all containment edges
given the entities (events and temporal expressions), by classifying each pair of entities as containment or
no containment. Temporal relation classification in clinical text is a very important task in the secondary
use of clinical data from electronic health records. The patient time-line is crucial for making a good
patient prognosis and clinical decision support (Onisko et al., 2015). This task has already been addressed

Figure 1: A sentence annotated with events, temporal expressions (Timex3), and containment relations.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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in three iterations of the Clinical TempEval Shared Task (Bethard et al., 2016). Still there is a gap of
more than 0.20 in F-measure between the state-of-the-art CR extraction systems and the inter-adjunctator
agreement (indicating an upper bound for performance). This shows that this task is very challenging.

Following the current trend in NLP, the recent state-of-the-art models for extraction of CR are neural
network models. These models all use pre-trained word embeddings as word representations (Tourille et
al., 2017; Dligach et al., 2017; Lin et al., 2017).

Pre-training of the embeddings is done with an auxiliary task (a task where one is not interested in
the final predictions, but in the trained model components), like the skip-gram task (Mikolov et al.,
2013). When used for classification tasks in NLP, these pre-trained word representations are often either
used as fixed inputs for the classification model, or as initialization for the word representations of the
classification model (sometimes called fine-tuned embeddings).

A problem with pre-trained representations in classification models is that solving the main task often
requires different information than the auxiliary task. Training word representations only on the auxiliary
objective can result in loss of crucial information for the task, and afterwards fine-tuning on the task loss
does not influence words that are not in the task’s training data, losing generalization to those words.

In the current work, we propose a neural relation classification (RC) model that learns its word repre-
sentations jointly on the main task (supervised, on labeled data) and on the auxiliary task (unsupervised,
on unlabeled data) in a multi-task setting to overcome this problem, and ensure that the embeddings
contain valuable information for our main task, while still leveraging the unlabeled data for more general
feature learning. As auxiliary task we implement a skip-gram (SG) architecture, similar to Mikolov et al.
(2013). Our proposed models use only unlabeled data and a general (news, out of domain) part-of-speech
(POS) tagger as external resources, in contrast to the current state-of-the-art models, to ease extension
to other languages for which specialized NLP tools for clinical texts might not be available. The main
contributions of this work are that it:

• Shows that training the word-level representations jointly on its main task and an auxiliary objective
results in better representations for classification, compared to using pre-trained variants.

• Shows that the method’s increased performance and hyper-parameters are robust across different
training set sizes, and that single-loss training settings act as lower bounds on performance.

• Constitutes a new state of the art for temporal relation extraction on the THYME dataset even
without dedicated clinical preprocessing.

2 Related Work

The model we present draws inspiration from prior research on (temporal) relation classification and
neural multi-task learning.

2.1 Clinical Temporal Relation Extraction

Temporal relation extraction from clinical texts is a widely studied area in NLP and has been explored
through various shared tasks, such as the i2b2 shared task on clinical temporal information (Sun et al.,
2013), and three iterations of Clinical TempEval (Bethard et al., 2015; Bethard et al., 2016; Bethard et
al., 2017). Until recently, most of the top performing systems employed manually constructed linguistic
feature sets (Lin et al., 2015; Lee et al., 2016; Leeuwenberg and Moens, 2017). In the last few years,
there has been a shift towards using neural models, using LSTM (Tourille et al., 2017) and CNN models
(Dligach et al., 2017; Lin et al., 2017) inspired by the work on relation classification in other domains
(Zeng et al., 2014; Zhang and Wang, 2015; Zhou et al., 2016; Nguyen and Grishman, 2015). The top
results in clinical temporal relation extraction are still achieved when enhancing the neural models with
dedicated clinical NLP tools for preprocessing the clinical texts, often using the English cTAKES system
(Savova et al., 2010), which contains tools for clinical POS tagging, named entity recognition, and a
dependency parser all trained on clinical data. The main reason for using these dedicated clinical tools is
that parsers trained on non-clinical texts perform significantly worse on clinical data (Jiang et al., 2015).
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Dedicated clinical NLP tools are not available for most languages though, and retraining NLP tools on
clinical data is quite resource intensive, because it requires extra annotation effort. Additionally, clinical
data is often difficult to obtain or share publicly for patient privacy reasons. Hence, we keep resource
intensive preprocessing to a minimum and employ only a general news domain POS tagger (Toutanova
et al., 2003), providing important temporal relation extraction cues, such as tense shifts (Derczynski,
2017), and for which training data are available for many languages (Petrov et al., 2012).

2.2 Multi-task Learning

Our proposed model training can be seen as multi-task learning (MTL), where the aim is to improve
model generalization by leveraging the information from training signals of different related tasks (Caru-
ana, 1998). In earlier work, MTL has shown to be quite effective for different NLP tasks such as machine
translation (Dong et al., 2015), sentiment analysis (Peng and Dredze, 2015; Yu and Jiang, 2016), sen-
tence level name prediction (Cheng et al., 2015), semantic role labeling (Collobert and Weston, 2008),
and many more. For example, Collobert and Weston (2008) used an auxiliary unsupervised objective
for semantic role labeling (SRL). They alternately trained embeddings in a language model and a SRL
model. In contrast to their work, we learn both tasks truly jointly, and optimize a single semi-supervised
objective. Typically in neural MTL, one or more layers of the network are shared among different mod-
els. Two issues in MTL are (1) how to determine if the tasks are related enough to benefit from each other,
and (2) what layers to share among the models. Baxter and others (2000) theoretically argue that tasks
are related when they share an inductive bias. In our model, we expect that the skip-gram task (Mikolov
et al., 2013) can act as a reasonable word-level inductive bias for our task, as it has already shown its
effectiveness in SRL (Collobert and Weston, 2008) and sentiment analysis (Peng and Dredze, 2015) in
MTL, and for many NLP classification tasks when using them as pre-trained embeddings. Hashimoto et
al. (2017) showed that even when combining many tasks, considering the task hierarchy (simpler tasks
lower in the network) allows them to benefit from each other. In most work on MTL the auxiliary tasks
are supervised and specifically chosen for their relatedness to the main task (Ruder, 2017), whereas in
our model we chose the unsupervised auxiliary skip-gram task, and share weights of the word embedding
layer. This results in a new joint relation classification objective that is semi-supervised on the word-level
and provides better generalization for the final classification model.

3 The Model

Our model consist of two components: (1) a relation classification component (RC), and (2) a skip-gram
component (SG). A high-level schematic overview of our model’s training setting is shown in Fig. 2.

Figure 2: High-level overview of our model training setting. Drc and Drc indicate the dataset for the
relation classification and skip-gram components respectively, and Lrc+sg(θ) the model’s combined loss.

3.1 Relation Classification (RC)

To classify relations we employ a long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
relation classification model (RC) (Zhang and Wang, 2015). We frame the task as a sequence classi-
fication problem, taking as an input: the textual candidate relation description, i.e. the arguments of
the candidate relation (the entity pair), and the context words surrounding the arguments, all read as a
sequence from left to right. A schematic overview of the RC model component is shown in Fig. 3.

Generation of candidate entity pairs is described later on in section 4.4. The locations of the arguments
of each candidate relation are indicated by two types of features taken from the literature: (1) position
indicators, which are XML tags added to the original input sequence indicating the start and end of the
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Figure 3: Schematic representation of the relation classification (RC) model component. Arrows repre-
sent sets of fully connected weights. The dashed box indicates a word input as shown in Fig. 4.

Figure 4: Each word input xt of the RC model (at time step t) is a concatenation of a token embedding,
a POS embedding, and two positional features (one for each argument).

arguments (Zhang and Wang, 2015), and (2) by position features, indicating the relative token-distance
of each word to each argument (Zeng et al., 2014). Each word’s total input xt at time step t ∈ 〈0, 1, ..., T 〉
consists of the two argument locating features, pfa1t and pfa2t , together with a word embedding xtokent ·
W token
em , and a POS embedding xpost ·W pos

em , where W token
em and W pos

em are the embedding matrices for
tokens and POS respectively, and xtokent and xpost their one-hot representations. A schematic overview
of the concatenated input xt for each word to the LSTM unit is shown in Fig. 4.

The predicted class probabilities p̂rc(x) are given by a softmax classifier placed on top of the LSTM
output h at the last time step T (in Eq. 1).1

p̂rc(x) = softmax(WphT + bp) (1)

The RC model’s loss function is cross-entropy loss, as shown in Eq. 2. Drc indicates the supervised
relation classification dataset, and θrc is the collection of all trainable parameters of the model.

Lrc(θ
rc) = −

|Drc|∑
i=1

yi log p̂rc(xi) (2)

3.2 Context Prediction (SG)
As the unsupervised auxiliary task, we implemented a feed-forward neural network for a word context
prediction task, known as the continuous skip-gram (SG), following Mikolov et al. (2013). As input, the
model takes a one-hot encoded input word wj , which is projected to a word embedding, from which the
probability distribution y over its surrounding context words wj−c, ..., wj−1, wj+1, ..., wj+c is predicted,
given a context window size c. The full model is given by Eq. 3.

p̂sg(wj) = softmax(Wpsg(wj ·W token
em ) + bpsg) (3)

Like the RC model, we use cross-entropy loss for our SG model, as shown in Eq. 4. Dsg indicates
the unsupervised dataset, consisting of words and their contexts. θsg is the collection of all trainable
parameters of our model.

Lsg(θ
sg) = −

|Dsg |∑
i=1

yi log p̂sg(wi) (4)

1We also experimented with bidirectional LSTMs (Zhang et al., 2015) and adding attention (Zhou et al., 2016). In our
experiments, this did not result in significant improvements.
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3.2.1 Separate Left & Right Context (SGLR)
The skip-gram model is quite rough in its context description and does not take into account word order
very well. However, for temporal relations we expect word order to be relevant. For this reason, we also
experimented with a variation on the skip-gram model, separating the left and right context, following
the intuition of Ling et al. (2015). The context separation is achieved by extending the context words by
a ‘left’ or ‘right’ prefix depending on their location relative to the sampled word.

3.3 Combination (RC + SG)
We train our proposed model on a combination of both loss functions, each with their own dataset Drc,
and Dsg respectively. The combined loss, shown in Eq. 5, is a weighted sum of their cross-entropy
losses, where λsg determines the importance of the SG loss.

Lrc+sg(θ) = Lrc(θ
rc) + λsgLsg(θ

sg) (5)

A crucial part of our model is that although both models sample different types of inputs (the RC:
sequences, the SG: single words) from different datasets, and have different classification weights, the
word embeddings are shared, i.e. W token

em (θrc ∩ θsg = W token
em ), also illustrated in Fig. 2. So only the

word embeddings are directly influenced by both losses. All other weights (from RC or SG) are only
influenced indirectly, through the word embedding weights, as both models are trained simultaneously.
Søgaard and Goldberg (2016) showed that, for NLP, sharing representations at the lower levels of the
network is most effective: when lower level features are shared, there is room for the model to learn
task specific abstractions in higher layers. For this reason we choose our model to share only the word
embedding layer, as schematically illustrated in Fig. 5.

Figure 5: Schematic representation of how the SG model component extends the RC model when using
the combined loss on input word wj ∈ Dsg, and word wt at time step t from input sequence xi ∈ Drc.
The gray layer indicates the shared word embedding parameters. The dashed box represents the total
word input xt for RC, as in Fig. 3 and 4.

3.4 Training
We train all our models for at least 10 epochs, using Adam (Kingma and Ba, 2014) stochastic gradient
descent, with the default parameters from the original paper (lr=0.001), and a batch size of 1024 on
a Titan X GPU. As stopping criteria we employ early stopping (Morgan and Bourlard, 1990) with a
patience of 20 epochs, based on F-measure on a small validation set of 3 documents (from Train). After
each epoch on the main task, we shuffle the data and start the next one. During training we employ a
dropout of 0.5 on the input, and on the second last layer (Srivastava et al., 2014).

For our semi-supervised setting, with the combined loss, we sample 1024 samples in our batch for each
task from the corresponding dataset, and do a single weight update on the combined loss. A high-level
schematic overview of our semi-supervised training setting is shown in Fig. 2.

4 Experimental Setup

4.1 Datasets
We conduct our experiments on the THYME corpus (Styler IV et al., 2014), a temporally annotated
corpus of clinical notes in the colon cancer domain, also used in the Clinical TempEval Shared Tasks
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(Bethard et al., 2015; Bethard et al., 2016). We use the provided Train, Dev and Test split so we can
directly compare to other approaches from the literature. The Train section consists of 195 documents,
with 11,2k annotated candidate relations, the Dev section of 98 documents and 6,2 annotated candidates,
and the Test section contains 100 documents and 5,9k candidates. We now refer to this dataset as Drc.

As data for the SG(LR) loss, we use the raw THYME train texts, extended with a MIMIC III (Johnson
et al., 2016) section of 500 discharge summaries that contain the terms ’colon’ and ’cancer’ at least twice.
We refer to this dataset as Dsg and it is used in all pre-training and joint training settings.

4.2 Training Settings
We compare five training settings for the model of which the first three settings act as baselines to
compare with our proposed models (settings 4 and 5):

1. RC (random initialization): Uses random word embedding initializations (picked from [0.05,
0.05]) and trains on loss Lrc.

2. RC (SG initialization): Initializes the model with pre-trained SG embeddings, and trains on Lrc.

3. RC (SG fixed): Initializes the model with pre-trained SG embeddings, and trains the model on Lrc,
while not updating the word embedding weights, keeping them as fixed features.

4. RC + SG: Initializes the model with pre-trained SG embeddings, and trains on Lrc+sg.

5. RC + SGLR: Initializes the model with pre-trained SG embeddings, and trains on Lrc+sglr.

4.3 Evaluation
As evaluation metrics we use precision, recall, and F-measure, calculated using the evaluation script
provided by the Clinical TempEval organizers2, which evaluates the CR under the temporal closure
(UzZaman et al., 2012), taking into account transitivity properties of the temporal relations.

4.4 Preprocessing & Hyper-parameters
As preprocessing of the corpus, we employ very simple tokenization: splitting the text on spaces and
considering punctuation3 and newlines as individual tokens. Additionally, we lowercase the corpus, and
conflate digits (1992 → 5555). To extract POS we use the Stanford POS Tagger v3.7 (Toutanova et al.,
2003), using the pre-trained (on WSJ) caseless left-3-words model. Finally, all 1-time occurring tokens
in the training dataset are replaced by a<UNK>-token, to represent out-of-vocabulary words at test-time.

We employ the same candidate generation as Leeuwenberg and Moens (2017), considering all pairs
of events (Event×Event, or EE) and events and temporal expressions (Timex3×Event, or TE) with a
maximum token distance of 30 as candidate relations to be classified (ignoring sentence boundaries, as
relations also occur across them). This candidate generation has a maximum recall of 0.87%, and gives
a ratio between the positive and negative class of 1:36, also indicating the task’s difficulty.

In our experiments, we tuned each model type within the same hyper-parameter search space on the
Dev set. The number of LSTM units was chosen from {25, 50, 100}, and the word embedding dimension
from {25, 50, 100}. This resulted in 100 LSTM units, and a word embedding size of 25. The loss weights
λsg and λsglr were chosen from {0.01, 0.1, 1.0, 10, 100}, resulting in λsg=0.1 and λsglr=0.1. The context
window size of the skip-gram was set to 2, chosen from {2, 4, 8}. The context size for the RC, and POS
embedding dimension size were not tuned and set to 10 (left and right), and 40 respectively.

5 Results

5.1 Influence of Word-Level Loss
We looked at model performance when increasing the importance of the auxiliary word-level loss (λsg
and λsglr). The results when changing these hyper-parameters are shown in Fig. 6.

2https://github.com/bethard/anaforatools
3, ./\"’=+-;:()!?<>%&$*|[]{}
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Figure 6: Precision (P), Recall (R) and F-measure
(F) on the THYME Dev set for different values of
λsg (◦) and λsglr (�).
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Figure 7: F-measure on the THYME Dev set for
different training settings, over different training
set sizes (in % of the full train set).

When choosing λ = 0 (λsg or λsglr) for our model, we obtain the same model as RC (SG init.), as the
auxiliary objective has no influence. For very high values of λ, we hypothesize that the models converge
towards RC (SG fixed), because when taking λ→∞, the word embeddings are solely optimized for the
auxiliary loss, as the influence of the task loss is proportionally zero, i.e. limλ→∞

1
λ = 0. This property is

interesting, as it shows these baseline models can act as lower bounds for our model performance when
choosing a bad λ value. This can be observed in Fig. 6, where the F-measure is highest for a λ that
balance both objectives, whereas for extremes F-measure decreases.

5.2 Comparison Across Training Set Size

We evaluated all model settings for different training set sizes. From Fig.7 we can see that the worst
model is the one with random word embedding initializations. One improvement is to initialize the
model with pre-trained SG embeddings. Fixing the pre-trained embeddings or continued training on the
main task objective does not result in very different F-measure scores. However, continued training on
the combined objective does seem to give a significant increase in F-measure, consistent over different
training sizes for both the RC + SG as well as the RC + SGLR variant. Additionally, it should be noticed
that parameters are not returned on each dataset size, but obtained from tuning on the full Dev set. Still
the model ranking is consistent.

5.3 Evaluation on Subsets of Relations

To get a more detailed insight in what each model learns relative to the others, we evaluated our models
on different subsets of the data. First, we split the containment relations based on their argument types
and separately evaluated the 3.3k EE relations and the 2.7k TE relations. EE relations are generally found
more difficult than TE relations (Lin et al., 2015; Lin et al., 2016; Dligach et al., 2017; Lin et al., 2017).
In Table 1 we can see that also for our model, EE relations are harder to recognize than the TE relations,
as all models achieve higher scores for TE compared to EE relations. What is interesting to see is that
when training with the combined loss (SG or SGLR) we obtain a clear improvement on the more difficult
EE relations, and perform slightly worse on TE relations compared to using pre-trained embeddings (the
three upper settings). The reason could be that EE relations are more diverse in vocabulary, and are
consequently more influenced by the quality of the embeddings.

We also analyzed the models w.r.t. total frequency in the training data (Drc + Dsg) and made three
subsets based on the average word frequency of the argument tokens in each relation. The three buckets
of relations, 0-100, 100-500, and 500+, are of sizes 2.2k, 2.2k, and 1.8k respectively. What can be
observed is that the RC+SG model performs best for low-frequency words, and RC+SGLR performs
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Table 1: Evaluation on subsets of THYME Dev (in F-measure). The subsets of Event×Event (EE) and
Timex3×Event (TE) relation pairs are of sizes 3.3k and 2.7k respectively. The intervals 0-100, 100-500
and 500+ are subsets reflecting average argument token frequency in the training data (of sizes 2.2k, 2.2k
and 1.8k respectively).

Model EE TE 0-100 100-500 500+ All

RC (random initializations) 44.5 64.4 40.5 57.8 63.4 53.4
RC (SG initializations) 49.5 68.6 44.1 62.5 67.0 57.3
RC (SG fixed) 48.9 68.7 44.1 62.7 67.3 57.6

RC + SG 51.6 67.4 46.4 62.5 66.8 58.2
RC + SGLR 51.7 68.5 45.3 63.0 68.1 58.4

best for the higher frequency ranges. This can be explained by the fact that the SGLR separates left
and right context words, creating sparser and more precise contexts compared to SG. Sparse context
descriptions can hurt representations of low frequency words as there may not be enough words that
share contexts. But, for more frequent words, more precise context descriptions as in SGLR help to
prevents incorrect generalizations (such as cases where word order matters). When evaluating on the full
Dev set, both combined loss settings outperform the baselines consistently.

5.4 Comparison to the State of the Art
We also compared our proposed models to various state-of-the-art systems from the literature:

The THYME system, by Lin et al. (2016), consist of separate models for EE relations and TE re-
lations. They employ two feature rich support vector machines (SVM), using POS and dependency
parse features from the cTAKES clinical pipeline (Savova et al., 2010) together with augmented training
through extended UMLS entities. They later replaced the TE component by a token-based CNN model
which improved their model (Lin et al., 2017; Dligach et al., 2017). Also replacing the EE component
by a CNN model decreased model performance, showing that the CNN was not able to replace the fea-
ture rich SVM. Leeuwenberg and Moens (2017) used a feature rich structured perceptron, also using
cTAKES POS and dependency parse features, jointly learning different relation types on the document
level. Tourille et al. (2017) used two bidirectional LSTM models, one for inter-sentence and one for
intra-sentence relations. They used fixed word embeddings pre-trained on the MIMIC III corpus, and
also incorporated character level information. To obtain their top results they added ground truth event
attribute features enhanced with entity information also obtained from cTAKES.

As can be noticed, all state-of-the-art baselines used dedicated clinical NLP tools to enhance their
features in order to obtain their top results, in contrast to our model, which uses only the Stanford POS
Tagger (trained on news texts).

Table 2 shows that initializing the model with the pre-trained embeddings gives a significant 4 1.1
point increase in F-measure compared to random initialization, due to an increase in precision. Fixing
the embeddings gives slightly better performance than using them as initialization, an increase of 0.9
point in F-measure, mostly due to higher recall. When extending the loss with the SGLR loss, we gain6

1.6 in F-measure compared to fixing the word embeddings, and also surpass the state of the art by 0.4
even without specialized resources. If we train our model using the SG loss extension we obtain the best
results, and gain6 1.9 points in F-measure compared to using pre-trained fixed word embeddings. This
setting also exceeds the state of the art (Lin et al., 2017) by 0.7 points in F-measure, due to a gain of
1.2 points in recall, again without using any specialized clinical NLP tools for feature engineering, in
contrast to all state-of-the-art baselines.

5.5 Manual Error Analysis
Finally, we manually analyzed 50 false positives and 50 false negatives picked randomly from the test
set predictions for different settings.

4P < 0.0001 for a document-level pairwise t-test
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Table 2: THYME test set results, reporting precision (P), recall (R) and F-measure (F), macro-averaged
over three runs. The standard deviation for F is also given.

Model P R F

With specialized resources:
Best Clinical TempEval (2016) 58.8 55.9 57.3
Lin et al. (2016) 66.9 53.4 59.4
Leeuwenberg et al. (2017) - - 60.8
Tourille et al. (2017) 65.7 57.5 61.3
Lin et al. (2017) 66.2 58.5 62.1

No specialized resources:
RC (random initialization) 67.9 52.1 58.9±0.2

RC (SG initialization) 71.2 52.0 60.0±1.2

RC (SG fixed) 68.9 54.6 60.9±0.8

RC + SG 66.2 59.7 62.8±0.2

RC + SGLR 68.7 57.5 62.5±0.3

From Table 3 we can see that all models have difficulties with distant relations that cross sentence or
clause boundaries (CCR). This could be because class imbalance correlates with distance between the
arguments of the temporal relations. Furthermore, arguments that are frequent in the supervised data
(> 250) are a dominant error category. We suspect this is because frequent events often function both as
container and as contained, whereas infrequent events are less ambiguous in their argument position. This
hurts RC (SG fixed) most as its embeddings are not influenced byDrc. Furthermore it can be noticed that
RC+SG has less errors for infrequent arguments (< 10) in the supervised data. This could be because it
leverages the few available instances from both the Drc and Dsg data better than the single-loss models.

Table 3: Error analysis on 50 FP and 50 FN (random from test) for different settings. Clause boundaries
are: newlines and sub-clause or sentence boundaries. Error categories are not mutually exclusive.

Error Type RC + SG RC (SG fixed) RC (SG init.)

Cross-Clause Relations (CCR) 42 39 36
Infrequent Arguments (< 10) 11 15 26
Frequent Arguments (> 250) 37 50 40
Mistake in Ground-Truth 10 8 5
Other 21 15 28

6 Conclusions

In this work, we proposed a neural relation classification model for the extraction of narrative contain-
ment relations from clinical texts.5

The model trains word representations jointly on the supervised relation classification task and an
unsupervised auxiliary skip-gram objective (with separate datasets) through weight sharing to more ef-
fectively exploit both the unlabeled and labeled data, as annotated clinical data is costly to create. We
show that this word-level joint training results in significantly better generalizing classification models
compared to using pre-trained word embeddings (either as initialization or fixed embeddings). Further-
more, we show that performance trends and good values for λ (balance between tasks) are robust over
different training set sizes, and that even for (badly tuned) extreme values of λ the quality of the model’s

5Code is available at: http://liir.cs.kuleuven.be/software.html
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embeddings is naturally lower-bounded by their pre-trained variants. Additionally, our model sets a new
state of the art for temporal relation extraction on the THYME dataset, without using extra dedicated
clinical resources, in contrast to current state-of-the-art models.

As future work, it would be interesting to see how well the improvements caused by the word-level
joint training generalize to other NLP tasks that typically use pre-trained word embeddings.
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