
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1175–1181,
Prague, June 2007. c©2007 Association for Computational Linguistics

Multilingual Deterministic Dependency Parsing Framework using Modi-
fied Finite Newton Method Support Vector Machines

Yu-Chieh Wu Jie-Chi Yang Yue-Shi Lee

Dept. of Computer Science and In-
formation Engineering

Graduate Institute of Network
Learning Technology

Dept. of Computer Science and
Information Engineering

National Central University National Central University Ming Chuan University
Taoyuan, Taiwan Taoyuan, Taiwan Taoyuan, Taiwan

bcbb@db.csie.ncu.edu.tw yang@cl.ncu.edu.tw lees@mcu.edu.tw

Abstract

In this paper, we present a three-step mul-
tilingual dependency parser based on a
deterministic shift-reduce parsing algo-
rithm. Different from last year, we sepa-
rate the root-parsing strategy as sequential
labeling task and try to link the neighbor
word dependences via a near neighbor
parsing. The outputs of the root and
neighbor parsers were encoded as features
for the shift-reduce parser. In addition, the
learners we used for the two parsers and
the shift-reduce parser are quite different
(conditional random fields and the modi-
fied finite-Newton method support vector
machines). We found that our method
could benefit from the two-preprocessing
stages. To speed up training, in this year,
we employ the MFN-SVM (modified fi-
nite-Newton method support vector ma-
chines) which can be learned in linear
time. The experimental results show that
our method achieved the middle rank over
the 23 teams. We expect that our method
could be further improved via well-tuned
parameter validations for different lan-
guages.

1 Introduction

The target of dependency parsing is to
automatically recognize the head-modifier
relationships between words in natural language
sentences. Usually, a dependency parser can
construct a similar grammar tree with the
dependency graph. In this year, CoNLL-2007
shared task (Nivre et al., 2007) focuses on

multilingual dependency parsing based on ten
different languages (Hajic et al., 2004; Aduriz et
al., 2003; Martí et al., 2007; Chen et al., 2003;
Böhmova et al., 2003; Marcus et al., 1993;
Johansson and Nugues, 2007; Prokopidis et al.,
2005; Czendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003) and domain adaptation
for English (Marcus et al., 1993; Johansson and
Nugues, 2007; Kulick et al., 2004; MacWhinney,
2000; Brown, 1973) without taking the language-
specific knowledge into consideration. The
ultimate goal of them is to design ideal
multilingual and domain portable dependency
parsing systems.

To accomplish the multilingual and domain ad-
aptation tasks, we present a three-pass parsing
model based on a shift-reducing algorithm (Ya-
mada and Matsumoto, 2003; Chang et al., 2006),
namely, neighbor parsing, root relation parsing,
and shift-reduce parsing. Our method favors exam-
ining the “un-parsed” tokens, which incrementally
shrink. At the beginning, the parsing direction is
mainly determined by the amount of un-parsed
tokens in the sentence with either forward or
backward parse. In this step, the projective parsing
method can be used to evaluate most of the non-
projective Treebank datasets. Once the direction is
determined, the pseudo-projectivize transformation
algorithm (Nivre and Nilsson, 2005) converts most
non-projective training data into projective and
decodes the parsed text into non-projective. Here-
after, both neighbor-parser and root-parser were
trained to discovery additional features for the
downstream shift-reduce parse model. We found
that the two additional features could improve the
performance. Subsequently, the modified shift-
reduce parsing algorithm starts to parse the final
dependencies with two-pass processing, i.e., pre-
dict parse action and label the relations.

1175

In the remainder of this paper, Section 2 de-
scribes the proposed parsing model, and Section 3
lists the experimental settings and results. Section
4 presents the discussion and analysis of our parser.
In Section 5, we draw the future direction and con-
clusion.

2 System Description

Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum
spanning tree (MST) (McDonald et al., 2005),
shift-reduce-based deterministic parsing (Yamada
and Matsumoto, 2003; Chang et al., 2006; Nivre,
2003). Among them, the shift-reduce methods
were shown to be the most efficient method, which
only costs at most 2n~3n actions to parse a sen-
tence (Chang et al., 2006; Nivre, 2003). Chang et
al. (2006) further added the “wait-right” action to
the words that had children and could not be re-
duced in current state. This could avoid the so-
called “too early reduce” problems.

The overall parsing model can be found in Fig-
ure 1. Figure 2 illustrates the detail system spec of
our parsing model.

Figure 1: System architecture

2.1 Neighbor Parser

As shown in Figure 1, the first step is to identify
the neighbor head-modifier relations between two
consecutive words. Cheng et al. (2006) also re-
ported that the use of neighboring dependency at-
tachment tagger enhance the unlabeled attachment
scores from 84.38 to 84.6 for 13 languages. Usu-
ally, it is the case that the select features are fixed
and could not be tuned to capture the second order
features (McDonald et al., 2006). At each location,
there the focus and next words are always com-
pared. It may fail to link the next and next+1 word
pair since the next word might be reduced due to
an earlier wrong decision.

Ⅰ. Parsing Algorithm:

1. Neighbor Parser
2. Root Parser
3. Shift-Reduce Algorithm (Yamada
and Matsumoto, 2003)

Ⅱ. Parser Characteris-
tics:

1. Deterministic
2. two-pass (Labeling separated)
3. Pseudo-Projective en(de)-coding
(Nivre and Nilsson, 2005)

Ⅲ. Learner: MFN-SVM
(1) One-versus-All
(2) Linear Kernel

Ⅳ. Feature Set:

1. Lexical (Unigram/Bigram)
2. Fine-grained POS (and BiPOS)
3. Lemma/FEAT used

Ⅴ. Post-Processing: Non-Used

Ⅵ. Additional/External
Resources: Non-Used

Figure 2: System spec

However, starting parsing based on the result of

neighbor parsing is not a good idea since it could
produce error propagation problems. Rather, we
include the result of our neighbor parsing as fea-
tures to increase the original feature set. In the pre-
liminary study, we found that the derived features
are very useful for most languages.

As conventional sequential tagging problems,
such part-of-speech tagging and phrase chunking,
we employ the conditional random fields (CRF) as
learners (Kudo et al., 2004). The basic idea of the
neighbor parsing can be shown in Figure 3.

The first and second colums in Figure 3 repre-
sents the basic word and fine-grained POS froms,
while the third column indicates if this word has
the LH (left-head) or RH (right-head) with associ-
ated relations or O (no neighbor head in either left
or right neighbor word). The used features are:
Word, fine-grained POS, bigram, and bi-POS with
context window = 2(left) and 4(right)

1176

Figure 3: Sequential tagging model for neighbor

parse

Unfortunately, for some languages, like Chi-
nese and Czech, training with CRF is because of
the large number of features and the head relations.
To make it practical, we focus on just three types:
left head, right head, and out-of-neighbor. This
effectively reduces most of the feature space for
the CRF. The training time for the neighbor parser
with only three categories is less than 5 minutes
while it takes three days with taking all the relation
tag into account.

2.2 Root Parser

After the neighbor parse, the tagged labels are
good features for the root parse. In the second
stage, the root parser identifies the root words in
the sentence. Nevertheless, for some languages,
such as Arabic and Czech, the roots might be sev-
eral types as against to Chinese and English in
which the number of labels of roots is merely one.
Similar to the neighbor parser, we also take the
root label into account. As noted, for Chinese and
English, the goal of the root parser can be reduced
to determine whether the current word is root or
not.

Figure 4: Sequential tagging model for neighbor

parse

Similar to the neighbor parse, the root parsing
task can also be treated as a sequential tagging
problem. Figure 4 shows the basic concept of the
root parser. The third column is mainly derived
from the neighbor parser, while the fourth column
represents whether the current word is a root with
relation or not.

2.3 Parsing Algorithm

After adding the neighbor and root parser output as
features, in the final stage, the modified Yamada’s
shift-reduce parsing algorithm (Yamada and Ma-
tsumoto, 2003) is then run. This method is deter-
ministic and can deal with projective data only.
There are three basic operation (action) types: Shift
(S), Left (L), and Right (R). The operation is
mainly determined via the classifier according to
the selected features (see 2.4). Each time, the op-
eration is applied to two unparsed words, namely,
focus and next. If there exists an arc between the
two words (either left or right), then the head of
focus or next word is found; otherwise (i.e., shift),
next two words are considered at next stage. This
method could be economically performed via
maintaining two pointers, focus, and next without
an explicit stack. The parse operation is iteratively
run until no more relation can be found in the sen-
tence.

In 2006, Chang et al. (2006) further reported
that the use of “step-back” in comparison to the
original “stay”. Furthermore, they also add the
“wait-left” operations to prevent the “too early re-
duce” problems. In this way, the parse actions can
be reduced to be bound in 3n where n is the num-
ber of words in a sentence.

Now we compare the adopted parsing algorithm
in this year to the one we employed last year (Wu
et al., 2006a). The common characteristics are:

1. the same number of parse operations (4)
2. shift-reduce
3. linearly scaled
4. deterministic and projective

On the contrary, their parse actions are quite dif-
ferent. Therefore these two methods have different
run time. This gives the two methods rise to differ-
ent iterative times. The main reason is that the
step-back might trace back to previous words,
which can be viewed as pop the top words on the
stack back to the unparsed strings, while the
Nivre’s method does not trace-back any two words

1177

in the stack. In other words, if a word is pushed
into the stack, it will no longer be compared with
the other deeper words inside the stack. Hence
some of the non-root words in the stack remain to
be parsed. A simple solution is to adopt an exhaus-
tive post-processing step for the unparsed words in
the stack (details in (Wu et al., 2006a, 2006b)).

A good advantage of the step-back is that it can
trace back to the unparsed words in the stack. But
theoretically, the required parse actions still more
than the Nivre’s algorithm (2n vs. 3n).

By adopting the projectivized en/de-coding over
the modified Yamada’s algorithm, we can treat the
words that do not have a parent as roots. Thus, for
some languages (e.g. Czech and Arabic), the mul-
tiple root problem can be easily solved. In this year
we separate the parse action and the relation label
into two stages as opposed to having one pass last
year. In this way, we can simply adopt a sequential
tagger to auto-assign the relation labels after the
whole sentence is parsed.

2.4 Features and Learners

Unlike last year, we did separate the action predic-
tion and the label recognition into two stages
where the one of the learners could provide more
information to another. The used features of the
two learners are quite similar and listed as follows:

Basic feature type (for previous 2 and next 3 words):
Word, POS (fine-grained), Lemma, FEAT, NParse,
RParse

Enhanced feature type:
Bigram, BiPOS for focus and next words
previous two parse actions

For label recognition:
Label tag to its head, label tags for previous two
words

In this paper, we replicate and modify the modi-

fied finite Newton support vector machines (MFN-
SVM) (Keerthi and DeCoste, 2005) as the learner.

The MFN-SVM is a very efficient SVM opti-
mization method which linearly scales with the
number of training examples. Usually, the trained
models from MFN-SVM are quite large that could
not be processed in practice. We therefore defined
the positive lower bound (10-10) and the negative
upper bound (-10-10) to eliminate values that tend
to be zero.

However, the SVM is a binary classifier which
only recognizes true or false. For multiclass prob-
lem, we use the so-called one-versus-all (OVA)
method with linear kernel to combine the results of
each individual classifier. The final class in testing
phase is mainly determined by selecting the maxi-
mum similarity.

For all languages, our parser uses the same set-
tings and features. For all the languages (except for
Basque and Turkish), we use backward parsing
direction to keep the un-parsed token rate low.

3 Experimental Result

3.1 Dataset and Evaluation Metrics

The testing data is provided by the (Nivre et al.,
2007) which consists of 10 language treebanks.
More detailed descriptions of the dataset can be
found at the web site1. The experimental results are
mainly evaluated by the unlabeled and labeled at-
tachment scores. CoNLL also provided a perl
script to automatic compute these rates.

3.2 Results

Table 1 presents the overall parsing performance
of the 10 languages. As shown in Table 1, we list
two parsing results at column B and column C
(new and old). It is worth to note that the result B
is produced by training the neighbor parser with
full labels instead of the three categories,
left/right/out-of-neighbor. A is the official pro-
vided parse results. Some of the parsing results in
A did not include the enhanced feature type and
neighbor/root parses due to the time limitation. For
the domain adaptation task, we directly use the
trained English model to classify the PChemtb and
CHILDES corpora without further adjustment.

In addition, we also apply the Maltparser 0.4,
which is implemented with the Nivre’s algorithm
(Nivre et al., 2006) to be compared. The Maltpaser
also includes the SVM and memory-based learner
(MBL). Nevertheless, the training time complexity
of the SVM in Maltparser is not linear time as
MFN-SVM. Therefore we use the default MBL
and feature model 3 (M3) in this experiment. To
make a fair comparison, the input training data was
also projectivized through the same pseudo-
projective encoding/decoding methods.

1 http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite

1178

To perform the significant test, we evaluate the
statistical difference among the three results. If the
answer is “Yes”, it means the two systems are sig-
nificant difference under at least 95% confidence
score (p < 0.05).

The final column of the Table 1 lists the non-
root words unparsed rate of the modified Ya-
mada’s method and the Nivre’s parsing model
which we employed last year. Among 10 lan-
guages, we can find that the modified Yamada’s
method outperform our old method in five lan-
guages, while fail to win in three languages. We
did not report the comparative study between the
forward parsing and backward parsing directions
here since only the two languages (Basque and
Turkish) were better in performing forward direc-
tion.

4 Discussion

Now we turn to discuss the improvement of the use
of the neighbor parse and root parse. All of the ex-
periments were conducted by additional runs
where we removed the neighbor and root parse
outputs from the feature set. In this experiment, we
report four representative languages that tend to
achieve the best and worst improvements. Table 2
lists the comparative study of the four languages.

As listed in Table 2, both English and Chinese
got substantial benefit from the use of the two
parsers. As observed by (Isozaki et al., 2004), in-
corporating both top-down (root find) and bottom-
up (base-NP) can yield better improvement over

the Yamada’s parsing algorithm. Thus, instead of
pre-determining the root and base-phrase structures,
the tagging results of the neighbor and root parsers
were included as new features to add wider infor-
mation for the shift-reduce parser. It is also inter-
esting to link neighbors and determine the root
before parsing. We plan to compare it with out
method in the future.

Table 2: The effective of the used Neighbor/Root

Parser in the selected four languages
 With N/R Parser Without
Chinese 79.29 75.51
English 84.27 79.49
Basque 72.26 72.32
Turkish 75.65 76.60

On the other hand, we also found that 2 out of

the 10 languages had been negatively affected by
the neighbor and root parsers. In Basque they made
a marginally negative improvement, and in the
Turkish the two parsers did decrease the original
parsing models. We further observed that the main
cause is that the weak performance of the neighbor
parser. In Turkish, the recall/precision rates of the
neighbor dependence are 92.61/93.12 with include
neighbor parse outputs, while it achieved
93.71/93.51 with purely run the modified Ya-
mada’s method. We can expect that the result
could achieve higher LAS score when the neighbor
parser is improved. As mentioned in section 2.1,
2.2, the selected features for the two parsers are
unified for the 10 languages. It is not surprising

Table 1: A general statistical table of labeled attachment score, test and un-parsed rate (percentage)
Statistic test Un-Parsed Rate Language A

(Official)
B

(Corrected)
C

(Malt-Parser 0.4) A vs B A vs C B vs C Old New
Arabic 66.16 70.71 56.67 Yes No Yes 1.08% 0.69%
Basque 70.71 72.26 57.79 Yes Yes Yes 3.04% 3.72%
Catalan 81.44 81.44 76.36 Yes No No 0.45% 0.27%
Chinese 74.69 79.29 68.15 Yes Yes Yes 0.00% 0.00%
Czech 66.72 70.24 56.96 Yes No Yes 4.17% 3.87%
English 79.49 84.27 75.53 Yes Yes Yes 1.66% 0.84%
Greek 70.63 77.64 58.81 No Yes Yes 2.26% 2.12%
Hungarian 69.08 71.98 59.41 Yes Yes Yes 3.88% 5.38%
Italian 78.79 78.38 74.08 Yes No Yes 0.63% 0.63%
Turkish 72.52 75.65 64.41 Yes Yes Yes 4.93% 5.54%
pchemtb_closed 55.31** 73.35 - - - - - -
*CHILDES_closed 52.89 58.29 - - - - - -
* The CHILDES data does not contain the relation tag, instead, the unlabeled attachment score is listed
** The original submission of the pchemtb_closed task can not pass through the evaluator and hence is not the official score. After correcting
the format problems, the actual LAS score should be 55.31.

1179

that for certain data the fixed feature set might per-
form even worse than the original shift-reduce
parser. A better way is to validate the features with
variant settings for different languages. We left the
feature engine task as future work.

5 Conclusion and Future Remarks

Multilingual dependency parsing investigates on
proposing a general framework of dependence
parsing algorithms. This paper presents and ana-
lyzes the impact of two preprocessing components,
namely, neighbor parsing and root-parsing. Those
two parsers provide very useful additional features
for downstream shift-reduce parser. The experi-
mental results also demonstrated that the use of the
two components did improve results for the se-
lected languages. In the error-analysis, we also ob-
served that for some languages, parameter tuning
and feature selection is very important for system
performance.

In the future, we plan to report the actual per-
formance with replacing the MFN-SVM by the
polynomial kernel SVM. In our pilot study, the use
of approximate-polynomial kernel (Wu et al., 2007)
outperforms the linear kernel SVM in Chinese and
Arabic. Also, we are investigating how to convert
the shift-reduce parser into approximate N-best
parser efficiently. In this way, the parse reranking
algorithm can be adopted to further improve the
performance.

References
A. Abeillé, editor. 2003. Treebanks: Building and Using

Parsed Corpora. Kluwer.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A.
Diaz de Ilarraza, A. Garmendia and M. Oronoz. 2003.
Construction of a Basque Dependency Treebank. In
Proc. of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 201–204.

A. Böhmová, J. Hajic, E. Hajicová and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(2003), chapter 7, 103–127.

R. Brown. 1973. A First Language: The Early Stages.
Harvard University Press.

M. W. Chang, Q. Do, and D. Roth. 2006. Multilingual
Dependency Parsing: A Pipeline Approach. In Recent
Advances in Natural Language Processing, pages
195-204.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C.
Huang and Z. Gao. 2003. Sinica Treebank: Design
Criteria, Representational Issues and Implementation.
In Abeillé (2003), chapter 13, pages 231–248.

Y. Cheng, M. Asahara and Y. Matsumoto. 2006. Multi-
lingual Dependency Parsing at NAIST. In Proc. of
the 10th Conference on Natural Language Learning,
pages 191-195.

D. Czendes, J. Csirik, T. Gyimóthy, and A. Kocsor.
2005. The Szeged Treebank. Springer.

J. Hajic, O. Smrz, P. Zemánek, J. Snaidauf and E. Beska.
2004. Prague Arabic Dependency Treebank: Devel-
opment in Data and Tools. In Proc. of the NEMLAR
Intern. Conf. on Arabic Language Resources and
Tools, pages 110–117.

H. Isozaki; H. Kazawa; T. Hirao. 2004. A Deterministic
Word Dependency Analyzer Enhanced With Prefer-
ence Learning. In Proc. of the 20th International
Conference on Computational Linguistics, pages
275-281.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on
Computational Linguistics (NODALIDA).

S. Keerthi and D. DeCoste. 2005. A modified finite
Newton method for fast solution of large scale linear
SVMs. Journal of Machine Learning Research. 6:
341-361.

S. Kulick, A. Bies, M. Liberman, M. Mandel, R. Mc-
Donald, M. Palmer, A. Schein, and L. Ungar. 2004.
Integrated annotation for biomedical information ex-
traction. In Proc. of the Human Language
Technology Conference and the Annual Meeting of
the North American Chapter of the Association for
Computational Linguistics (HLT/NAACL).

B. MacWhinney. 2000. The CHILDES Project: Tools
for Analyzing Talk. Lawrence Erlbaum.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the
Penn Treebank. Computational Linguistics,
19(2):313–330.

M. A. Martí, M. Taulé, L. Màrquez and M. Bertran.
2007. CESS-ECE: A Multilingual and Multilevel
Annotated Corpus. Available for download from:
http://www.lsi.upc.edu/~mbertran/cess-ece/.

R. McDonald, K. Lerman and F. Pereira. 2006.
Multilingual Dependency Analysis with a Two-Stage
Discriminative. In Proc. of the 10th Conference on
Natural Language Learning, pages 216-220.

1180

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari, O.
Corazzari, A. Lenci, A. Zampolli, F. Fanciulli, M.
Massetani, R. Raffaelli, R. Basili, M. T. Pazienza, D.
Saracino, F. Zanzotto, N. Nana, F. Pianesi, and R.
Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (2003), chapter 11,
pages 189–210.

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. In Proc. of the International
Workshop on Parsing Technology, pages 149-160.

J. Nivre, and J. Nilsson. 2005. Pseudo-projective
dependency Parsing. In Proc. of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 99-106.

J. Nivre, J. Hall, J. Nilsson, G. Eryigit, and S. Marinov.
2006. Labeled pseudo-projective dependency parsing
with support vector machines. In Proc. of the 10th
Conference on Natural Language Learning, pages
221-225.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S.
Riedel, and D. Yuret. 2007. The CoNLL 2007 shared
task on dependency parsing. In Proc. of the Joint
Conf. on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL).

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé (2003),
chapter 15, pages 261–277.

P. Prokopidis, E. Desypri, M. Koutsombogera, H.
Papageorgiou, and S. Piperidis. 2005. Theoretical
and practical issues in the construction of a Greek
depen- dency treebank. In Proc. of the 4th Workshop
on Treebanks and Linguistic Theories (TLT), pages
149–160.

T. Kudo, K, Yamamoto, and Y. Matsumoto. 2004.
Appliying conditional random fields to Japanese
morphological analysis, In Proc. of the 2004
Conference on Empirical Methods in Natural
Language Processing (EMNLP-2004), pages 230-
237.

Y. C. Wu, Y. S. Lee, and J. C. Yang. 2006a. The
exploration of deterministic and efficient dependency
parsing. In Proc. of the 10th Conference on
Computational Natural Language Learning, pages
241-245.

Y. C. Wu, J. C. Yang, and Q. X. Lin. 2006b.
Description of the NCU Chinese word segmentation
and named entity recognition system for SIGHAN
bakeoff 2006. In Proc. of the 5th SIGHAN Workshop
on Chinese Language Processing, pages 209-212.

Y. C. Wu, J. C. Yang, and Y. S. Lee. 2007. An Ap-
proximate Approach for Training Polynomial Kernel
SVMs in Linear Time. In Proc. of the 45th Annual
Meeting of the Association for Computational
Linguistics (ACL), in press.

H. Yamada and Y. Matsumoto. 2003. Statistical
dependency analysis with support vector machines.
In Proc. of the 8th International Workshop on
Parsing Technologies, pages 195–206.

1181

