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Abstract 

User clicks on a URL in response to a query are 

extremely useful predictors of the URL’s rele-

vance to that query. Exact match click features 

tend to suffer from severe data sparsity issues in 

web ranking. Such sparsity is particularly pro-

nounced for new URLs or long queries where 

each distinct query-url pair will rarely occur. To 

remedy this, we present a set of straightforward 

yet informative query-url n-gram features that al-

lows for generalization of limited user click data 

to large amounts of unseen query-url pairs. The 

method is motivated by techniques leveraged in 

the NLP community for dealing with unseen 

words. We find that there are interesting regulari-

ties across queries and their preferred destination 

URLs; for example, queries containing “form” 

tend to lead to clicks on URLs containing “pdf”. 

We evaluate our set of new query-url features on 

a web search ranking task and obtain improve-

ments that are statistically significant at a p-value 

< 0.0001 level over a strong baseline with exact 

match clickthrough features.   

1 Introduction 

Clickthrough logs record user click behaviors, 

which are a critical source for improving search 

relevance (Bilenko and White, 2008; Radlinski et 

al., 2007; Agichtein and Zheng, 2006; Lu et al. 

2006). Previous work (Agichtein et al., 2006) 

demonstrated that clickthrough features (e.g., 

IsNextClicked and IsPreviousClicked) can lead 

to substantial improvements in relevance. Such 

features summarize query-specific user interac-

tions on a search engine. One commonly used 

clickthrough feature is generated based on the 

following observation: if a URL receives a large 

number of first and last clicks across many user 

sessions, then it indicates that this URL might be 

a strongly preferred destination of a query. For 

example, when a user searches for “yahoo”, they 

tend to only click on the URL www.yahoo.com 

rather than other alternatives. This results in 

www.yahoo.com being the first and last clicked 

URL for the query. We refer to such behavior as 

being navigational clicks (NavClicks). Features 

that use exact query and URL string matches 

(e.g., NavClick, IsNextClicked and IsPrevious-

Clicked)  are referred to as exact match features 

(ExactM) for the remainder of this paper.  

 

The coverage of ExactM features is sparse, espe-

cially for long queries and new URLs. Many 

long queries are either unique or very low fre-

quency. Hence, the improvements from ExactM 

features are limited to the more popular queries. 

In addition, ExactM features tend to be weighted 

heavily in the ranking of results when they are 

available. This introduces a bias where the rank-

ing models tend to strongly favor older URLs 

over new URLs even when the latter otherwise 

appear to be more relevant.  

 

By inspecting the clickthrough logs, we observed 

that unseen query-url pairs are often composed of 

informative previously observed subsequences. 

Specifically, we saw that query n-grams can be 

correlated with sequences of URL n-grams.  For 

example, we find that there are interesting regu-

larities across queries and URLs, such as queries 

containing “form” tending to lead to clicks on 

URLs containing “pdf”. This strongly motivates 

the adoption of an approach similar to the Natu-

ral Language Processing (NLP) technique of us-

ing n-grams to deal with unseen words. For ex-

ample, part-of-speech tagging (Brants, 2000) and 

parsing (Klein and Manning, 2003) both require 

dealing with unknown words. By using n-gram 

substrings, novel items can be dealt with using 

any informative substrings they contain that were 

actually observed in the training data.  
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The remainder of the paper is organized as fol-

lows. In Section 2, we introduce our overall me-

thodology. Section 2.1 presents a data mining 

method for building a query-url n-gram diction-

ary, Section 2.2 describes the new ranking fea-

tures in detail. In section 3, we present our ex-

perimental results. Section 4 discusses related 

work, and Section 5 summarizes the contribution 

of this work.  

2 Methodology 

This section describes the detailed methodology 

used in generating the query-url n-gram features. 

Our features require association scores to be pre-

viously calculated, and, hence, we first introduce 

a data mining approach that is used to build an 

association dictionary in Section 2.1. Then, we 

present the procedure used to generate the query-

url n-gram features that use the dictionary in Sec-

tion 2.2. 

 
 

Figure 1: Steps to build a query-url n-gram dic-

tionary 

 

2.1 Data Mining on a Query-URL 

 N-gram Dictionary 

 

The steps involved in building the dictionary are 

shown in Figure 1. We first collect seed query-

url pairs from clickthrough data based on Nav-

Clicks. The queries and URLs from the collected 

pairs are tokenized and converted into a collec-

tion of paired query-url n-grams. For each pair, 

we calculate the mutual information of the query 

n-gram and its corresponding URL n-gram. For 

our experiment, we collect a total of more than 

15M seed pairs and 0.5B query-url n-gram pairs 

using six months of query log data. The details 

are described in the following sections.  

2.1.1 Seed List 

We identify the seed list based on characteristic 

user click behavior. Given a query, we select the 

URL with the most NavClicks as compared to 

other URLs returned. During data collection, the 

rank positions of the top 5 URLs were shuffled to 

avoid the position bias. We aggregate NavClicks 

for a URL occurring in these positions in order to 

both obtain more click data and to avoid the posi-

tion bias issue discussed in Dupret and Piwowar-

ski (2008) and Craswell et al. (2008).  

 

For example, in Figure 1, the numbers of Nav-

Clicks for the top three URLs are shown. The 

URL www.irs.gov/pub/irs-pdf/f1040.pdf receives 

the largest number of NavClicks, and, therefore, 

it is used to create the query-url pair: 
 

[irs 1040 form, www.irs.gov/pub/irs-pdf/f1040.pdf] 

 

2.1.2 Query and URL Segmentation  

We segment the seed pairs to n-gram pairs in 

order to increase the coverage beyond that of 

ExactM click features. Within NLP, n-grams are 

typically extracted such that words that are adja-

cent in the original sequence are also adjacent in 

the extracted n-grams. Furthermore, we attempt 

to achieve additional generalization by using skip 

n-grams (Lin and Och, 2004). This means we not 

only extract n-grams for adjacent terms but also 

for sequences that leave out intermediate terms. 

This is motivated by the observation that the se-

mantics of user queries is often preserved even 

when some intermediate terms are removed.  The 

details of the segmentation methods are de-

scribed below. 

2.1.2.1 Query Segmentation  

Prior to query segmentation, we normalize raw 

queries by replacing punctuations with spaces. 

Queries are then segmented into a sequence of 
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space delimited tokens. From these, we extract 

all possible query n-grams and skip n-grams for 

n smaller than or equal to three (i.e., all unigrams, 

bigrams, and trigrams). For example, given the 

sequence “irs 1040 form” the adjacent bigrams 

would be “irs 1040” and “1040 form”. With skip 

n-grams we also extract “irs form” as shown in 

Table 1. We do not use n-grams longer than 3 in 

order to avoid problems with overfitting. We will 

refer to this segmentation method as Affix Seg-

mentation.  

 

Table 1: An Example of Affix Segmentation 

N-gram Affix Segmentation 

Unigram irs, 1040, form 

Bigram irs 1040, 1040 form, irs form 

Trigram irs 1040 form 

2.1.2.2 URL Segmentation  

As shown in Table 2, after the queries are seg-

mented, URLs are categorized into four groups: 

domain, URL language, URL region and URL 

path. In general, a URL is delimited by punctua-

tion characters such as “?”, “.”,” “/”, and “=”.  

 

Table 2: An Example of URL Segmentation 

URL Groups Example 

Domain irs.gov 

URL language en 

URL region us 

URL path pub, irs, pdf, f1040, pdf 

 

The domain group includes one domain token, 

for example, irs.gov. Although domains could be 

divided into multiple n-grams, we treat them as a 

single unit, with the exception of encoded lan-

guage and region information.  

 

The language and region groups are based on the 

language or region part of the URL n-grams such 

as the suffixes “.en” and “.de”. The language and 

region of a URL n-gram are identified by a table 

look-up method. The table is created based on 

the information available at en.wikipedia.org/ 

wiki/List_of_ISO_639-1_codes and en.wikipedia. 

org/wiki/ISO_3166. When there is no clear lan-

guage or region URL n-gram, we use English (en) 

as the default language and United States (us) as 

the default region. 

2.1.3 Calculation of Mutual Information 

After query and URL n-grams are extracted, we 

calculate mutual information (Gale and Church, 

1991) to determine the degree of association be-

tween the n-grams. The definition of query-url n-

gram mutual information (MI) is given in Equa-

tion 1. 

 

)Freq( )Freq(

),Freq(
log2

),MI(
uq

uq
uq =   (1) 

 

Here q corresponds to a query n-gram and u cor-

responds to a URL n-gram. Freq (q) is the count 

of q in the seed list normalized by the total num-

ber of q. Freq (u) is the count of u normalized by 

the total number of u.  Freq (q, u) is the count of 

q and u that co-occurred in a full query-url pair 

normalized by the total number of q and u. A pair 

will be assigned to a MI score of zero if the items 

occur together no more than expected by chance, 

under the assumption that the two items are sta-

tistically independent. When a pair occurs more 

than is expected by chance, the MI score is posi-

tive. On the other hand, if a pair occurs together 

less than is expected by chance, the mutual in-

formation score is negative. In order to increase 

the confidence of the MI scores, we remove all 

n-grams with less than 3 occurrences in the seed 

list, and assign a zero MI score for any pairs in-

volving these n-grams. No smoothing is applied. 

 

This scoring scheme fits well with the associa-

tion properties we would like to have for our 

query-url n-gram click features. If a query n-

gram cues for a certain URL through one of its n-

grams, the feature will take on a positive value. 

Similarly, if a query n-gram cues against a cer-

tain URL, the feature will take on a negative val-

ue.  

2.1.4 Analysis of Query-URL N-gram 

Association 

By examining our dictionary, we observed a 

number of pairs that are interesting from a rele-

vance ranking perspective. To illustrate, we pre-

sent four examples of n-gram pairs and intui-

tively explore the nature of the n-gram associa-

tions in the dictionary.  

 

Table 3: Examples of MI Scores 

Query n-gram URL n-gram MI score 

“iphone” apple.com 8.7713 

“iphone” amazon.com -0.1555 

“iphone plan” att.com 11.5388 

“iphone plan” apple.com 8.9676 

 

First, let’s examine the association between 

query n-grams and URL n-grams for the queries 
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“iphone” and “iphone plan”. Notice that the 

query unigram “iphone” is strongly associated 

with apple.com, but negatively associated with 

amazon.com. This can be explained by the fact 

that “iphone” as a product is not only developed 

by Apple but also strongly associated with the 

Apple brand. In contrast, while Amazon.com 

sells iphones, it also sells a large variety of other 

products, thus is not regarded as a very authorita-

tive source of information about the “iphone”. 

However, by adding additional context, the most 

preferred URL according to MI can change. The 

two examples in the bottom of Table 3 illustrate 

the URL preferences for the query bigram 

“iphone plan”. While apple.com is still a strongly 

preferred destination, there is a much stronger 

preference for att.com. This preference follows 

since apple.com has more product information on 

the “iphone” while the information provided by 

att.com will be more targeted at visitors who 

want to explore what rate plans are available. 

 

Second, Table 4 shows the association between 

“kimo”, “.tw” and “.us”. “Kimo” was a Taiwan-

ese start-up acquired by Yahoo!. The mutual in-

formation scores accurately reflect the associa-

tion between the query n-gram and region ids.  

 

Table 4: Example of MI Scores 

Query n-gram URL n-gram MI score 

“kimo” tw (taiwan) 12.8303 

“kimo” us (united states) 0.7209 

 

Third, Table 5 shows the association between 

“kanji”, and URLs with Language identification 

of “Japanese”, “Chinese” and “English”. “Kanji” 

means “Chinese” in Japanese. Since queries con-

taining “Kanji” are typically from users inter-

ested in Japanese sites, the mutual information 

shows higher correlation with Japanese than with 

English or Chinese.  

 

Table 5: Example of MI Scores 

Query n-gram URL n-gram MI score 

“kanji” ja (japanese) 11.3862 

“kanji” zh (chinese) 6.2567 

“kanji” en (english) 4.2110 
 

Table 6: Example of MI Score 

Query n-gram URL n-gram MI score 

“form” pdf 4.9067 

“form” htm 1.0916 

“video” watch 5.7192 

“video” htm -1.9079 

 

Fourth, Table 6 shows the association between 

two query n-grams, “form” and “video”, that at 

first glance may not actually look very informa-

tive for URL path selection. However, notice that 

the unigram “form” has a strong preference for 

pdf documents over more standard web pages 

with an html extension. Similarly, queries that 

include “video” convey a preference for URLs 

containing “watch”, a characteristic URL n-gram 

for many video sharing websites. 

 

It is reasonable to anticipate that incorporating 

such associations into a search engine’s ranking 

function should help improve both search quality 

and user experience. Take the example where, 

there are two high ranking competing URLs for 

the query “irs 1040 form”. Let’s also assume 

both documents contain the same query relevant 

keywords, but one is an introduction of the “irs 

1040 form” as an htm webpage and the other one 

is the real filing form given as a pdf document. 

Since in our dictionary, “form” is more associ-

ated with pdf than htm, we predict that most us-

ers would prefer the real pdf form directly, so it 

should be placed first in the list of query results. 

While click data for the exact query-url pairs 

confirms this preference, it is reassuring that we 

could identify it without needing to rely on see-

ing the specific query string before. As described 

in detail below, and motivated by this analysis, 

we designed our query-url click features based 

on the contents of the n-gram MI dictionary. 

2.2 Query-URL N-gram Features  

For our feature set, we explored the use of differ-

ent query segmentation approaches (concept and 

affix segmentation) in order to increase the di-

versity of n-grams. In the following section, we 

use an unseen query “irs 1040 forms” and con-

trast it with the known query “irs 1040 form” 

from the last section.  

2.2.1 Concept Segmentation Features 

Query concept segmentation is a weighted query 

segmentation approach. Each query is analyti-

cally interpreted as being a main concept and a 

sub concept. We search for the unique segmenta-

tion of the query that maximizes its cumulative 

mutual information score with the URL n-grams. 

Main concepts and sub concepts are n-grams 

from the query that have the strongest association 

with URL n-grams and thus assist in identifying 

relevant landing URL n-grams when the whole 

query or the whole URL has not been seen.  
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Algorithm 1: Concept Segmentation 

for U = domain, URL language, URL region, 

URL path do 

    for j = 0... n-1 do 

          M  ⇐  W0...j 

          S   ⇐  Wj+1...n 

          for k = 0... m do          

               curr_mi_M ⇐ arg maxk=1...m  MI (M, Uk) 

               curr_mi_S ⇐ arg maxk=1...m  MI (S, Uk) 

                if curr_mi_M + curr_mi_S > curr_best                    

                then 
                    curr_best = curr_mi_M + curr_mi_S 

                    mi_M ⇐ curr_mi_M 

                    mi_S ⇐ curr_mi_S 

                end if 

           end for 

           adding mi_M as a feature 

           adding mi_S as a feature 

      end for 

end for 

 

Pseudo-code for generating query-url n-gram 

features based on the concept segmentation is 

given in Algorithm 1. Each query (Q) is com-

posed of a number of words, w1, w2, w3…,wn. 

Each URL is segmented and categorized to four 

groups: domain, URL language, URL region and 

URL path. Each URL group has m number of 

URL n-grams.  M is the main concept of Q and S 

is the sub concept of Q.  

 

One potential drawback of such concept segmen-

tation is data sparsity. When we look for the 

maximum of cumulative mutual information, we 

may obtain main concepts with very high mutual 

information and sub concepts which do not exist 

in the dictionary. In order to address this problem, 

we implement a second query segmentation me-

thod, affix segmentation, that is discussed in sec-

tion 2.2.2.  

 

Table 7 shows eight concept segmented features. 

“Coverage” is the percentage of query-url pairs 

that have valid feature values. Some of the sam-

ples do not have values because no clicks for the 

pairs were seen in the sample of data used to 

build the dictionary. When a pair does not have a 

value, the default value of zero is assigned. This 

default value is based on the assumption that 

unless we have evidence otherwise, we assume 

all query-url n-grams are statistically independ-

ent and thus provide no preference signal. 

 

Table 7: Eight Features Generated based on 

Concept Segmentation.  

Feature Query N-

gram 

URL N-

gram 

Coverage 

(%) 

MainDS M domain 54.09 

SubDS S domain 30.46 

MainLang M lang. 94.41 

SubLang S lang. 72.40 

MainReg M reg. 90.34 

SubReg S reg. 68.19 

MainPath M path 64.96 

SubPath S path 58.76 

 

Query-URL Domain Features are defined as 

the mutual information of a query n-gram and the 

domain level URL. There are two features in this 

category, one for the query main concept and one 

for the sub concept. They help to identify the 

user preferred host given a query.  

 

Table 8: Example of Selecting Query Segmenta-

tion 

MI(q,u) irs.gov 

“irs” 11.2174 

“1040” 

  

11.6175 

“forms” 7.5049 

11.5550 

Cumulative MI 19.1224 22.7724 

  Seg. 1 Seg.2 

 

To illustrate the concept segmentation features, 

let’s examine the query, “irs 1040 forms” in the 

context of the domain irs.gov.  The query “irs 

1040 forms” can be segmented either as “irs 

1040” and “forms” or as “irs” and “1040 forms”. 

As shown in Table 8, taking the cumulative max-

imum, the second segmentation scores higher 

than the first one. Therefore, the “irs” and “1040 

forms” segmentation is preferred. The feature 

value for the main concept is 11.5550, and the 

sub concept is then assigned to be 11.2174. 

 

Query-URL Language and Region Features 
are the mutual information of a query n-gram and 

URL language/region. They are used for provid-

ing language and region information.  
 

Query-URL Path Features are the mutual 

information of a query n-gram and a URL path n-

gram. While there are typically many URL path 

n-grams, only one URL path n-gram is selected 

to be paired with each query n-gram. The se-

lected n-gram is the one that achieves the highest 
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cumulative maximum MI score. They are used 

for providing association between query n-grams 

and url n-grams such as “forms” and “pdf”. 

2.2.2 Affix Segmentation Features 

As previously mentioned, affix segmentation 

addresses sparsity issues associated with concept 

segmentation. Here, we introduce the features 

generated based on affix segmentation. Pseudo-

code for generating the features is given in Algo-

rithm 2. Two query unigrams (w0 and wn) and 

one bigram (w0wn) is used. Each URL is seg-

mented and categorized to four groups: domain, 

URL language, URL region and URL path. Each 

URL group has m number of URL n-grams.   

 

This approach is complementary to the concept 

segmentation for long queries. The affix n-grams 

are in smaller unit, and therefore, are less sparse.  

In addition, the skip bigrams allow for generali-

zations using non-adjacent terms. Table 9 shows 

the coverage of the twelve affix features.  

 

Algorithm 2:  Affix Segmentation  

for U = domain, URL language, URL region, 

URL path do 

     for q = w0, wn, w0wn do 

          for k = 0... m do          

               curr_mi_q ⇐ arg maxk=1...m  MI (q, Uk) 

                if curr_mi_q > curr_best then 

                    curr_best = curr_mi_q  

                end if 

           end for 

           adding curr_mi_q as a feature 

      end for 

end for 

 

Table 9: Twelve Features Generated based on 

Affix Segmentation  

Feature Query N-

gram 

URL N-

gram 

Coverage 

(%) 

PreDS w0 domain 48.09 

SufDS wn domain 47.72 

PresufDS w0wn domain 23.57 

PreLang w0 lang. 55.58 

SufLang wn lang. 58.22 

PresufLang w0wn lang. 24.91 

PreReg w0 reg. 93.82 

SufReg wn reg. 93.59 

PresufReg w0wn reg. 69.29 

PrePath w0 path 98.15 

SufPath wn path 97.80 

PresufPath w0wn path 75.81 

 

Query-url domain affix features has three fea-

tures: MI(w0, domain), MI(wn, domain), and 

MI(w0wn, domain). In the example of “irs 1040 

forms” and “irs.gov”, the features are MI(irs, 

irs.gov), MI(forms, irs.gov), and MI(irs forms, 

irs.gov).  

 

Query-url language and region affix features 
has three features respectively: MI(w0, language), 

MI(wn, language), MI(w0wn, language) MI(w0, 

region), MI(wn, region), and MI(w0wn, region). 

In the example of “irs 1040 forms”, “en” and 

“us”, the features are MI (irs, en), MI (forms, en), 

MI (irs forms, en), MI (irs, us), MI (forms, us), 

and MI (irs forms,us).  

 

Query-url path affix features has three fea-

tures: MI(w0, path), MI(wn, path), and MI(w0wn, 

path). In the example of “irs 1040 forms” and 

“www.irs.gov/pub/irs-pdf/f1040.pdf”, there are 

four URL path n-grams, “pub”, “irs”, “pdf”, and 

“f1040”. The URL path n-gram, irs, gets maxi-

mum MI score. Therefore, the query-url path af-

fix features are MI (irs, irs), MI (forms, irs), and 

MI (irs forms, irs).  

 

We demonstrated the procedure to generate 20 

query-url n-gram features, and in Section 3, we 

will present their effectiveness in relevance rank-

ing.   

3 Experiment 

We evaluate the performance of query-url n-

grams features (8 concept and 12 affix features) 

on a ranking application and analyze the results 

from several different perspectives.  

3.1 Datasets 

For all experiments, our training and test data are 

query-url pairs annotated with human judgments.  

In our data, we use five grades to evaluate rele-

vance of a query and URL pair.  

 

The data includes 94K queries for training and 

3.4K queries for evaluation, and each query is 

associated with the top ranked URLs returned 

from a search engine. Totally, there are 916K 

query-url pairs for training and 42K pairs for 

testing. The queries are general and uniformly 

and randomly sampled with replacement, result-

ing in more frequent queries also appearing more 

frequently in our training and test sets. 
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3.2 Ranking Algorithm 

GBRank is a supervised learning algorithm that 

uses boosted decision trees and incorporates the 

pair-wise information from the training data 

(Zheng et al, 2007). It is able to deal with a large 

amount of training data with hundreds of features. 

We use an internal C++ implementation of 

GBRank. 

3.3 Evaluation Metric 

We use Discounted Cumulative Gain (Järvelin 

and Kekäläinen, 2002) to evaluate our ranking 

accuracy. Discounted Cumulative Gain (DCG) 

has been widely used in evaluating the quality of 

search engine rankings and is defined as: 

 

∑
=

+

=

k

i

i
k

i

G
DCG

1 2 )1(log
  (2) 

     

Gi represents the editorial judgment of the i-th 

document. In this paper, we only report normal-

ized DCG5, which is an absolute DCG5 normal-

ized by a baseline, and relative DCG5 im-

provement, which is an improvement normal-

ized by the baseline. Note normalized DCG5 is 

different than NDCG (Normalized Discounted 

Cumulative Gain defined in Järvelin and 

Kekäläinen, 2002). We use Wilcoxon signed test 

(Wilcoxon, 1945) to evaluate the significance for 

model comparison. 

3.4 Feature Sets 

Five feature sets are used in our experiments. 

Details are listed in Table 10.  

 

Table 10: Five Feature Sets 

Tag Description  

Base Feature 

Set  

Core Feature Set and ExactM 

click features 

Q-U N-gram 

Feature Set (I) 

Base Feature Set and Q-U N-

gram features 

Core Feature 

Set  

query-based, document-based, 

query-document based fea-

tures 

NavClick Fea-

ture Set 

Core Feature Set and Nav-

Click 

Q-U N-gram 

Feature Set (II) 

Core Feature Set and Q-U N-

gram features 

 
Base Feature Set is a strong baseline feature set 

from a state-of-the-art commercial search engine. 

This set includes NavClick features, and other 

internal ExactM click features. It is used for 

evaluating Query-URL N-gram Feature Set (I) in 

order to know whether query-url n-gram features 

can achieve gains when stacked on top of Ex-

actM features.  

 

Core Feature Set is a weaker variant of the 

baseline system that excludes ExactM click fea-

tures. This system is used for evaluating 

NavClick Feature Set and Query-URL N-gram 

Feature Set (II) independently in order to study 

and contrast the effected queries.  

3.5 Experimental Results 

We compare the query-URL N-gram feature set 

(I) with the base feature set in Section 3.5.1, and 

contrast the NavClick features and the query-

URL N-gram features (II) using the Core Feature 

Set in Section 3.5.2. 

3.5.1 Query-URL N-gram Feature Set (I) 

versus Base Feature Set 

As shown in Figure 2, Query-URL N-gram Fea-

ture Set (I) outperforms Base Feature Set. The 

additional 20 query-url n-gram features achieve 

statistically significant gains at a p-value < 

0.0001 level, suggesting that they are compli-

mentary to ExactM click features. Even though 

the query-url n-gram features are generated from 

the same data as the ExactM features, the gain is 

additive and stackable. The DCG5 impact is 

0.53% relative improvement when running 

GBRank using 2500 trees. Every data point is 

normalized by the DCG5 of the baseline feature 

set using 2500 trees. This is represented in the 

graph as the rightmost point of Base Feature Set 

curve. 

 

0.96
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0.98

0.99

1

1.01

500 1000 1500 2000

Q-U N-gram Features (I)

Base Features

NavClick

Q-U N-gram Features (II)

Core Features

 
Figure 2: Comparison of the five feature sets on 

the normalized DCG5 (Y-axis) against number of 

trees (X-axis).  

 

530



3.5.2 NavClick and Query-URL N-gram 

Feature Set (II) versus Core Fea-

ture Set 

We compare NavClick Feature Set and Query-

URL N-gram Feature Set (II) in the context of 

Core Feature Set, in order to evaluate the two 

independently. As shown in Figure 2, both 

NavClick and Query-URL N-gram Feature Set 

(II) outperform Core Feature Set. It is not sur-

prising that NavClick also outperforms Query-

URL N-gram Feature Set (II) since the n-gram 

features are backoff of NavClick. However, their 

gains are competitive suggesting the query-url n-

gram features are very good relevance indicators. 

The impact of NavClick and Query-URL N-gram 

Feature Set (II) is 0.72% and 0.62% relative 

DCG5 improvement at Tree 2500 respectively. 

3.5.3 Feature Importance 

Using the GBRank model, features are evaluated 

and sequentially selected to build the boosted 

decision trees. The split of each node increases 

the DCG during training. We evaluate a feature’s 

importance by aggregating the DCG impact of 

the feature over all trees (Zheng et al., 2007). 

Here, the feature importance is rescaled so that 

the feature with largest DCG impact is assigned a 

normalized score of 1. Figure 3 illustrates the 

relative influence of each of query-url n-gram 

feature. Of these, n-gram features associated with 

a domain name (i.e., MainDS) rank highest. 

 

 
Figure 3: Feature importance of query-url n-

gram features. The importance (Y axis) is nor-

malized so that the most important feature 

(MainDS)’s importance is 1. 

3.6 Analysis 

We access system performance with respect to 

both query length and frequency using the two 

click features sets in combination with the Core 

Feature Set in order to gain insight into the ef-

fected queries.  

3.6.1 Query Length 

As shown in Table 11, NavClick (NavClick Fea-

ture Set) best improves relevance for two word 

queries. In contrast, Query-url n-gram features in 

isolation (Query-URL N-gram Feature II) are 

able to show sizable improvements on longer 

queries, while slightly degrading performance on 

short 1-word queries. Using both feature sets to-

gether (Query-URL N-gram Feature I) results in 

improvement for queries of all lengths. 

 

These results suggest that the strong signal being 

provided by NavClick for short queries helps to 

compensate for any additional noisy introduced 

by the n-gram features, while allowing the n-

gram features to handle  longer queries that are 

less well covered by NavClick. These longer 

queries are exactly the type of queries our query-

url n-gram features were designed to help with. 

 

Table 11: Relative DCG5 Improvement of 

NavClick, Query-URL N-gram (II), and Query-

URL N-gram Features  (I) vs Core Feature Set 

Length NavClick 

vs Core 

(%) 

QU N-

gram (II)  

vs Core 

(%) 

QU N-

gram (I) 

vs Core 

(%) 

1 word 0.03 -0.04 0.62 

2 words 1.04 1.06 1.58 

3 words 1.00 1.44 2.12 

4+ words 0.4 0.68 1.01 

3.6.2 Query Frequency 

We found that query-url n-gram features improve 

tail queries. Head queries are considered as top 

two million frequent queries in our traffic and 

tail queries include anything outside of that range.  

 

Table 12: Relative DCG5 Improvement of 

NavClick, Query-URL N-gram Features (II) and 

Query-URL N-gram Features (I) vs Core Feature 

Set 

 NavClick vs 

Core (%) 

QU N-gram 

(II) vs Core 

(%) 

QU N-

gram (I) vs 

Core (%) 

Head 0.91 -0.15 1.11 

Tail 0.59 1.11 1.40 

 

As shown in Table 12, query-url n-gram features 

(Query-URL Feature Set II) differ from 

NavClick (NavClick Feature Set) in that they get 
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more gain from tail queries. Together, they 

(Query-URL Feature Set I) improve both head 

and tail queries. 

3.7 Case Study 

Below we examine queries from the test set and 

analyze the effects of Query-URL N-gram Fea-

ture Set (II) versus Core Feature Set. 

3.7.1 Positive Cases 

1) Animal shelter in va: this query targets a spe-

cific geographic location. Using the baseline fea-

ture set, the root url wvanimalshelter.org is incor-

rectly ranked higher than www.netpets.com/ 

cats/catresc/virginia.htm. Without any addition-

ally ranking information, general URLs (root) 

tend to be ranked more highly than more specific 

URLs (path), as the root pages tend to be more 

popular. However, our new features express a 

preference between “va” and “virginia”, and this 

correctly flips the ranking order.  

2) Myspace profile generator: www. myspacgens. 

com/handler.php?gen=profile was incorrectly 

ranked higher than www.profilemods.com/ 

myspace-generators. Our new features convey a 

high user preference association between “profile 

generator” and the domain profilemods.com, 

which helps to correctly swap the order.   

3.7.2 Negative Cases 

We determined that negative cases where the 

baseline feature set outperforms the new features 

are typically one word navigational queries such 

as “craigslist”. However, after we combine the 

query-url n-gram features with NavClick, one 

word navigational queries are ranked correctly. 

4 Related Work 

Our work is mainly related to Gao et al. (2009) 

and Bilenko and White (2008). Gao et al. (2009) 

addressed the sparsity issue by propagating click 

information among similar queries in the same 

cluster. Their idea is based on an observation that 

similar queries go to similar pages. When two 

queries have similar clicked URLs, it is likely 

that they share clicked URLs. In contrast, our 

idea is to utilize NLP techniques to break down 

long, infrequent queries into shorter, frequent 

queries. The two approaches can be mutually 

beneficial. Bilenko and White (2008) expanded 

click data with a search engine by using post-

search user experience collected from toolbars. 

Toolbars keep track of users’ click behavior both 

when they are using the search engine directly 

and beyond. Their relevance features are built 

based on whole session clicks extracted from the 

toolbar. In contrast, our n-gram features are built 

on search engine clicks directly. We should be 

able to expand our method to integrate the post-

search clicks with toolbar data.    

 

Other related work can be found in the domain of 

query rewriting. Our n-gram dictionary was orig-

inally designed for query rewriting. Query re-

writing (Xu and Croft, 1996; Salton and Voor-

hees, 1984) reformulates a query to its synonyms 

or related terms automatically. However, the 

coverage of query rewriting is normally small, 

because an inappropriate rewrite can cause sig-

nificant decrease in precision. In contrast, our 

approach can cover a larger number of queries 

without decreasing precision, because it does not 

need to make a binary decision whether a query 

should be reformulated. The association scores 

between queries and rewrites are used as ranking 

features which are trained discriminatively to-

ward search quality.   

5 Conclusion 

In this paper, we presented a set of straightfor-

ward yet informative query-url n-gram features. 

They allow for generalization of limited user 

click data to large amounts of unseen query-url 

pairs. Our experiments showed such features 

gave significant improvement over models with-

out using the features. In addition, we mined an 

interesting dictionary which contains informa-

tive, but not necessarily obvious, query-url syno-

nym pairs such as “form” and “pdf”. We are cur-

rently extending our work to a variety of exact 

match features and different sources of click-

through logs.  
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