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Abstract

In recent years there has been substantial work
on the important problem of coreference res-
olution, most of which has concentrated on
the development of new models and algo-
rithmic techniques. These works often show
that complex models improve over a weak
pairwise baseline. However, less attention
has been given to the importance of selecting
strong features to support learning a corefer-
ence model.

This paper describes a rather simple pair-
wise classification model for coreference res-
olution, developed with a well-designed set
of features. We show that this produces a
state-of-the-art system that outperforms sys-
tems built with complex models. We suggest
that our system can be used as a baseline for
the development of more complex models –
which may have less impact when a more ro-
bust set of features is used. The paper also
presents an ablation study and discusses the
relative contributions of various features.

1 Introduction

Coreference resolution is the task of grouping all the
mentions of entities1 in a document into equivalence
classes so that all the mentions in a given class refer
to the same discourse entity. For example, given the
sentence (where the head noun of each mention is
subscripted)

1We follow the ACE (NIST, 2004) terminology: A noun
phrase referring to a discourse entity is called a mention, and
an equivalence class is called an entity.

An American1 official2 announced that
American1 President3 Bill Clinton3 met
his3 Russian4 counterpart5, Vladimir
Putin5, today.

the task is to group the mentions so that those refer-
ring to the same entity are placed together into an
equivalence class.

Many NLP tasks detect attributes, actions, and
relations between discourse entities. In order to
discover all information about a given entity, tex-
tual mentions of that entity must be grouped to-
gether. Thus coreference is an important prerequi-
site to such tasks as textual entailment and informa-
tion extraction, among others.

Although coreference resolution has received
much attention, that attention has not focused on the
relative impact of high-quality features. Thus, while
many structural innovations in the modeling ap-
proach have been made, those innovations have gen-
erally been tested on systems with features whose
strength has not been established, and compared to
weak pairwise baselines. As a result, it is possible
that some modeling innovations may have less im-
pact or applicability when applied to a stronger base-
line system.

This paper introduces a rather simple but state-
of-the-art system, which we intend to be used as a
strong baseline to evaluate the impact of structural
innovations. To this end, we combine an effective
coreference classification model with a strong set of
features, and present an ablation study to show the
relative impact of a variety of features.

As we show, this combination of a pairwise
model and strong features produces a 1.5 percent-
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age point increase in B-Cubed F-Score over a com-
plex model in the state-of-the-art system by Culotta
et al. (2007), although their system uses a complex,
non-pairwise model, computing features over partial
clusters of mentions.

2 A Pairwise Coreference Model

Given a document and a set of mentions, corefer-
ence resolution is the task of grouping the mentions
into equivalence classes, so that each equivalence
class contains exactly those mentions that refer to
the same discourse entity. The number of equiv-
alence classes is not specified in advance, but is
bounded by the number of mentions.

In this paper, we view coreference resolution as
a graph problem: Given a set of mentions and their
context as nodes, generate a set of edges such that
any two mentions that belong in the same equiva-
lence class are connected by some path in the graph.
We construct this entity-mention graph by learning
to decide for each mention which preceding men-
tion, if any, belongs in the same equivalence class;
this approach is commonly called the pairwise coref-
erence model (Soon et al., 2001). To decide whether
two mentions should be linked in the graph, we learn
a pairwise coreference function pc that produces a
value indicating the probability that the two men-
tions should be placed in the same equivalence class.

The remainder of this section first discusses how
this function is used as part of a document-level
coreference decision model and then describes how
we learn the pc function.

2.1 Document-Level Decision Model

Given a document d and a pairwise coreference scor-
ing function pc that maps an ordered pair of men-
tions to a value indicating the probability that they
are coreferential (see Section 2.2), we generate a
coreference graph Gd according to the Best-Link de-
cision model (Ng and Cardie, 2002b) as follows:

For each mention m in document d, let Bm be the
set of mentions appearing before m in d. Let a be
the highest scoring antecedent:

a = argmax
b∈Bm

(pc(b, m)).

If pc(a, m) is above a threshold chosen as described

in Section 4.4, we add the edge (a, m) to the coref-
erence graph Gd.

The resulting graph contains connected compo-
nents, each representing one equivalence class, with
all the mentions in the component referring to the
same entity. This technique permits us to learn to
detect some links between mentions while being ag-
nostic about whether other mentions are linked, and
yet via the transitive closure of all links we can still
determine the equivalence classes.

We also require that no non-pronoun can refer
back to a pronoun: If m is not a pronoun, we do
not consider pronouns as candidate antecedents.

2.1.1 Related Models
For pairwise models, it is common to choose the

best antecedent for a given mention (thereby impos-
ing the constraint that each mention has at most one
antecedent); however, the method of deciding which
is the best antecedent varies.

Soon et al. (2001) use the Closest-Link method:
They select as an antecedent the closest preced-
ing mention that is predicted coreferential by a
pairwise coreference module; this is equivalent to
choosing the closest mention whose pc value is
above a threshold. Best-Link was shown to out-
perform Closest-Link in an experiment by Ng and
Cardie (2002b). Our model differs from that of Ng
and Cardie in that we impose the constraint that
non-pronouns cannot refer back to pronouns, and in
that we use as training examples all ordered pairs of
mentions, subject to the constraint above.

Culotta et al. (2007) introduced a model that pre-
dicts whether a pair of equivalence classes should be
merged, using features computed over all the men-
tions in both classes. Since the number of possi-
ble classes is exponential in the number of mentions,
they use heuristics to select training examples. Our
method does not require determining which equiva-
lence classes should be considered as examples.

2.2 Pairwise Coreference Function

Learning the pairwise scoring function pc is a cru-
cial issue for the pairwise coreference model. We
apply machine learning techniques to learn from ex-
amples a function pc that takes as input an ordered
pair of mentions (a, m) such that a precedes m in
the document, and produces as output a value that is
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interpreted as the conditional probability that m and
a belong in the same equivalence class.

2.2.1 Training Example Selection
The ACE training data provides the equivalence

classes for mentions. However, for some pairs of
mentions from an equivalence class, there is little or
no direct evidence in the text that the mentions are
coreferential. Therefore, training pc on all pairs of
mentions within an equivalence class may not lead
to a good predictor. Thus, for each mention m we
select from m’s equivalence class the closest pre-
ceding mention a and present the pair (a, m) as a
positive training example, under the assumption that
there is more direct evidence in the text for the ex-
istence of this edge than for other edges. This is
similar to the technique of Ng and Cardie (2002b).
For each m, we generate negative examples (a, m)
for all mentions a that precede m and are not in the
same equivalence class. Note that in doing so we
generate more negative examples than positive ones.

Since we never apply pc to a pair where the first
mention is a pronoun and the second is not a pro-
noun, we do not train on examples of this form.

2.2.2 Learning Pairwise Coreference Scoring
Model

We learn the pairwise coreference function using
an averaged perceptron learning algorithm (Freund
and Schapire, 1998) – we use the regularized version
in Learning Based Java2 (Rizzolo and Roth, 2007).

3 Features

The performance of the document-level coreference
model depends on the quality of the pairwise coref-
erence function pc. Beyond the training paradigm
described earlier, the quality of pc depends on the
features used.

We divide the features into categories, based on
their function. A full list of features and their cat-
egories is given in Table 2. In addition to these
boolean features, we also use the conjunctions of all
pairs of features.3

2LBJ code is available at http://L2R.cs.uiuc.edu/
˜cogcomp/asoftware.php?skey=LBJ

3The package of all features used is available at
http://L2R.cs.uiuc.edu/˜cogcomp/asoftware.
php?skey=LBJ#features.

In the following description, the term head means
the head noun phrase of a mention; the extent is the
largest noun phrase headed by the head noun phrase.

3.1 Mention Types

The type of a mention indicates whether it is a proper
noun, a common noun, or a pronoun. This feature,
when conjoined with others, allows us to give dif-
ferent weight to a feature depending on whether it is
being applied to a proper name or a pronoun. For
our experiments in Section 5, we use gold mention
types as is done by Culotta et al. (2007) and Luo and
Zitouni (2005).

Note that in the experiments described in Sec-
tion 6 we predict the mention types as described
there and do not use any gold data. The mention
type feature is used in all experiments.

3.2 String Relation Features

String relation features indicate whether two strings
share some property, such as one being the substring
of another or both sharing a modifier word. Features
are listed in Table 1. Modifiers are limited to those
occurring before the head.

Feature Definition
Head match headi == headj

Extent match extenti == extentj
Substring headi substring of headj

Modifiers Match modi == (headj or modj)
Alias acronym(headi) == headj

or lastnamei == lastnamej

Table 1: String Relation Features

3.3 Semantic Features

Another class of features captures the semantic re-
lation between two words. Specifically, we check
whether gender or number match, or whether the
mentions are synonyms, antonyms, or hypernyms.
We also check the relationship of modifiers that
share a hypernym. Descriptions of the methods for
computing these features are described next.

Gender Match We determine the gender (male,
female, or neuter) of the two phrases, and report
whether they match (true, false, or unknown). For
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Category Feature Source
Mention Types Mention Type Pair Annotation and tokens
String Relations Head Match Tokens

Extent Match Tokens
Substring Tokens
Modifiers Match Tokens
Alias Tokens and lists

Semantic Gender Match WordNet and lists
Number Match WordNet and lists
Synonyms WordNet
Antonyms WordNet
Hypernyms WordNet
Both Speak Context

Relative Location Apposition Positions and context
Relative Pronoun Positions and tokens
Distances Positions

Learned Anaphoricity Learned
Name Modifiers Predicted Match Learned

Aligned Modifiers Aligned Modifiers Relation WordNet and lists
Memorization Last Words Tokens
Predicted Entity Types Entity Types Match Annotation and tokens

Entity Type Pair WordNet and tokens

Table 2: Features by Category

a proper name, gender is determined by the exis-
tence of mr, ms, mrs, or the gender of the first name.
If only a last name is found, the phrase is consid-
ered to refer to a person. If the name is found in
a comprehensive list of cities or countries, or ends
with an organization ending such as inc, then the
gender is neuter. In the case of a common noun
phrase, the phrase is looked up in WordNet (Fell-
baum, 1998), and it is assigned a gender according to
whether male, female, person, artifact, location, or
group (the last three correspond to neuter) is found
in the hypernym tree. The gender of a pronoun is
looked up in a table.

Number Match Number is determined as fol-
lows: Phrases starting with the words a, an, or this
are singular; those, these, or some indicate plural.
Names not containing and are singular. Common
nouns are checked against extensive lists of singular
and plural nouns – words found in neither or both
lists have unknown number. Finally, if the num-
ber is unknown yet the two mentions have the same

spelling, they are assumed to have the same number.

WordNet Features We check whether any sense
of one head noun phrase is a synonym, antonym, or
hypernym of any sense of the other. We also check
whether any sense of the phrases share a hypernym,
after dropping entity, abstraction, physical entity,
object, whole, artifact, and group from the senses,
since they are close to the root of the hypernym tree.

Modifiers Match Determines whether the text be-
fore the head of a mention matches the head or the
text before the head of the other mention.

Both Mentions Speak True if both mentions ap-
pear within two words of a verb meaning to say. Be-
ing in a window of size two is an approximation to
being a syntactic subject of such a verb. This feature
is a proxy for having similar semantic types.

3.4 Relative Location Features
Additional evidence is derived from the relative lo-
cation of the two mentions. We thus measure dis-
tance (quantized as multiple boolean features of the
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form [distance ≥ i]) for all i up to the distance and
less than some maximum, using units of compatible
mentions, and whether the mentions are in the same
sentence. We also detect apposition (mentions sepa-
rated by a comma). For details, see Table 3.

Feature Definition
Distance In same sentence

# compatible mentions
Apposition m1 ,m2 found
Relative Pronoun Apposition and m2 is PRO

Table 3: Location Features. Compatible mentions are
those having the same gender and number.

3.5 Learned Features

Modifier Names If the mentions are both mod-
ified by other proper names, use a basic corefer-
ence classifier to determine whether the modifiers
are coreferential. This basic classifier is trained
using Mention Types, String Relations, Semantic
Features, Apposition, Relative Pronoun, and Both
Speak. For each mention m, examples are generated
with the closest antecedent a to form a positive ex-
ample, and every mention between a and m to form
negative examples.

Anaphoricity Ng and Cardie (2002a) and Denis
and Baldridge (2007) show that when used effec-
tively, explicitly predicting anaphoricity can be help-
ful. Thus, we learn a separate classifier to detect
whether a mention is anaphoric (that is, whether it
is not the first mention in its equivalence class), and
use that classifier’s output as a feature for the coref-
erence model. Features for the anaphoricity classi-
fier include the mention type, whether the mention
appears in a quotation, the text of the first word of
the extent, the text of the first word after the head
(if that word is part of the extent), whether there is
a longer mention preceding this mention and having
the same head text, whether any preceding mention
has the same extent text, and whether any preceding
mention has the same text from beginning of the ex-
tent to end of the head. Conjunctions of all pairs of
these features are also used. This classifier predicts
anaphoricity with about 82% accuracy.

3.6 Aligned Modifiers

We determine the relationship of any pair of modi-
fiers that share a hypernym. Each aligned pair may
have one of the following relations: match, sub-
string, synonyms, hypernyms, antonyms, or mis-
match. Mismatch is defined as none of the above.
We restrict modifiers to single nouns and adjectives
occurring before the head noun phrase.

3.7 Memorization Features

We allow our system to learn which pairs of nouns
tend to be used to mention the same entity. For ex-
ample, President and he often refer to Bush but she
and Prime Minister rarely do, if ever. To enable the
system to learn such patterns, we treat the presence
or absence of each pair of final head nouns, one from
each mention of an example, as a feature.

3.8 Predicted Entity Type

We predict the entity type (person, organization,
geo-political entity, location, facility, weapon, or ve-
hicle) as follows: If a proper name, we check a list of
personal first names, and a short list of honorary ti-
tles (e.g. mr) to determine if the mention is a person.
Otherwise we look in lists of personal last names
drawn from US census data, and in lists of cities,
states, countries, organizations, corporations, sports
teams, universities, political parties, and organiza-
tion endings (e.g. inc or corp). If found in exactly
one list, we return the appropriate type. We return
unknown if found in multiple lists because the lists
are quite comprehensive and may have significant
overlap.

For common nouns, we look at the hypernym tree
for one of the following: person, political unit, loca-
tion, organization, weapon, vehicle, industrial plant,
and facility. If any is found, we return the appropri-
ate type. If multiple are found, we sort as in the
above list.

For personal pronouns, we recognize the entity as
a person; otherwise we specify unknown.

This computation is used as part of the following
two features.

Entity Type Match This feature checks to see
whether the predicted entity types match. The result
is true if the types are identical, false if they are dif-
ferent, and unknown if at least one type is unknown.
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Entity Type Conjunctions This feature indicates
the presence of the pair of predicted entity types for
the two mentions, except that if either word is a pro-
noun, the word token replaces the type in the pair.
Since we do this replacement for entity types, we
also add a similar feature for mention types here.
These features are boolean: For any given pair, a
feature is active if that pair describes the example.

3.9 Related Work

Many of our features are similar to those described
in Culotta et al. (2007). This includes Mention
Types, String Relation Features, Gender and Num-
ber Match, WordNet Features, Alias, Apposition,
Relative Pronoun, and Both Mentions Speak. The
implementations of those features may vary from
those of other systems. Anaphoricity has been pro-
posed as a part of the model in several systems, in-
cluding Ng and Cardie (2002a), but we are not aware
of it being used as a feature for a learning algorithm.
Distances have been used in e.g. Luo et al. (2004).
However, we are not aware of any system using the
number of compatible mentions as a distance.

4 Experimental Study

4.1 Corpus

We use the official ACE 2004 English training
data (NIST, 2004). Much work has been done on
coreference in several languages, but for this work
we focus on English text. We split the corpus into
three sets: Train, Dev, and Test. Our test set contains
the same 107 documents as Culotta et al. (2007).
Our training set is a random 80% of the 336 doc-
uments in their training set and our Dev set is the
remaining 20%.

For our ablation study, we further randomly split
our development set into two evenly sized parts,
Dev-Tune and Dev-Eval. For each experiment, we
set the parameters of our algorithm to optimize B-
Cubed F-Score using Dev-Tune, and use those pa-
rameters to evaluate on the Dev-Eval data.

4.2 Preprocessing

For the experiments in Section 5, following Culotta
et al. (2007), to make experiments more compara-
ble across systems, we assume that perfect mention
boundaries and mention type labels are given. We

do not use any other gold annotated input at evalu-
ation time. In Section 6 experiments we do not use
any gold annotated input and do not assume mention
types or boundaries are given. In all experiments we
automatically split words and sentences using our
preprocessing tools.4

4.3 Evaluation Scores

B-Cubed F-Score We evaluate over the com-
monly used B-Cubed F-Score (Bagga and Baldwin,
1998), which is a measure of the overlap of predicted
clusters and true clusters. It is computed as the har-
monic mean of precision (P ),

P =
1
N

∑
d∈D

∑
m∈d

(
cm

pm

) , (1)

and recall (R),

R =
1
N

∑
d∈D

∑
m∈d

(
cm

tm

) , (2)

where cm is the number of mentions appearing
both in m’s predicted cluster and in m’s true clus-
ter, pm is the size of the predicted cluster containing
m, and tm is the size of m’s true cluster. Finally, d
represents a document from the set D, and N is the
total number of mentions in D.

B-Cubed F-Score has the advantage of being able
to measure the impact of singleton entities, and of
giving more weight to the splitting or merging of
larger entities. It also gives equal weight to all types
of entities and mentions. For these reasons, we re-
port our results using B-Cubed F-Score.

MUC F-Score We also provide results using the
official MUC scoring algorithm (Vilain et al., 1995).
The MUC F-score is also the harmonic mean of
precision and recall. However, the MUC precision
counts precision errors by computing the minimum
number of links that must be added to ensure that all
mentions referring to a given entity are connected
in the graph. Recall errors are the number of links
that must be removed to ensure that no two men-
tions referring to different entities are connected in
the graph.

4The code is available at http://L2R.cs.uiuc.edu/
˜cogcomp/tools.php
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4.4 Learning Algorithm Details
We train a regularized average perceptron using ex-
amples selected as described in Section 2.2.1. The
learning rate is 0.1 and the regularization parameter
(separator thickness) is 3.5. At training time, we use
a threshold of 0.0, but when evaluating, we select pa-
rameters to optimize B-Cubed F-Score on a held-out
development set. We sample all even integer thresh-
olds from -16 to 8. We choose the number of rounds
of training similarly, allowing any number from one
to twenty.

5 Results

Precision Recall B3 F
Culotta et al. 86.7 73.2 79.3
Current Work 88.3 74.5 80.8

Table 4: Evaluation on unseen Test Data using B3 score.
Shows that our system outperforms the advanced system
of Culotta et al. The improvement is statistically signifi-
cant at the p = 0.05 level according to a non-parametric
bootstrapping percentile test.

In Table 4, we compare our performance against
a system that is comparable to ours: Both use gold
mention boundaries and types, evaluate using B-
Cubed F-Score, and have the same training and test
data split. Culotta et al. (2007) is the best compara-
ble system of which we are aware.

Our results show that a pairwise model with
strong features outperforms a state-of-the-art system
with a more complex model.

MUC Score We evaluate the performance of our
system using the official MUC score in Table 5.

MUC Precision MUC Recall MUC F
82.7 69.9 75.8

Table 5: Evaluation of our system on unseen Test Data
using MUC score.

5.1 Analysis of Feature Contributions
In Table 6 we show the relative impact of various
features. We report data on Dev-Eval, to avoid the
possibility of overfitting by feature selection. The
parameters of the algorithm are chosen to maximize

the BCubed F-Score on the Dev-Tune data. Note
that since we report results on Dev-Eval, the results
in Table 6 are not directly comparable with Culotta
et al. (2007). For comparable results, see Table 4
and the discussion above.

Our ablation study shows the impact of various
classes of features, indicating that almost all the fea-
tures help, although some more than others. It also
illustrates that some features contribute more to pre-
cision, others more to recall. For example, aligned
modifiers contribute primarily to precision, whereas
our learned features and our apposition features con-
tribute to recall. This information can be useful
when designing a coreference system in an applica-
tion where recall is more important than precision,
or vice versa.

We examine the effect of some important features,
selecting those that provide a substantial improve-
ment in precision, recall, or both. For each such
feature we examine the rate of coreference amongst
mention pairs for which the feature is active, com-
pared with the overall rate of coreference. We also
show examples on which the coreference systems
differ depending on the presence or absence of a fea-
ture.

Apposition This feature checks whether two men-
tions are separated by only a comma, and it in-
creases B-Cubed F-Score by about one percentage
point. We hypothesize that proper names and com-
mon noun phrases link primarily through apposition,
and that apposition is thus a significant feature for
good coreference resolution.

When this feature is active 36% of the examples
are coreferential, whereas only 6% of all examples
are coreferential. Looking at some examples our
system begins to get right when apposition is added,
we find the phrase

Israel’s Deputy Defense Minister,
Ephraim Sneh.

Upon adding apposition, our system begins to cor-
rectly associate Israel’s Deputy Defense Minister
with Ephraim Sneh. Likewise in the phrase

The court president, Ronald Sutherland,

the system correctly associates The court president
with Ronald Sutherland when they appear in an ap-
positive relation in the text. In addition, our system
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Precision Recall B-Cubed F
String Similarity 86.88 67.17 75.76
+ Semantic Features 85.34 69.30 76.49
+ Apposition 89.77 67.53 77.07
+ Relative Pronoun 88.76 68.97 77.62
+ Distances 89.62 71.93 79.81
+ Learned Features 87.37 74.51 80.43
+ Aligned Modifiers 88.70 74.30 80.86
+ Memorization 86.57 75.59 80.71
+ Predicted Entity Types 87.92 76.46 81.79

Table 6: Contribution of Features as evaluated on a development set. Bold results are significantly better than the
previous line at the p = 0.05 level according to a paired non-parametric bootstrapping percentile test. These results
show the importance of Distance, Entity Type, and Apposition features.

begins correctly associating relative pronouns such
as who with their referents in phrases like

Sheikh Abbad, who died 500 years ago.

although an explicit relative pronoun feature is
added only later.

Although this feature may lead the system to link
comma separated lists of entities due to misinter-
pretation of the comma, for example Wyoming and
western South Dakota in a list of locations, we be-
lieve this can be avoided by refining the apposition
feature to ignore lists.

Relative Pronoun Next we investigate the relative
pronoun feature. With this feature active, 93% of
examples were positive, indicating the precision of
this feature. Looking to examples, we find who in

the official, who wished to remain anony-
mous

is properly linked, as is that in

nuclear warheads that can be fitted to mis-
siles.

Distances Our distance features measure separa-
tion of two mentions in number of compatible men-
tions (quantized), and whether the mentions are in
the same sentence. Distance features are important
for a system that makes links based on the best pair-
wise coreference value rather than implicitly incor-
porating distance by linking only the closest pair
whose score is above a threshold, as done by e.g.
Soon et al. (2001).

Looking at examples, we find that adding dis-
tances allows the system to associate the pronoun
it with this missile not separated by any mentions,
rather than Tehran, which is separated from it by
many mentions.

Predicted Entity Types Since no two mentions
can have different entity types (person, organization,
geo-political entity, etc.) and be coreferential, this
feature has strong discriminative power. When the
entity types match, 13% of examples are positive
compared to only 6% of examples in general. Qual-
itatively, the entity type prediction correctly recog-
nizes the Gulf region as a geo-political entity, and
He as a person, and thus prevents linking the two.
Likewise, the system discerns Baghdad from am-
bassador due to the entity type. However, in some
cases an identity type match can cause the system to
be overly confident in a bad match, as in the case of
a palestinian state identified with holy Jerusalem on
the basis of proximity and shared entity type. This
type of example may require some additional world
knowledge or deeper comprehension of the docu-
ment.

6 End-to-End Coreference

The ultimate goal for a coreference system is to
process unannotated text. We use the term end-to-
end coreference for a system capable of determin-
ing coreference on plain text. We describe the chal-
lenges associated with an end-to-end system, de-
scribe our approach, and report results below.
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6.1 Challenges

Developing an end-to-end system requires detecting
and classifying mentions, which may degrade coref-
erence results. One challenge in detecting mentions
is that they are often heavily nested. Additionally,
there are issues with evaluating an end-to-end sys-
tem against a gold standard corpus, resulting from
the possibility of mismatches in mention boundaries,
missing mentions, and additional mentions detected,
along with the need to align detected mentions to
their counterparts in the annotated data.

6.2 Approach

We resolve coreference on unannotated text as fol-
lows: First we detect mention heads following a
state of the art chunking approach (Punyakanok and
Roth, 2001) using standard features. This results in
a 90% F1 head detector. Next, we detect the extent
boundaries for each head using a learned classifier.
This is followed by determining whether a mention
is a proper name, common noun phrase, prenominal
modifier, or pronoun using a learned mention type
classifier that. Finally, we apply our coreference al-
gorithm described above.

6.3 Evaluation and Results

To evaluate, we align the heads of the detected men-
tions to the gold standard heads greedily based on
number of overlapping words. We choose not to
impute errors to the coreference system for men-
tions that were not detected or for spuriously de-
tected mentions (following Ji et al. (2005) and oth-
ers). Although this evaluation is lenient, given that
the mention detection component performs at over
90% F1, we believe it provides a realistic measure
for the performance of the end-to-end system and fo-
cuses the evaluation on the coreference component.
The results of our end-to-end coreference system are
shown in Table 7.

Precision Recall B3 F
End-to-End System 84.91 72.53 78.24

Table 7: Coreference results using detected mentions on
unseen Test Data.

7 Conclusion

We described and evaluated a state-of-the-art coref-
erence system based on a pairwise model and strong
features. While previous work showed the impact
of complex models on a weak pairwise baseline, the
applicability and impact of such models on a strong
baseline system such as ours remains uncertain. We
also studied and demonstrated the relative value of
various types of features, showing in particular the
importance of distance and apposition features, and
showing which features impact precision or recall
more. Finally, we showed an end-to-end system ca-
pable of determining coreference in a plain text doc-
ument.
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