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Abstract
We formulate dependency parsing as a graphical model
with the novel ingredient of global constraints. We show
how to apply loopy belief propagation (BP), a simple and
effective tool for approximate learning and inference. As
a parsing algorithm, BP is both asymptotically and em-
pirically efficient. Even with second-order features or la-
tent variables, which would make exact parsing consider-
ably slower or NP-hard, BP needs only O(n3) time with
a small constant factor. Furthermore, such features sig-
nificantly improve parse accuracy over exact first-order
methods. Incorporating additional features would in-
crease the runtime additively rather than multiplicatively.

1 Introduction

Computational linguists worry constantly about run-
time. Sometimes we oversimplify our models, trad-
ing linguistic nuance for fast dynamic programming.
Alternatively, we write down a better but intractable
model and then use approximations. The CL com-
munity has often approximated using heavy pruning
or reranking, but is beginning to adopt other meth-
ods from the machine learning community, such
as Gibbs sampling, rejection sampling, and certain
variational approximations.

We propose borrowing a different approximation
technique from machine learning, namely, loopy be-
lief propagation (BP). In this paper, we show that
BP can be used to train and decode complex pars-
ing models. Our approach calls a simpler parser as a
subroutine, so it still exploits the useful, well-studied
combinatorial structure of the parsing problem.1

2 Overview and Related Work

We wish to make a dependency parse’s score de-
pend on higher-order features, which consider ar-

∗This work was supported by the Human Language Tech-
nology Center of Excellence.

1As do constraint relaxation (Tromble and Eisner, 2006) and
forest reranking (Huang, 2008). In contrast, generic NP-hard
solution techniques like Integer Linear Programming (Riedel
and Clarke, 2006) know nothing about optimal substructure.

bitrary interactions among two or more edges in the
parse (and perhaps also other latent variables such
as part-of-speech tags or edge labels). Such features
can help accuracy—as we show. Alas, they raise the
polynomial runtime of projective parsing, and ren-
der non-projective parsing NP-hard. Hence we seek
approximations.

We will show how BP’s “message-passing” disci-
pline offers a principled way for higher-order fea-
tures to incrementally adjust the numerical edge
weights that are fed to a fast first-order parser. Thus
the first-order parser is influenced by higher-order
interactions among edges—but not asymptotically
slowed down by considering the interactions itself.

BP’s behavior in our setup can be understood intu-
itively as follows. Inasmuch as the first-order parser
finds that edge e is probable, the higher-order fea-
tures will kick in and discourage other edges e′ to the
extent that they prefer not to coexist with e.2 Thus,
the next call to the first-order parser assigns lower
probabilities to parses that contain these e′. (The
method is approximate because a first-order parser
must equally penalize all parses containing e′, even
those that do not in fact contain e.)

This behavior is somewhat similar to parser stack-
ing (Nivre and McDonald, 2008; Martins et al.,
2008), in which a first-order parser derives some of
its input features from the full 1-best output of an-
other parser. In our method, a first-order parser de-
rives such input features from its own previous full
output (but probabilistic output rather than just 1-
best). This circular process is iterated to conver-
gence. Our method also permits the parse to in-
teract cheaply with other variables. Thus first-order
parsing, part-of-speech tagging, and other tasks on a
common input could mutually influence one another.

Our method and its numerical details emerge nat-
urally as an instance of the well-studied loopy BP
algorithm, suggesting several potential future im-

2This may be reminiscent of adjusting a Lagrange multiplier
on e′ until some (hard) constraint is satisfied.
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provements to accuracy (Yedidia et al., 2004; Braun-
stein et al., 2005) and efficiency (Sutton and McCal-
lum, 2007).

Loopy BP has occasionally been used before in
NLP, with good results, to handle non-local fea-
tures (Sutton and McCallum, 2004) or joint decod-
ing (Sutton et al., 2004). However, our application
to parsing requires an innovation to BP that we ex-
plain in §5—a global constraint to enforce that the
parse is a tree. The tractability of some such global
constraints points the way toward applying BP to
other computationally intensive NLP problems, such
as syntax-based alignment of parallel text.

3 Graphical Models of Dependency Trees

3.1 Observed and hidden variables
To apply BP, we must formulate dependency parsing
as a search for an optimal assignment to the vari-
ables of a graphical model. We encode a parse using
the following variables:

Sentence. The n-word input sentence W is fully
observed (not a lattice). Let W = W0W1 · · ·Wn,
where W0 is always the special symbol ROOT.

Tags. If desired, the variables T = T1T2 · · ·Tn may
specify tags on the nwords, drawn from some tagset
T (e.g., parts of speech). These variables are needed
iff the tags are to be inferred jointly with the parse.

Links. The O(n2) boolean variables {Lij : 0 ≤
i ≤ n, 1 ≤ j ≤ n, i 6= j} correspond to the possible
links in the dependency parse.3 Lij = true is in-
terpreted as meaning that there exists a dependency
link from parent i→ child j.4

Link roles, etc. It would be straightforward to add
other variables, such as a binary variable Lirj that is
true iff there is a link i r→ j labeled with role r (e.g.,
AGENT, PATIENT, TEMPORAL ADJUNCT).

3.2 Markov random fields
We wish to define a probability distribution over all
configurations, i.e., all joint assignments A to these

3“Links” are conventionally called edges, but we reserve the
term “edge” for describing the graphical model’s factor graph.

4We could have chosen a different representation withO(n)
integer variables {Pj : 1 ≤ j ≤ n}, writing Pj = i instead of
Lij = true. This representation can achieve the same asymp-
totic runtime for BP by using sparse messages, but some con-
straints and algorithms would be somewhat harder to explain.

variables. Our distribution is simply an undirected
graphical model, or Markov random field (MRF):5

p(A) def=
1
Z

∏
m

Fm(A) (1)

specified by the collection of factors Fm : A 7→
R≥0. Each factor is a function that consults only a
subset of A. We say that the factor has degree d
if it depends on the values of d variables in A, and
that it is unary, binary, ternary, or global if d is
respectively 1, 2, 3, or unbounded (grows with n).

A factor function Fm(A) may also depend freely
on the observed variables—the input sentence W
and a known (learned) parameter vector θ. For no-
tational simplicity, we suppress these extra argu-
ments when writing and drawing factor functions,
and when computing their degree. In this treatment,
these observed variables are not specified by A, but
instead are absorbed into the very definition of Fm.

In defining a factor Fm, we often define the cir-
cumstances under which it fires. These are the only
circumstances that allow Fm(A) 6= 1. When Fm
does not fire, Fm(A) = 1 and does not affect the
product in equation (1).

3.3 Hard constraints
A hard factor Fm fires only on parsesA that violate
some specified condition. It has value 0 on those
parses, acting as a hard constraint to rule them out.

TREE. A hard global constraint on all the Lij vari-
ables at once. It requires that exactly n of these vari-
ables be true, and that the corresponding links form
a directed tree rooted at position 0.

PTREE. This stronger version of TREE requires
further that the tree be projective. That is, it pro-
hibits Lij and Lk` from both being true if i → j
crosses k → `. (These links are said to cross if one
of k, ` is strictly between i and j while the other is
strictly outside that range.)

EXACTLY1. A family of O(n) hard global con-
straints, indexed by 1 ≤ j ≤ n. EXACTLY1j re-
quires that j have exactly one parent, i.e., exactly
one of the Lij variables must be true. Note that EX-
ACTLY1 is implied by TREE or PTREE.

5Our overall model is properly called a dynamic MRF, since
we must construct different-size MRFs for input sentences of
different lengths. Parameters are shared both across and within
these MRFs, so that only finitely many parameters are needed.
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ATMOST1. A weaker version. ATMOST1j re-
quires j to have one or zero parents.

NAND. A family of hard binary constraints.
NANDij,k` requires that Lij and Lk` may not both be
true. We will be interested in certain subfamilies.

NOT2. Shorthand for the family of O(n3) bi-
nary constraints {NANDij,kj}. These are collectively
equivalent to ATMOST1, but expressed via a larger
number of simpler constraints, which can make the
BP approximation less effective (footnote 30).

NO2CYCLE. Shorthand for the family of O(n2)
binary constraints {NANDij,ji}.

3.4 Soft constraints
A soft factor Fm acts as a soft constraint that prefers
some parses to others. In our experiments, it is al-
ways a log-linear function returning positive values:

Fm(A) def= exp
∑

h∈features(Fm)

θhfh(A,W,m) (2)

where θ is a learned, finite collection of weights and
f is a corresponding collection of feature functions,
some of which are used by Fm. (Note that fh is
permitted to consult the observed input W . It also
sees which factor Fm it is scoring, to support reuse
of a single feature function fh and its weight θh by
unboundedly many factors in a model.)

LINK. A family of unary soft factors that judge
the links in a parse A individually. LINKij fires iff
Lij = true, and then its value depends on (i, j),
W , and θ. Our experiments use the same features as
McDonald et al. (2005).

A first-order (or “edge-factored”) parsing model
(McDonald et al., 2005) contains only LINK factors,
along with a global TREE or PTREE factor. Though
there are O(n2) link factors (one per Lij), only n
of them fire on any particular parse, since the global
factor ensures that exactly n are true.

We’ll consider various higher-order soft factors:

PAIR. The binary factor PAIRij,k` fires with some
value iff Lij and Lk` are both true. Thus, it penal-
izes or rewards a pair of links for being simultane-
ously present. This is a soft version of NAND.

GRAND. Shorthand for the family of O(n3) binary
factors {PAIRij,jk}, which evaluate grandparent-
parent-child configurations, i → j → k. For exam-
ple, whether preposition j attaches to verb i might

depend on its object k. In non-projective parsing,
we might prefer (but not require) that a parent and
child be on the same side of the grandparent.

SIB. Shorthand for the family of O(n3) binary fac-
tors {PAIRij,ik}, which judge whether two children
of the same parent are compatible. E.g., a given verb
may not like to have two noun children both to its
left.6 The children do not need to be adjacent.

CHILDSEQ. A family of O(n) global factors.
CHILDSEQi scores i’s sequence of children; hence
it consults all variables of the form Lij . The scor-
ing follows the parametrization of a weighted split
head-automaton grammar (Eisner and Satta, 1999).
If 5 has children 2, 7, 9 under A, then CHILDSEQi
is a product of subfactors of the form PAIR5#,57,
PAIR57,59, PAIR59,5# (right child sequence) and
PAIR5#,52, PAIR52,5# (left child sequence).

NOCROSS. A family of O(n2) global constraints.
If the parent-to-j link crosses the parent-to-` link,
then NOCROSSj` fires with a value that depends
only on j and `. (If j and ` do not each have ex-
actly one parent, NOCROSSj` fires with value 0; i.e.,
it incorporates EXACTLY1j and EXACTLY1`.)7

TAGi is a unary factor that evaluates whether Ti’s
value is consistent with W (especially Wi).

TAGLINKij is a ternary version of the LINKij fac-
tor whose value depends on Lij , Ti and Tj (i.e., its
feature functions consult the tag variables to decide
whether a link is likely). One could similarly enrich
the other features above to depend on tags and/or
link roles; TAGLINK is just an illustrative example.

TRIGRAM is a global factor that evaluates the tag
sequence T according to a trigram model. It is a
product of subfactors, each of which scores a tri-
gram of adjacent tags Ti−2, Ti−1, Ti, possibly also
considering the word sequence W (as in CRFs).

4 A Sketch of Belief Propagation

MacKay (2003, chapters 16 and 26) provides an
excellent introduction to belief propagation, a gen-

6A similar binary factor could directly discourage giving the
verb two SUBJECTs, if the model has variables for link roles.

7In effect, we have combined the O(n4) binary factors
PAIRij,k` into O(n2) groups, and made them more precise
by multiplying in EXACTLYONE constraints (see footnote 30).
This will permit O(n3) total computation if we are willing to
sacrifice the ability of the PAIR weights to depend on i and k.
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Figure 1: A fragment of a factor graph, illustrating a few
of the unary, binary, and global factors that affect vari-
ables L25 and L56. The GRAND factor induces a loop.

eralization of the forward-backward algorithm that
is deeply studied in the graphical models literature
(Yedidia et al., 2004, for example). We briefly
sketch the method in terms of our parsing task.

4.1 Where BP comes from
The basic BP idea is simple. Variable L34 main-
tains a distribution over values true and false—a
“belief”—that is periodically recalculated based on
the current distributions at other variables.8

Readers familiar with Gibbs sampling can regard
this as a kind of deterministic approximation. In
Gibbs sampling, L34’s value is periodically resam-
pled based on the current values of other variables.
Loopy BP works not with random samples but their
expectations. Hence it is approximate but tends to
converge much faster than Gibbs sampling will mix.

It is convenient to visualize an undirected factor
graph (Fig. 1), in which each factor is connected
to the variables it depends on. Many factors may
connect to—and hence influence—a given variable
such as L34. If X is a variable or a factor, N (X)
denotes its set of neighbors.

4.2 What BP accomplishes
Given an input sentence W and a parameter vector
θ, the collection of factors Fm defines a probabil-
ity distribution (1). The parser should determine the
values of the individual variables. In other words,
we would like to marginalize equation (1) to obtain
the distribution p(L34) over L34 = true vs. false,
the distribution p(T4) over tags, etc.

If the factor graph is acyclic, then BP com-
putes these marginal distributions exactly. Given

8Or, more precisely—this is the tricky part—based on ver-
sions of those other distributions that do not factor in L34’s re-
ciprocal influence on them. This prevents (e.g.) L34 and T3

from mutually reinforcing each other’s existing beliefs.

an HMM, for example, BP reduces to the forward-
backward algorithm.

BP’s estimates of these distributions are called be-
liefs about the variables. BP also computes be-
liefs about the factors, which are useful in learn-
ing θ (see §7). E.g., if the model includes the factor
TAGLINKij , which is connected to variables Lij , Ti,
Tj , then BP will estimate the marginal joint distribu-
tion p(Lij , Ti, Tj) over (boolean, tag, tag) triples.

When the factor graph has loops, BP’s beliefs are
usually not the true marginals of equation (1) (which
are in general intractable to compute). Indeed, BP’s
beliefs may not be the true marginals of any distribu-
tion p(A) over assignments, i.e., they may be glob-
ally inconsistent. All BP does is to incrementally
adjust the beliefs till they are at least locally con-
sistent: e.g., the beliefs at factors TAGLINKij and
TAGLINKik must both imply9 the same belief about
variable Ti, their common neighbor.

4.3 The BP algorithm

This iterated negotiation among the factors is han-
dled by message passing along the edges of the fac-
tor graph. A message to or from a variable is a (pos-
sibly unnormalized) probability distribution over the
values of that variable.

The variable V sends a message to factor F , say-
ing “My other neighboring factors G jointly suggest
that I have posterior distribution qV→F (assuming
that they are sending me independent evidence).”
Meanwhile, factor F sends messages to V , saying,
“Based on my factor function and the messages re-
ceived from my other neighboring variables U about
their values (and assuming that those messages are
independent), I suggest you have posterior distribu-
tion rF→V over your values.”

To be more precise, BP at each iteration k (until
convergence) updates two kinds of messages:

q
(k+1)
V→F (v) = κ

∏
G∈N (V )\F

r
(k)
G→V (v) (3)

from variables to factors, and

r
(k+1)
F→V (v) = κ

∑
A s.t. A[V ]=v

F (A)
∏

U∈N (F )\V

q
(k)
U→F (A[U ])

(4)

9In the sense that marginalizing the belief p(Lij , Ti, Tj) at
the factor yields the belief p(Ti) at the variable.
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from factors to variables. Each message is a proba-
bility distribution over values v of V , normalized by
a scaling constant κ. Alternatively, messages may be
left as unnormalized distributions, choosing κ 6= 1
only as needed to prevent over- or underflow. Mes-
sages are initialized to uniform distributions.

Whenever we wish, we may compute the beliefs
at V and F :

b
(k+1)
V→ (v) def= κ

∏
G∈N (V )

r
(k)
G→V (v) (5)

b
(k+1)
F→ (A) def= κ F (A)

∏
U∈N (F )

q
(k)
U→F (A[U ]) (6)

These beliefs do not truly characterize the ex-
pected behavior of Gibbs sampling (§4.1), since the
products in (5)–(6) make conditional independence
assumptions that are valid only if the factor graph
is acyclic. Furthermore, on cyclic (“loopy”) graphs,
BP might only converge to a local optimum (Weiss
and Freedman, 2001), or it might not converge at all.
Still, BP often leads to good, fast approximations.

5 Achieving Low Asymptotic Runtime

One iteration of standard BP simply updates all the
messages as in equations (3)–(4): one message per
edge of the factor graph.

Therefore, adding new factors to the model in-
creases the runtime per iteration additively, by in-
creasing the number of messages to update. We
believe this is a compelling advantage over dy-
namic programming—in which new factors usually
increase the runtime and space multiplicatively by
exploding the number of distinct items.10

5.1 Propagators for local constraints
But how long does updating each message take? The
runtime of summing over all assignments

∑
A in

10For example, with unknown tags T , a model with
PTREE+TAGLINK will take only O(n3 + n2g2) time for BP,
compared to O(n3g2) time for dynamic programming (Eisner
& Satta 1999). Adding TRIGRAM, which is string-local rather
than tree-local, will increase this only to O(n3 + n2g2 + ng3),
compared to O(n3g6) for dynamic programming.

Even more dramatic, adding the SIB family of O(n3)
PAIRij,ik factors will add only O(n3) to the runtime of BP
(Table 1). By contrast, the runtime of dynamic programming
becomes exponential, because each item must record its head-
word’s full set of current children.

equation (4) may appear prohibitive. Crucially, how-
ever, F (A) only depends on the values in A of F ’s
its neighboring variables N (F ). So this sum is pro-
portional to a sum over restricted assignments to just
those variables.11

For example, computing a message from
TAGLINKij → Ti only requires iterating over all
(boolean, tag, tag) triples.12 The runtime to update
that message is therefore O(2 · |T | · |T |).

5.2 Propagators for global constraints
The above may be tolerable for a ternary factor. But
how about global factors? EXACTLY1j has n neigh-
boring boolean variables: surely we cannot iterate
over all 2n assignments to these! TREE is even
worse, with 2O(n2) assignments to consider. We will
give specialized algorithms for handling these sum-
mations more efficiently.

A historical note is in order. Traditional constraint
satisfaction corresponds to the special case of (1)
where all factors Fm are hard constraints (with val-
ues in {0, 1}). In that case, loopy BP reduces to
an algorithm for generalized arc consistency (Mack-
worth, 1977; Bessière and Régin, 1997; Dechter,
2003), and updating a factor’s outgoing messages is
known as constraint propagation. Régin (1994)
famously introduced an efficient propagator for
a global constraint, ALLDIFFERENT, by adapting
combinatorial bipartite matching algorithms.

In the same spirit, we will demonstrate efficient
propagators for our global constraints, e.g. by adapt-
ing combinatorial algorithms for weighted parsing.
We are unaware of any previous work on global fac-
tors in sum-product BP, although for max-product
BP,13 Duchi et al. (2007) independently showed
that a global 1-to-1 alignment constraint—a kind
of weighted ALLDIFFERENT—permits an efficient
propagator based on weighted bipartite matching.

5.3 Constraint propagators for parsing
Table 1 shows our asymptotic runtimes for all fac-
tors in §§3.3–3.4. Remember that if several of these

11The constant of proportionality may be folded into κ; it is
the number of assignments to the other variables.

12Separately for each value v of Ti, get v’s probability by
summing over assignments to (Lij , Ti, Tj) s.t. Ti = v.

13Max-product replaces the sums in equations (3)–(6) with
maximizations. This replaces the forward-backward algorithm
with its Viterbi approximation.
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factor degree runtime count runtime
family (each) (each) (total)
TREE O(n2) O(n3) 1 O(n3)
PTREE O(n2) O(n3) 1 O(n3)
EXACTLY1 O(n) O(n) n O(n2)
ATMOST1 O(n) O(n) n O(n2)
NOT2 2 O(1) O(n3) O(n3)
NO2CYCLE 2 O(1) O(n2) O(n2)
LINK 1 O(1) O(n2) O(n2)
GRAND 2 O(1) O(n3) O(n3)
SIB 2 O(1) O(n3) O(n3)
CHILDSEQ O(n) O(n2) O(n) O(n3)
NOCROSS O(n) O(n) O(n2) O(n3)
TAG 1 O(g) O(n) O(ng)
TAGLINK 3 O(g2) O(n2) O(n2g2)
TRIGRAM O(n) O(ng3) 1 O(ng3)

Table 1: Asymptotic runtimes of the propagators for var-
ious factors (where n is the sentence length and g is the
size of the tag set T ). An iteration of standard BP propa-
gates through each factor once. Running a factor’s prop-
agator will update all of its outgoing messages, based on
its current incoming messages.

factors are included, the total runtime is additive.14

Propagating the local factors is straightforward
(§5.1). We now explain how to handle the global
factors. Our main trick is to work backwards from
marginal beliefs. Let F be a factor and V be one
of its neighboring variables. At any time, F has a
marginal belief about V (see footnote 9),

b
(k+1)
F→ (V = v) =

∑
A s.t. A[V ]=v

b
(k+1)
F→ (A) (7)

a sum over (6)’s products of incoming messages. By
the definition of rF→V in (4), and distributivity, we
can also express the marginal belief (7) as a point-
wise product of outgoing and incoming messages15

b
(k+1)
F→ (V = v) = r

(k+1)
F→V (v) · q(k)V→F (v) (8)

up to a constant. If we can quickly sum up the
marginal belief (7), then (8) says we can divide out
each particular incoming message q(k)V→F to obtain
its corresponding outgoing message r(k+1)

F→V .
14We may ignore the cost of propagators at the variables.

Each outgoing message from a variable can be computed in
time proportional to its size, which may be amortized against
the cost of generating the corresponding incoming message.

15E.g., the familiar product of forward and backward mes-
sages that is used to extract posterior marginals from an HMM.

Note that the marginal belief and both messages
are unnormalized distributions over values v of V .
F and k are clear from context below, so we simplify
the notation so that (7)–(8) become

b(V = v) =
∑

A s.t. A[V ]=v

b(A) = rV (v) · qV (v)

TRIGRAM must sum over assignments to the tag
sequence T . The belief (6) in a given assignment
is a product of trigram scores (which play the role
of transition weights) and incoming messages qTj

(playing the role of emission weights). The marginal
belief (7) needed above, b(Ti = t), is found by sum-
ming over assignments where Ti = t. All marginal
beliefs are computed together in O(ng3) total time
by the forward-backward algorithm.16

EXACTLY1j is a sparse hard constraint. Even
though there are 2n assignments to its n neighboring
variables {Lij}, the factor function returns 1 on only
n assignments and 0 on the rest. In fact, for a given i,
b(Lij = true) in (7) is defined by (6) to have exactly
one non-zero summand, in whichA puts Lij = true
and all other Li′j = false. We compute the marginal
beliefs for all i together in O(n) total time:

1. Pre-compute π def=
∏
i qLij (false).17

2. For each i, compute the marginal belief
b(Lij = true) as π · q̄Lij , where q̄Lij ∈ R de-
notes the odds ratio qLij (true)/qLij (false).18

3. The partition function b() denotes
∑
A b(A);

compute it in this case as
∑

i b(Lij = true).

4. For each i, compute b(Lij = false) by subtrac-
tion, as b()− b(Lij = true).

TREE and PTREE must sum over assignments to
the O(n2) neighboring variables {Lij}. There are
now exponentially many non-zero summands, those
in whichA corresponds to a valid tree. Nonetheless,

16Which is itself an exact BP algorithm, but on a different
graph—a junction tree formed from the graph of TRIGRAM sub-
factors. Each variable in the junction tree is a bigram. If we had
simply replaced the global TRIGRAM factor with its subfactors
in the full factor graph, we would have had to resort to General-
ized BP (Yedidia et al., 2004) to obtain the same exact results.

17But taking π = 1 gives the same results, up to a constant.
18As a matter of implementation, this odds ratio q̄Lij can be

used to represent the incoming message qLij everywhere.
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we can follow the same approach as for EXACTLY1.
Steps 1 and 4 are modified to iterate over all i, j such
that Lij is a variable. In step 3, the partition function∑
A b(A) is now π times the total weight of all trees,

where the weight of a given tree is the product of the
q̄Lij values of its n edges. In step 2, the marginal
belief b(Lij = true) is now π times the total weight
of all trees having edge i→ j.

We perform these combinatorial sums by calling a
first-order parsing algorithm, with edge weights q̄ij .
Thus, as outlined in §2, a first-order parser is called
each time we propagate through the global TREE or
PTREE constraint, using edge weights that include
the first-order LINK factors but also multiply in any
current messages from higher-order factors.

The parsing algorithm simultaneously computes
the partition function b(), and all O(n2) marginal
beliefs b(Lij = true). For PTREE (projective), it
is the inside-outside version of a dynamic program-
ming algorithm (Eisner, 1996). For TREE (non-
projective), Koo et al. (2007) and Smith and Smith
(2007) show how to employ the matrix-tree theorem.
In both cases, the total time is O(n3).19

NOCROSSj` must sum over assignments to O(n)
neighboring variables {Lij} and {Lk`}. The non-
zero summands are assignments where j and `

each have exactly one parent. At step 1, π def=∏
i qLij (false) ·

∏
k qLk`

(false). At step 2, the
marginal belief b(Lij = true) sums over the n non-
zero assignments containing i → j. It is π · q̄Lij ·∑

k q̄Lk`
· PAIRij,k`, where PAIRij,k` is xj` if i → j

crosses k → ` and is 1 otherwise. xj` is some factor
value defined by equation (2) to penalize or reward
the crossing. Steps 3–4 are just as in EXACTLY1j .

The question is how to compute b(Lij = true) for
each i in only O(1) time,20 so that we can propagate
each of the O(n2) NOCROSSj` in O(n) time. This
is why we allowed xj` to depend only on j, `. We
can rewrite the sum b(Lij = true) as

π · q̄Lij · (xj` ·
∑

crossing k

q̄Lk`
+ 1 ·

∑
noncrossing k

q̄Lk`
) (9)

19A dynamic algorithm could incrementally update the out-
going messages if only a few incoming messages have changed
(as in asynchronous BP). In the case of TREE, dynamic matrix
inverse allows us to update any row or column (i.e., messages
from all parents or children of a given word) and find the new
inverse in O(n2) time (Sherman and Morrison, 1950).

20Symmetrically, we compute b(Lk` = true) for each k.

To find this in O(1) time, we precompute for each
` an array of partial sums Q`[s, t]

def=
∑

s≤k≤t q̄Lk`
.

SinceQ`[s, t] = Q`[s, t−1]+ q̄Lt`
, we can compute

each entry in O(1) time. The total precomputation
time over all `, s, t is then O(n3), with the array Q`
shared across all factors NOCROSSj′`. The crossing
sum is respectivelyQ`[0, i−1]+Q`[j+1, n],Q`[i+
1, j − 1], or 0 according to whether ` ∈ (i, j), ` /∈
[i, j], or ` = i.21 The non-crossing sum is Q`[0, n]
minus the crossing sum.

CHILDSEQi , like TRIGRAM, is propagated by a
forward-backward algorithm. In this case, the al-
gorithm is easiest to describe by replacing CHILD-
SEQi in the factor graph by a collection of local
subfactors, which pass messages in the ordinary
way.22 Roughly speaking,23 at each j ∈ [1, n],
we introduce a new variable Cij—a hidden state
whose value is the position of i’s previous child,
if any (so 0 ≤ Cij < j). So the ternary sub-
factor on (Cij , Lij , Ci,j+1) has value 1 if Lij =
false and Ci,j+1 = Ci,j ; a sibling-bigram score
(PAIRiCij ,iCi,j+1) if Lij = true and Ci,j+1 = j; and
0 otherwise. The sparsity of this factor, which is 0
almost everywhere, is what gives CHILDSEQi a total
runtime of O(n2) rather than O(n3). It is equivalent
to forward-backward on an HMM with n observa-
tions (the Lij) and n states per observation (the Cj),
with a deterministic (thus sparse) transition function.

6 Decoding Trees

BP computes local beliefs, e.g. the conditional prob-
ability that a link Lij is present. But if we wish
to output a single well-formed dependency tree, we
need to find a single assignment to all the {Lij} that
satisfies the TREE (or PTREE) constraint.

Our final belief about the TREE factor is a distri-
bution over such assignments, in which a tree’s prob-
ability is proportional to the probability of its edge
weights q̄Lij (incoming messages). We could simply
return the mode of this distribution (found by using
a 1-best first-order parser) or the k-best trees, or take
samples.

21There are no NOCROSSj` factors with ` = j.
22We still treat CHILDSEQi as a global factor and compute all

its correct outgoing messages on a single BP iteration, via serial
forward and backward sweeps through the subfactors. Handling
the subfactors in parallel, (3)–(4), would need O(n) iterations.

23Ignoring the treatment of boundary symbols “#” (see §3.4).
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In our experiments, we actually take the edge
weights to be not the messages q̄Lij from the links,
but the full beliefs b̄Lij at the links (where b̄Lij

def=
log bLij (true)/bLij (false)). These are passed into a
fast algorithm for maximum spanning tree (Tarjan,
1977) or maximum projective spanning tree (Eis-
ner, 1996). This procedure is equivalent to minimum
Bayes risk (MBR) parsing (Goodman, 1996) with a
dependency accuracy loss function.

Notice that the above decoding approaches do not
enforce any hard constraints other than TREE in the
final output. In addition, they only recover values
of the Lij variables. They marginalize over other
variables such as tags and link roles. This solves
the problem of “nuisance” variables (which merely
fragment probability mass among refinements of a
parse). On the other hand, it may be undesirable for
variables whose values we desire to recover.24

7 Training

Our training method also uses beliefs computed by
BP, but at the factors. We choose the weight vector
θ by maximizing the log-probability of training data

24An alternative is to attempt to find the most probable
(“MAP”) assignment to all variables—using the max-product
algorithm (footnote 13) or one of its recent variants. The esti-
mated marginal beliefs become “max marginals,” which assess
the 1-best assignment consistent with each value of the variable.

We can indeed build max-product propagators for our global
constraints. PTREE still propagates in O(n3) time: simply
change the first-order parser’s semiring (Goodman, 1999) to use
max instead of sum. TREE requires O(n4) time: it seems that
the O(n2) max marginals must be computed separately, each
requiring a separate call to an O(n2) maximum spanning tree
algorithm (Tarjan, 1977).

If max-product BP converges, we may simply output each
variable’s favorite value (according to its belief), if unique.
However, max-product BP tends to be unstable on loopy graphs,
and we may not wish to wait for full convergence in any case. A
more robust technique for extracting an assignment is to mimic
Viterbi decoding, and “follow backpointers” of the max-product
computation along some spanning subtree of the factor graph.

A slower but potentially more stable alternative is determin-
istic annealing. Replace each factor Fm(A) with Fm(A)1/T ,
where T > 0 is a temperature. As T → 0 (“quenches”), the
distribution (1) retains the same mode (the MAP assignment),
but becomes more sharply peaked at the mode, and sum-product
BP approaches max-product BP. Deterministic annealing runs
sum-product BP while gradually reducing T toward 0 as it it-
erates. By starting at a high T and reducing T slowly, it often
manages in practice to find a good local optimum. We may then
extract an assignment just as we do for max-product.

under equation (1), regularizing only by early stop-
ping. If all variables are observed in training, this
objective function is convex (as for any log-linear
model).

The difficult step in computing the gradient of
our objective is finding ∇θ logZ, where Z in equa-
tion (1) is the normalizing constant (partition func-
tion) that sums over all assignments A. (Recall that
Z, like each Fm, depends implicitly on W and θ.)
As usual for log-linear models,

∇θ logZ =
∑
m

Ep(A)[∇θFm(A)] (10)

Since ∇θFm(A) only depends on the assignment
A’s values for variables that are connected to Fm
in the factor graph, its expectation under p(A) de-
pends only on the marginalization of p(A) to those
variables jointly. Fortunately, BP provides an esti-
mate of that marginal distribution, namely, its belief
about the factor Fm, given W and θ (§4.2).25

Note that the hard constraints do not depend on θ
at all; so their summands in equation (10) will be 0.

We employ stochastic gradient descent (Bottou,
2003), since this does not require us to compute
the objective function itself but only to (approxi-
mately) estimate its gradient as explained above. Al-
ternatively, given any of the MAP decoding proce-
dures from §6, we could use an error-driven learning
method such as the perceptron or MIRA.26

8 Experiments

We asked: (1) For projective parsing, where higher-
order factors have traditionally been incorporated
into slow but exact dynamic programming (DP),
what are the comparative speed and quality of the
BP approximation? (2) How helpful are such higher-
order factors—particularly for non-projective pars-
ing, where BP is needed to make them tractable?
(3) Do our global constraints (e.g., TREE) contribute
to the goodness of BP’s approximation?

25One could use coarser estimates at earlier stages of training,
by running fewer iterations of BP.

26The BP framework makes it tempting to extend an MRF
model with various sorts of latent variables, whose values are
not specified in training data. It is straightforward to train under
these conditions. When counting which features fire on a train-
ing parse or (for error-driven training) on an current erroneous
parse, we can find expected counts if these parses are not fully
observed, by using BP to sum over latent variables.
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Figure 2: Runtime of BP parser on various sentence
lengths compared to O(n4) dynamic programming.

8.1 Data

We trained and tested on three languages from the
CoNLL Dependency Parsing Shared Task (Nivre et
al., 2007). The English data for that task were
converted from the Penn Treebank to dependen-
cies using a trace-recovery algorithm that induced
some very slight non-projectivity—about 1% of
links crossed other links. Danish is a slightly more
non-projective language (3% crossing links). Dutch
is the most non-projective language in the corpus
(11%). In all cases, the test input W consists of
part-of-speech-tagged words, so T variables were
not used.

8.2 Features

Although BP makes it cheap to incorporate many
non-local features and latent variables at once, we
kept our models relatively simple in this paper.

Our first-order LINKij factors replicate McDon-
ald et al. (2005). Following equation (2), they are
defined using binary features that look at words i
and j, the distance j − i, and the tags (provided in
W ) of words at, around, and between i and j.

Our second-order features are similar. In the
GRAND factors, features fire for particular triples
of tags and of coarse tags. A feature also fires if
the grandparent falls between the child and parent,
inducing crossing dependency links. The CHILD-
SEQ factors included features for tags, and like-
wise coarse tags, on adjacent sibling pairs and
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Figure 3: Runtime of BP parser on various sentence
lengths compared to O(n5) dynamic programming. DP
is so slow for length > 45 that we do not even show it.

parent-sibling-sibling triples. Each of these fea-
tures also have versions that were conjoined with
link direction—pairs of directions in the grandpar-
ent case—or with signed link length of the child or
farther sibling. Lengths were binned per McDonald
et al. (2005). The NOCROSSj` factors consider the
tag and coarse tag attributes of the two child words
j and `, separately or jointly.

8.3 Experimental procedures
We trained all models using stochastic gradient de-
scent (§7). SGD initialized ~θ = 0 and ran for 10 con-
secutive passes over the data; we picked the stopping
point that performed best on held-out data.

When comparing runtimes for projective parsers,
we took care to produce comparable implementa-
tions. All beliefs and dynamic programming items
were stored and indexed using the high-level Dyna
language,27 while all inference and propagation was
written in C++. The BP parser averaged 1.8 seconds
per sentence for non-projective parsing and 1.5 sec-
onds per sentence for projective parsing (1.2 and 0.9
seconds/sentence for ≤ 40 words), using our stan-
dard setup, which included five iterations of BP and
the final MBR tree decoding pass.

In our tables, we boldface the best result in each
column along with any results that are not signifi-
cantly worse (paired permutation test, p < .05).

27This dominates runtime, and probably slows down all our
parsers by a factor of 4–11 owing to known inefficiencies in the
Dyna prototype we used (Eisner et al., 2005).
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Figure 4: Runtime vs. search error after different num-
bers of BP iterations. This shows the simpler model of
Fig. 2, where DP is still relatively fast.

8.4 Faster higher-order projective parsing

We built a first-order projective parser—one that
uses only factors PTREE and LINK—and then com-
pared the cost of incorporating second-order factors,
GRAND and CHILDSEQ, by BP versus DP.28

Under DP, the first-order runtime of O(n3) is in-
creased to O(n4) with GRAND, and to O(n5) when
we add CHILDSEQ as well. BP keeps runtime down
to O(n3)—although with a higher constant factor,
since it takes several rounds to converge, and since
it computes more than just the best parse.29

Figures 2–3 compare the empirical runtimes for
various input sentence lengths. With only the
GRAND factor, exact DP can still find the Viterbi
parse (though not the MBR parse29) faster than ten
iterations of the asymptotically better BP (Fig. 2),
at least for sentences with n ≤ 75. However, once
we add the CHILDSEQ factor, BP is always faster—
dramatically so for longer sentences (Fig. 3). More
complex models would widen BP’s advantage.

Fig. 4 shows the tradeoff between runtime and
search error of BP in the former case (GRAND only).
To determine BP’s search error at finding the MBR
parse, we measured its dependency accuracy not

28We trained these parsers using exact DP, using the inside-
outside algorithm to compute equation (10). The training and
test data were English, and for this section we filtered out sen-
tences with non-projective links.

29Viterbi parsing in the log domain only needs the (max,+)
semiring, whereas both BP and any MBR parsing must use the
slower (+, log+) so that they can compute marginals.

Danish Dutch English
(a) TREE+LINK 85.5 87.3 88.6

+NOCROSS 86.1 88.3 89.1
+GRAND 86.1 88.6 89.4
+CHILDSEQ 86.5 88.5 90.1

(b) Proj. DP 86.0 84.5 90.2
+hill-climbing 86.1 87.6 90.2

Table 2: (a) Percent unlabeled dependency accuracy for
various non-projective BP parsers (5 iterations only),
showing the cumulative contribution of different features.
(b) Accuracy for an projective DP parser with all features.
For relatively non-projective languages (Danish and espe-
cially Dutch), the exact projective parses can be improved
by non-projective hill-climbing—but in those cases, just
running our non-projective BP is better and faster.

against the gold standard, but against the optimal
MBR parse under the model, which DP is able to
find. After 10 iterations, the overall macro-averaged
search error compared to O(n4) DP MBR is 0.4%;
compared to O(n5) (not shown), 2.4%. More BP
iterations may help accuracy. In future work, we
plan to compare BP’s speed-accuracy curve on more
complex projective models with the speed-accuracy
curve of pruned or reranked DP.

8.5 Higher-order non-projective parsing

The BP approximation can be used to improve
the accuracy of non-projective parsing by adding
higher-order features. These would be NP-hard to
incorporate exactly; DP cannot be used.

We used BP with a non-projective TREE factor
to train conditional log-linear parsing models of two
highly non-projective languages, Danish and Dutch,
as well as slightly non-projective English (§8.1).
In all three languages, the first-order non-projective
parser greatly overpredicts the number of crossing
links. We thus added NOCROSS factors, as well
as GRAND and CHILDSEQ as before. All of these
significantly improve the first-order baseline, though
not necessarily cumulatively (Table 2).

Finally, Table 2 compares loopy BP to a previ-
ously proposed “hill-climbing” method for approx-
imate inference in non-projective parsing McDon-
ald and Pereira (2006). Hill-climbing decodes our
richest non-projective model by finding the best pro-
jective parse under that model—using slow, higher-
order DP—and then greedily modifies words’ par-
ents until the parse score (1) stops improving.
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Decoding Danish Dutch English
NOT2 81.8 (76.7) 83.3 (75.0) 87.5 (66.4)
ATMOST1 85.4 (82.2) 87.3 (86.3) 88.5 (84.6)
EXACTLY1 85.7 (85.0) 87.0 (86.7) 88.6 (86.0)
+ NO2CYCLE 85.0 (85.2) 86.2 (86.7) 88.5 (86.2)
TREE 85.5 (85.5) 87.3 (87.3) 88.6 (88.6)
PTREE 85.8 83.9 88.8

Table 3: After training a non-projective first-order model
with TREE, decoding it with weaker constraints is asymp-
totically faster (except for NOT2) but usually harm-
ful. (Parenthetical numbers show that the harm is com-
pounded if the weaker constraints are used in training
as well; even though this matches training to test con-
ditions, it may suffer more from BP’s approximate gradi-
ents.) Decoding the TREE model with the even stronger
PTREE constraint can actually be helpful for a more pro-
jective language. All results use 5 iterations of BP.

BP for non-projective languages is much faster
and more accurate than the hill-climbing method.
Also, hill-climbing only produces an (approximate)
1-best parse, but BP also obtains (approximate)
marginals of the distribution over all parses.

8.6 Importance of global hard constraints
Given the BP architecture, do we even need the hard
TREE constraint? Or would it suffice for more local
hard constraints to negotiate locally via BP?

We investigated this for non-projective first-order
parsing. Table 3 shows that global constraints are
indeed important, and that it is essential to use TREE

during training. At test time, the weaker but still
global EXACTLY1 may suffice (followed by MBR
decoding to eliminate cycles), for total time O(n2).

Table 3 includes NOT2, which takes O(n3) time,
merely to demonstrate how the BP approximation
becomes more accurate for training and decoding
when we join the simple NOT2 constraints into more
global ATMOST1 constraints. This does not change
the distribution (1), but makes BP enforce stronger
local consistency requirements at the factors, rely-
ing less on independence assumptions. In general,
one can get better BP approximations by replacing a
group of factors Fm(A) with their product.30

The above experiments concern gold-standard
30In the limit, one could replace the product (1) with a sin-

gle all-purpose factor; then BP would be exact—but slow. (In
constraint satisfaction, joining constraints similarly makes arc
consistency slower but better at eliminating impossible values.)

accuracy under a given first-order, non-projective
model. Flipping all three of these parameters for
Danish, we confirmed the pattern by instead mea-
suring search error under a higher-order, projective
model (PTREE+LINK+GRAND), when PTREE was
weakened during decoding. Compared to the MBR
parse under that model, the search errors from de-
coding with weaker hard constraints were 2.2% for
NOT2, 2.1% for EXACTLY1, 1.7% for EXACTLY1
+ NO2CYCLE, and 0.0% for PTREE.

9 Conclusions and Future Work

Belief propagation improves non-projective depen-
dency parsing with features that would make ex-
act inference intractable. For projective parsing, it
is significantly faster than exact dynamic program-
ming, at the cost of small amounts of search error,

We are interested in extending these ideas to
phrase-structure and lattice parsing, and in try-
ing other higher-order features, such as those used
in parse reranking (Charniak and Johnson, 2005;
Huang, 2008) and history-based parsing (Nivre and
McDonald, 2008). We could also introduce new
variables, e.g., nonterminal refinements (Matsuzaki
et al., 2005), or secondary linksMij (not constrained
by TREE/PTREE) that augment the parse with repre-
sentations of control, binding, etc. (Sleator and Tem-
perley, 1993; Buch-Kromann, 2006).

Other parsing-like problems that could be at-
tacked with BP appear in syntax-based machine
translation. Decoding is very expensive with a syn-
chronous grammar composed with an n-gram lan-
guage model (Chiang, 2007)—but our footnote 10
suggests that BP might incorporate a language
model rapidly. String alignment with synchronous
grammars is quite expensive even for simple syn-
chronous formalisms like ITG (Wu, 1997)—but
Duchi et al. (2007) show how to incorporate bipar-
tite matching into max-product BP.

Finally, we can take advantage of improvements
to BP proposed in the context of other applications.
For example, instead of updating all messages in
parallel at every iteration, it is empirically faster to
serialize updates using a priority queue (Elidan et
al., 2006; Sutton and McCallum, 2007).31

31These methods need alteration to handle our global propa-
gators, which do update all their outgoing messages at once.
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