Closed Yesterday and Closed Minds: Asking the Right Questions of the Corpus To Distinguish Thematic from Sentential Relations

Uri Zernik
Artificial Intelligence Laboratory
General Electric - Research and Development Center

Abstract

Collocation-based tagging and bracketing programs have attained promising results. Yet, they have not arrived at the stage where they could be used as pre-processors for full-fledged parsing. Accuracy is still not high enough.

To improve accuracy, it is necessary to investigate the points where statistical data is being misinterpreted, leading to incorrect results.

In this paper we investigate inaccuracy which is injected when a pre-processor relies solely on collocations and blurs the distinction between two separate relations: thematic relations and sentential relations.

Thematic relations are word pairs, not necessarily adjacent, (e.g., adjourn a meeting) that encode information at the concept level. Sentential relations, on the other hand, concern adjacent word pairs that form a noun group. E.g., preferred stock is a noun group that must be identified as such at the syntactic level.

Blurring the difference between these two phenomena contributes to errors in tagging of pairs such as expressed concerns, a verb-noun construct, as opposed to preferred stocks, an adjective-noun construct. Although both relations are manifested in the corpus as high mutual-information collocations, they possess different properties and they need to be separated.

In our method, we distinguish between these

two cases by asking additional questions of the corpus. By definition, thematic relations take on further variations in the corpus. Expressed concerns (a thematic relation) takes concerns expressed, expressing concerns, express his concerns etc. On the other hand, preferred stock (a sentential relation) does not take any such syntactic variations.

We show how this method impacts preprocessing and parsing, and we provide ernpirical results based on the analysis of an $80-$ million word corpus. ${ }^{1} 2$

Pre-Processing: The Greater Picture

Sentences in a typical newspaper story include idioms, ellipses, and ungrammatic constructs. Since authentic language defies textbook grammar, we must rethink our basic pars-

[^0][Separately/av] *comma*/cc. [Kaneb/nm Services/nn] [said/vb] [holders/nn] [of/pp its/dt Class/nn A/aj preferred/aj stock/nn] *comma*/cc [failed/vb] [to/pp elect/vb] [two/aj directors/nn] [to/pp the/dt company/nn board/nn] when/cc [the/dt annual/aj meeting/nn] [resumed/vb] [Tuesday/aj] because/cc there/cc are/ax [questions/nn] as/cc [to/pp the/dt validity/nn] [of/pp the/dt proxies/nn] [submitted/vb] [for/pp review/nn] [by/pp the/dt group/nn] *period*/ce
[The/dt company/nn] [adjourned/vb] [its/pn annual/aj meeting/nn] May/nm 12/aj] [to/pp allow/vb] [time/nn] [for/pp negotiations/nn] and/cc [expressed/vb] [concern/nn] [about/pp future/aj actions/nn] [by/pp preferred/vb holders/nn] *period*/cc

Figure 1: Pre-processed Text Produced by NLcp
ing paradigm and tune it to the nature of the text under analysis.

Hypothetically, parsing could be performed by one huge unification mechanism [Kay, 1985; Shieber, 1986; Tomita, 1986] which would process sentences at any level of complexity. Such a mechanism would recieve its tokens in the form of words, characters, or morphemes, negotiate all given constraints, and produce a full chart with all possible interpretations.

However, when tested on a real corpus, (i.e., Wall Street Journal (WSJ) news stories), this mechanism fares poorly. For one thing, a typical well-behaved 34 -word sentence produces hundreds of candidate interpretations. In effect the parsing burden is passed onto a post processor whose task is to select the appropriate parse tree within the entire forest.

For another, ill-behaved sentences - roughly one out of three WSJ sentences is problematic - yieid no consistent interpretation whatsoever due to parsing failures.
To alleviate problems associated with rough edges in real text, a new strategy has emerged, involving text pre-processing. A pre-processor, capitalizing on statistical data [Church et al, 1989; Zernik and Jacobs, 1990; Dagan et al., 1991], and customized to the corpus itself, could abstract idiosyncracies, highlight regularities, and, in general, feed digested text into the unification parser.

What is Pre-Processing Up Against?

The Linguistic Phenomenon

Consider (Figure 1) a WSJ (August 19, 1987) paragraph processed by NLpe (NL corpus processing) [Zernik et al, 1991]. Two types of linguistic constructs must be resolved by the preprocessor:

Class A preferred/AJ stock/NN

* comma*
and expressed/VB concern/NN about
How can a program determine that preferred stock is an adjective-noun, while expressed concern is a verb-noun construct?

The Input

The scope of the pre-processing task is best illustrated by the input to the pre-processor shown in Figure 2.

This lexical analysis of the sentence is based on the Collins on-line dictionary (about 49,000 lexical entries extracted by NLpc) plus morphology. Each word is associated with candidates part of speech, and almost all words are ambiguous. The tagger's task is to resolve the ambiguity.

For example, ambiguous words such as services, preferred, and expressed, should be tagged as noun ($n n$), adjective ($a j$), and verb (vb), respectively. While some pairs (e.g., annual mecting) can be resolved easily, other pairs

Separately AV	Kaneb	NM	Services	NN VB	
said	AJ VB	holders	NN	of	PP
its	DT	Class	AJ NN	A	DT AJ
preferred	AJ VB	stock	NN VB	failed	AD VB
to	PP	elect	VB	two	AJ NN
directors	NN	to	PP	the	DT
company	NN	board	NN VB	when	CC
atlnual	AJ	meeting NN VB	resumed	AJVB	
tuesday	NM	questions NN VB	validity	NN	
proxies	NN	submittedAJ VB	group	NN VB	

Figure 2: Lexical Analysis of Sentence: Words plus Part of Speech
(e.g., preferred stock and expressell concerns) are more difficult, and require statistical training.

Part-Of-Speech Resolution

The program can bring to bear 3 types of clues:
Local context: Consider the following 2 cases where local context dominates:

1. the preferred stock raised
2. he expressed concern about

The words the and he dictate that preferred and expressed are adjective and verb respectively. This kind of inference, due to its local nature, is captured and propagated by the pre-processor.
Global context: Global-sentence constraints are shown by the following two examples:

1. and preferred stock sold yesterday was...
2. and expressed concern about ...*period*
In case 1 , a main verb is found (i.e., was), and preferred is taken as an adjective; in case 2 , a main verb is not found, and therefore expressed itself is taken as the main verb. This kind of ambiguity requires full-fledged unification, and it is not handed by the preprocessor. Fortunately, only a small percent of the cases (in newspaper stories) depend on global reading.

Corpus-based preference: Corpus analysis (WSJ, 80-million words) provides wordassociation preference [Beckwith et al., 1991]
collocation total vb-nit aj-nn
preferred stock $2314100 \quad 0$
exprossed concern $318 \quad 1 \quad 99$

The construct expressed concern, which appears 318 times in the corpus, is 99% a verbnoun construct; on the other hand, preferred stock, which appears in the corpus 2314 times, is 99% an adjective-noun construct. ${ }^{3}$

Where Is The Evidence?

The last item, however, is not directly available. Since the corpus is not a-priori tagged, there is no direct evidence regarding part-ofspeech. All we get from the corpus are numbers that indicate the mutual information score (MIS) [Church et al., 1991] of collocations (9.9 and 8.7, for preferred stock and expressed concern, respectively). It becomes necessary to infer the nature of the combination from indirect corpus-based statistics as shown by the rest of this paper.

[^1]
Inferring Syntax from Collocations

In this section we describe the method used for eliciting word-association preference from the corpus.

Initial Observation: Co-occurrence Entails Sentential Relations

The basic intuition used invariably by all existing statistical taggers is stated as follows: Significant collocations (i.e., high MIS) predict syntactic word association. Since, for example, preferred stock is a significant collocation (mis 9.9), with all other clues assumed neutral, it will be marked as an integral noun group in the sentence.

However, is high mis always a good predictor? Figure 3 provides mutual information scores for preferred, expressed, and closed right collocations.

The first column (preferned) suggests mis is a perfect predictor. A count in the corpus confirms that a predictor based on collocations is always correct. A small sample of preferred collocations in context is given Figure 4. Notice that in all cases, preferred is an adjective.

Next Observation: Co-occurrence Entails Thematic Relations

While column 1 (preferred) yields good syntactic associations, column 2 (expressed) and column 3 (closed) yield different conclusions. It turns out (see Figure 4) that expressed collocations, even collocations with high mis, produce a bias towards false-positive groupings. ${ }^{4}$

If these collocation do not signify word groupings, what do they signify? An observation of expressed right collocates reveals that the words surprise, confidence, skepticism, optimism, disappointment, support, hope, doubt,

[^2]worry, satisfaction, etc., are all thematic relations of express.

Namely, a pair such as expressed disappointment denotes an action-object relation which could come in many variants. The last part of Figure 4 shows various combinations of express and its collocates.

Using Additional Evidence

In light of this observation, it is necessary to test in the corpus whether collocations are fixed or variable. For a collocation word1-word2, if wordl and word2 combine in multiple ways, then word 1 -word 2 is taken as a thematic relation; otherwise it is taken as a fixed noun group.

This test for express-word is shown in Figure 5. Each row provides the number of times each variant is found. Variants for expressed concerns, for example, are concern expressed, express concern, expresses concern, and expressing concern. Not shown here is the count for split co-occurrence [Smadja, 1991], i.e., express its concern, concern was expressed. The last column sums up the result as a ratio (variability ratio) against the original collocation.

In conclusion, for 12 out of 15 of the checked collocations we found a reasonable degree of variability.

Making Statistics Operational

While the analysis in Figure 5 provides the motivation for using additional evidence, we have two steps to take to make this evidence useful within an operational tagger.

Dealing with Small Numbers

Although the table in Figure 5 is adequate for expository purposes, in practice the different collected figures are spread over too many rubrics, making the numbers susceptible to noise.

To avoid this problem we short-cut the calculation above and collect all the co-occurrence of

9.9	preferred stock	11.9	expressed disappointment	20.4	closed friday
9.8	preferred dividend	11.6	expressed skepticism	17.4	closed monday
8.1	preferred share	10.8	expressed optimism	16.3	closed tuesday
7.4	preferred method	10.8	expressed reservations	16.0	closed thursday
7.4	preferred holders	10.1	expressed doubt	16.0	closed today
7.0	preferred stockholders	10.0	expressed surprise	15.7	closed wednesday
7.0	preferred shareholders	10.0	expressed satisfaction	15.5	closed saturday
6.1	preferred issue	9.6	expressed confidence	13.8	closed tomorrow
5.2	preferred units	8.9	expressed shock	13.8	closed mouthed
5.0	preferred series	8.8	expressed hope	8.1	closed minded
4.7	preferred equity	8.7	expressed concern	8.0	closed caption
4.6	preferred closed	8.7	expressed worry	7.7	closed milieu
4.5	preferred customer	8.6	expressed relief	7.5	closed doors
4.1	preferred course	8.2	expressed interest	7.4	closed yesterday
3.7	prefersed product	7.0	expressed support	6.8	closed dumps

Figure 3: Right-Collocations for Preferred, Expressed, and Closed
the roots of the words under analysis. Instead of asking: "what are the individual variants?" we ask "what is the total co-occurrence of the root pair?". For expressed concerns we check the incidence of express-interest (and of interest-express).

As a result, we get the lump sum without summing up the individual numbers.

Incorporating Statistics in Tagging

Co-occurence information regarding each pair of words is integrated, as described in Section 2.3 , with other local-context clues. Thus, the fact that statistics provide a strong preference can always be overidden by other factors.
they preferred stock...
the expressed interest by shareholders was

In both these cases the final call is dictated by syntactic markers in spite of strong statistical preference.

Conclusions

NLpe processes collocations by their category. In this paper, we investigated specifically the PastParticiple-Noun category (e.g., preferredstock, expressed-concerns, etc.). Other cate-
gories (in particular ContinuousVerb-Noun as in driving cars vs. operating systems) are processed in a similar way, using slightly different evidence and thresholds.

The Figures

$$
\begin{array}{lr}
\text { Total cases: } & 2031 \\
\text { Applicable cases: } & 400 \\
\text { Insufficient data: } & 23 \\
\text { Incorrect tagging: } & 19 \\
\text { Correct tagging: } & 358
\end{array}
$$

Evaluation

Out of 2031 tagging cases counted, the algorithm was called in 400 cases. 1631 cases were not called since they did not involve collocations (or involved trivial collocations such as expressed some fears.) Out of 400 collocations the program avoided ruling in 23 cases due to insufficient data. Within the 377 tagged cases, $358(94.9 \%)$ cases were correct, and 19 were incorrect.

90\% Accuracy is Not Enough

Existing pre-processors [Church et al., 1989; Zernik et al., 1991] which have used corpusbased collocations, have attaned levels of ac-

GE for the 585,000 shares of its ume payments of dividends on the ohavk but lowered ratings on its n* 3 from bat thyphon* 2 *coma* 1lax* 26.65 a share *period* The ares of common for each share of 0 *pc* of Varity *ap* common and ng of up to *dollar* 250 million eras of the transaction call for sal *comat to suap one share of i *dollar* 2 million annually in p* notes and 7,459 Lori neries C a share of nevly issued series A ance an adjustable thyphen* rate
id he told the house Mr. Dingell ggested that the U.S. Mr. Harper ne tax *period* Sone legislators soybeans and feed grains *coma* bid *dash* *dash* *dash* GE unit hallenge *period* Mr. Uright has bt about their bank one also had italy *ap* President Cossiga and * comma* saying varner executives secretary Robert Mosbacher have thor on the nature paper *coma* eber tho *coma* he said *coma*
ving gold in the street and then said that National Pizza Co. has r. nixon \#conema* Chinese leaders e Bay Area *ap* pastry comunity presidents also are expected to its predecessor *period* It also related Services Co. people vho c chairman Seidman *comma* vhile * on a tour of asia *coma* also ponsored the senate plan *coma* the nine supreme court justices nd primerica in his eagerness to st fev veekn alone *dash* *dash* iterally flipped his vig *comen that the nerspaper company said who no longer feel they have to icans uriting to the hostages to en gummoned to chairman Gonzalez riod* Frequently *comen clients
preferred preferred
expressed expressed
stock outstanding *period* The e stock in Jamuary *period* It sus stock and comercial paper comm stock to ba whyphen* 2 from BAh is convertible until 5 P.M.. EDT *r-paren* *period* Gash vill be shares outstanding *period* The shares *period* Terns of the tra holders *conma* tho previously a stock for 1.2 shares of common s dividends *period* Artra ouns 68 shares vith a carrying value of stock with a value equal to *dol stock whose auction failed recen
concern *comma* sources said *co confidence that he and Mr. Baum concern that a gas thyphen* tax outrage over the case coma* sa interest in financing offer for dismay that a foreign company co interest in Mcorp *ap* mvestment concern about an Italian fira su surprise at Sony *ap* move but d concern about the EC *ap* use of disappointment that he vas not i support for the idea *period* Ca
expressing surprise when thieves walk by t expressed reneved interest in acquiring th expressed no regret for the killings * comm express disbelief that Ms. Shere kept on express support for the Andean nations w expressed its commitment to a free *hyphe express interest in the certificates rec expressing concerns *coma* also said the expressed a desire to visit China *period expressed some confidence that his plan v expressed varying degrees of dissatisfact express his linguistic doubts to America expressing their relief after crossing in expressing delight at having an excuse to expresses confidence in the outcome of a express their zeal on the streets comma express their grief and support *period* expresses sympathy for Sen. Riegle comma express interest in paintings but do not

Figure 4: PREFERRED, EXPRESSED, and (root) EXPRESS collocations in context
curacy as high as 90%. A simple calculation reveals that a 34 -word sentence might contain some 1.2 errors on the average.

This error rate is too high. Since the preprocessor's job is to eliminate from consideration possible parse trees, if the appropriate parse is eliminated by the pre-processor at the outset, it will never be recovered by the parser. As shown in this paper, it is now necessary to investigate in depth how various linguistic phenomena are reflected by statistical data.

\mathbf{X}	essed X		$\frac{\bar{X} \text { c'sed }}{\text { no }}$	$\frac{e^{\prime \prime} \mathrm{X} X}{\text { no }}$	$\frac{\text { e'ses } X}{\text { no }}$	$\frac{e^{x} \operatorname{sing} \bar{X}}{n o}$	v. ratio		
	mis	no					$\pi 1$	n2	r
disappointment	11.9	89	2	1	5	6	14	89	16
skepticism	11.6	57		1		2	3	57	. 05
optimism	10.8	49		3	1	4	8	49	. 16
reservations	10.8	33		3	2	1	6	33	. 18
doubt	10.1	63	2	1	5	4	13	63	. 20
surprise	10.0	69	1	5	2	1	9	69	. 13
satisfaction	10.0	14	1	2			3	14	. 21
confidence	9.6	67		1	4	1	6	67	. 09
shock	8.9	12		3		1	4	12	. 33
hope	8.8	46		2	1	4	7	46	. 15
concern	8.7	318	30	31	9	25	95	318	. 30
worry	8.7	13	1	6	3	2	12	13	. 92
relicf	8.6	23					0	23	. 00
interest	8.2	294	4	6	9	11	30	294	. 10
support	7.0	46	1	5		3	9	46	. 20

Figure 5: 5 Variant Collocations for Express

References

R. Beckwith, C. Fellbaum, D. Gross, and G. Miller. Wordnet: A lexical database organized on psycholinguistic principles. In U. Zernik, editor, Lexical Acquisition: Exploitang On-Line Dictionary to Build a Lexscon. Lawrence Erlbaum Assoc., Missdale, NJ, 1991.
K. Church, W. Gale, P. Manks, and D. Minde. Parsing, word associations, and predicateargument relations. In Proceedings of the International Workshop on Parsing Technologies, Carnegie Mellon University, 1989.
K. Church, W. Gale, P. Hanks, and D. Hindle. Using statistics in lexical analysis. In U. Zernik, editor, Lerical Acquisition: Using On-Line Resources to Build a Lexicon. Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.
I. Dagan, A. Itai, and U. Schwall. Two languages are more informative than one. In Proceedings of the 29th Annual Meeting of the Association for Computational Lingutstics, Berkeley, CA, 1991.
M. Kay. Parsing in Functional Unification Grammar. In D. Dowty, L. Kartumnen, and A. Zwicky, editors, Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives. Cambridge University Press, Cambridge, England, 1985.
S. Shieber. An Introduction to Unificationbased Approaches to Grammar. Center for the Study of Language and Information, Palo Alto, California, 1986.
F. Smadja. Macrocoding the lexicon with co occurrence knowledge. In U. Zernik, editor, Lexical Acguistion: Using On-Line Resources to Build a Lexicon. Lawrence Frlbaum Associates, Hillsdale, NJ, 1991.
M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic Publishers, Hingham, Massachusetts, 1986.
U. Zernik and P. Jacobs. Tagging for learning. In COLING 1990, Helsinki, Finland, 1990.
U. Zernik, A. Dietsch, and M. Charbonneau. lmtoolset programmer's manual. Ge-crd technical report, Artificial Intelligence Laboratory, Schenectady, NY, 1991.

[^0]: ${ }^{1}$ This research was sponsored (in part) by the Defense Advanced Research Project Agency (DOD) and other government agencies. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research I'roject Agency or the US Government.
 ${ }^{2}$ We thank ACL/DCI (Data Collection Initiative), the Collins publishing company, and the Wall Strect Journal, for providing invaluable online data

[^1]: ${ }^{3}$ For expository purposes we chose here two extreme, clear-cut cases; other pairs (e.g., promised money) are not totally biased towards one side or another.

[^2]: *Word associations based on corpus do not dictate the nature of word groupings; they merely provide a predictor that is accounted for with other local-context clues.

