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Department of EECS

University of Michigan
Ann Arbor, MI 48109, USA
ozgur@umich.edu

Dragomir R. Radev
Department of EECS and

School of Information
University of Michigan

Ann Arbor, MI 48109, USA
radev@umich.edu

Abstract

Distinguishing speculative statements
from factual ones is important for most
biomedical text mining applications. We
introduce an approach which is based
on solving two sub-problems to identify
speculative sentence fragments. The first
sub-problem is identifying the speculation
keywords in the sentences and the second
one is resolving their linguistic scopes.
We formulate the first sub-problem as a
supervised classification task, where we
classify the potential keywords as real
speculation keywords or not by using
a diverse set of linguistic features that
represent the contexts of the keywords.
After detecting the actual speculation
keywords, we use the syntactic structures
of the sentences to determine their scopes.

1 Introduction

Speculation, also known as hedging, is a fre-
quently used language phenomenon in scientific
articles, especially in experimental studies, which
are common in the biomedical domain. When re-
searchers are not completely certain about the in-
ferred conclusions, they use speculative language
to convey this uncertainty. Consider the follow-
ing example sentences from abstracts of articles in
the biomedical domain. The abstracts are available
at the U.S. National Library of Medicine PubMed
web page1. The PubMed Identifier (PMID) of the
corresponding article is given in parenthesis.

1. We showed that the Roaz protein bound specifically to
O/E-1 by using the yeast two-hybrid system. (PMID:
9151733)

2. These data suggest that p56lck is physically associated

with Fc gamma RIIIA (CD16) and functions to mediate

1http://www.ncbi.nlm.nih.gov/pubmed/

signaling events related to the control of NK cellular

cytotoxicity. (PMID: 8405050)

The first sentence is definite, whereas the sec-
ond one contains speculative information, which is
conveyed by the use of the word “suggest”. While
speculative information might still be useful for
biomedical scientists, it is important that it is dis-
tinguished from the factual information.

Recognizing speculations in scientific text has
gained interest in the recent years. Previous
studies focus on identifying speculative sentences
(Light et al., 2004; Medlock and Briscoe, 2007;
Szarvas, 2008; Kilicoglu and Bergler, 2008).
However, in many cases, not the entire sentence,
but fragments of a sentence are speculative. Con-
sider the following example sentences.

1. The mature mitochondrial forms of the erythroid and
housekeeping ALAS isozymes are predicted to have
molecular weights of 59.5 kd and 64.6 kd, respectively.
(PMID: 2050125)

2. Like RAD9, RAD9B associates with HUS1, RAD1, and

RAD17, suggesting that it is a RAD9 paralog that

engages in similar biochemical reactions. (PMID:

14611806)

Both sentences are speculative, since they con-
tain speculative information, which is signaled by
the use of the word “predicted” in the first sen-
tence and the word “suggesting” in the second
sentence. The scope of the speculation keyword
“predicted” in the first sentence spans the entire
sentence. Therefore, classifying the sentence as
speculative does not cause information loss. How-
ever, the scope of the speculation keyword “sug-
gesting” in the second sentence applies only to
the second clause of the sentence. In other words,
only the statement “RAD9B is a RAD9 paralog
that engages in similar biochemical reactions” is
speculative. The statement “Like RAD9, RAD9B
associates with HUS1, RAD1, and RAD17” con-
veys factual information. Therefore, classifying
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the entire sentence as speculative will result in in-
formation loss.

In this paper, we aim to go beyond recogniz-
ing speculative sentences and tackle the problem
of identifying speculative fragments of sentences.
We propose an approach which is based on solv-
ing two sub-problems: (1) detecting the real spec-
ulation keywords, (2) resolving their linguistic
scopes in the sentences. As the previous exam-
ples demonstrated speculations are signaled with
speculation keywords (e.g. might, suggest, likely,
hypothesize, could, predict, and etc.). However,
these keywords are not always used in a specula-
tive context. In other words, they are not always
real speculation keywords. Unlike previous ap-
proaches which classify sentences as speculative
or not, we formulate the problem as classifying the
keywords as real speculation keywords or not. We
extract a diverse set of features such as linguistic
features that represent the context of the keyword
and positional features of the sentence in which
the keyword occurs. We use these features with
Support Vector Machines (SVM) to learn models
to classify whether the occurrence of a keyword
is in a speculative context or not. After detecting
the real speculation keywords, we use the syntactic
structures of the sentences to identify their linguis-
tic scopes.

2 Related Work

Although hedging in scientific articles has been
studied from a linguistics perspective since the
1990s (e.g. (Hyland, 1998)), it has only gained in-
terest from a natural language processing perspec-
tive in the recent years.

The problem of identifying speculative sen-
tences in biomedical articles has been introduced
by Light et al. (2004). The authors discussed the
possible application areas of recognizing specu-
lative language and investigated whether the no-
tion of speculative sentences can be characterized
to enable manual annotation. The authors devel-
oped two automated systems to classify sentences
as speculative or not. The first method is based
on substring matching. A sentence is classified as
speculative if it contains one of the 14 predefined
strings (suggest, potential, likely, may, at least, in
part, possibl, further investigation, unlikely, pu-
tative, insights, point toward, promise, propose).
The second method is based on using SVM with
bag-of-words features. The substring matching

method performed slightly better than the SVM
with bag-of-words features approach.

Medlock and Briscoe (2007) extended the work
of Light et al. (2004) by refining their annota-
tion guidelines and creating a publicly available
data set (FlyBase data set) for speculative sen-
tence classification. They proposed a weakly su-
pervised machine learning approach to classify
sentences as speculative or not with the aim of
minimizing the need for manually labeled train-
ing data. Their approach achieved 76% preci-
sion/recall break-even point (BEP) performance
on the FlyBase data set, compared to the BEP
of 60% obtained by Light et al.’s (2004) sub-
string matching approach on the same data set.
Szarvas (2008) extended the weakly supervised
machine learning methodology of Medlock and
Briscoe (2007) by applying feature selection to re-
duce the number of candidate keywords, by us-
ing limited manual supervision to filter the fea-
tures, and by extending the feature representation
with bigrams and trigrams. In addition, by fol-
lowing the annotation guidelines of Medlock and
Briscoe (2007), Szarvas (2008) made available the
BMC Bioinformatics data set, by annotating four
full text papers from the open access BMC Bioin-
formatics website. They achieved a BEP perfor-
mance of 85.29% and an F-measure of 85.08% on
the FlyBase data set. The F-measure performance
achieved on the BMC Bioinformatics data set was
74.93% when the FlyBase data set was used for
training. Kilicoglu and Bergler (2008) compiled
a list of speculation keywords from the examples
in (Hyland, 1998) and extended this list by us-
ing WordNet (Fellbaum, 1998) and UMLS SPE-
CIALIST Lexicon (McCray et al., 1994). They
used manually crafted syntactic patterns to iden-
tify speculative sentences and achieved a BEP and
an F-measure of 85% on the FlyBase data set and a
BEP and an F-measure of 82% on the BMC Bioin-
formatics data set.

Unlike pervious studies, which treat the prob-
lem of identifying speculative language as a sen-
tence classification task, we tackle the more chal-
lenging problem of identifying the portions of sen-
tences which are speculative. In other words, we
allow a sentence to include both speculative and
non-speculative parts. We introduce and eval-
uate a diverse set of features that represent the
context of a keyword and use these features in
a supervised machine learning setting to classify
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the keywords as real speculation keywords or not.
Then, we develop a rule-based method to deter-
mine their linguistic scopes by considering the
keyword-specific features and the syntactic struc-
tures of the sentences. To the best of our knowl-
edge, the BioScope corpus (Vincze et al., 2008) is
the only available data set that has been annotated
for speculative sentence fragments and we report
the first results on this corpus.

3 Corpus

The BioScope corpus2 has been annotated at the
token level for speculation keywords and at the
sentence level for their linguistic scopes (Vincze
et al., 2008). The corpus consists of three sub-
corpora: medical free texts (radiology reports),
biomedical article abstracts, and biomedical full
text articles. In this paper we focus on identifying
speculations in scientific text. Therefore, we use
the biomedical article abstracts and the biomedi-
cal full text articles in our experiments. The statis-
tics (number of documents, number of sentences,
and number of occurrences of speculation key-
words) for these two sub-corpora are given in Ta-
ble 1. The scientific abstracts in the BioScope cor-

Data Set Documents Sentences Hedge Keywords
Abstracts 1273 11871 2694
Full Papers 9 2670 682

Table 1: Summary of the biomedical scientific articles sub-
corpora of the BioScope corpus

pus were included from the Genia corpus (Col-
lier et al., 1999). The full text papers consist of
five articles from the FlyBase data set and four
articles from the open access BMC Bioinformat-
ics website. The sentences in the FlyBase and
BMC Bioinformatics data sets were annotated as
speculative or not and made available by Med-
lock and Briscoe (2007) and Szarvas (2008), re-
spectively and have been used by previous stud-
ies in identifying speculative sentences (Medlock
and Briscoe, 2007; Kilicoglu and Bergler, 2008;
Szarvas, 2008). Vincze et al. (2008) annotated
these full text papers and the Genia abstracts for
speculation keywords and their scopes and in-
cluded them to the BioScope corpus. The key-
words were annotated with a minimalist strategy.
In other words, the minimal unit that expresses
speculation was annotated as a keyword. A key-
word can be a single word (e.g. suggest, predict,

2Available at: http://www.inf.u-szeged.hu/rgai/bioscope

might) or a phrase (complex keyword), if none of
the words constituting the phrase expresses a spec-
ulation by itself. For example the phrase “no ev-
idence of‘” in the sentence “Direct sequencing of
the viral genomes and reinfection kinetics showed
no evidence of wild-type reversion even after pro-
longed infection with the Tat- virus.” is an example
of a complex keyword, since the words forming
the phrase can only express speculation together.

In contrast to the minimalist strategy followed
when annotating the keywords, the annotation of
scopes of the keywords was performed by assign-
ing the scope to the largest syntactic unit possible
by including all the elements between the keyword
and the target word to the scope (in order to avoid
scopes without a keyword) and by including the
modifiers of the target word to the scope (Vincze
et al., 2008). The reader can refer to (Vincze et al.,
2008) for the details of the corpus and the annota-
tion guidelines.

The inter-annotator agreement rate was mea-
sured as the F-measure of the annotations of the
first annotator by considering the annotations of
the second one as the gold standard. The agree-
ment rate for speculation keyword annotation is
reported as 92.05% for the abstracts and 90.81%
for the full text articles and the agreement rate for
speculation scope resolution is reported as 94.04%
for the abstracts and 89.67% for the full text ar-
ticles (Vincze et al., 2008). These rates can be
considered as the upper bounds for the automated
methods proposed in this paper.

4 Identifying Speculation Keywords

Words and phrases such as “might”, “suggest”,
“likely”, “no evidence of”, and “remains to be
elucidated” that can render statements speculative
are called speculation keywords. Speculation key-
words are not always used in speculative context.
For instance, consider the following sentences:

1. Thus, it appears that the T-cell-specific activation of
the proenkephalin promoter is mediated by NF-kappa
B. (PMID: 91117203)

2. Differentiation assays using water soluble phorbol es-

ters reveal that differentiation becomes irreversible

soon after AP-1 appears. (PMID: 92088960)

The keyword “appears” in the first sentence ren-
ders it speculative. However, in the second sen-
tence, “appears” is not used in a speculative con-
text.

1400



The first sub-problem that we need to solve in
order to identify speculative sentence fragments is
identifying the real speculation keywords in a sen-
tence (i.e. the keywords which convey speculative
meaning in the sentence). We formulate the prob-
lem as a supervised classification task. We extract
the list of keywords from the training data which
has been labeled for speculation keywords. We
match this list of keywords in the unlabeled (test
data) and train a model to classify each occurrence
of a keyword in the unlabeled test set as a real
speculation keyword or not. The challenge of the
task can be demonstrated by the following statis-
tics from the Genia Abstracts of the BioScope cor-
pus. There are 1273 abstracts in the corpus. There
are 138 unique speculation keywords and the to-
tal number of their occurrence in the abstracts is
6125. In only 2694 (less than 50%) of their occur-
rences they are used in speculative context (i.e.,
are real speculation keywords).

In this study we focus on identifying the fea-
tures that represent the context of a speculation
keyword and use SVM with linear kernel (we
used the SV M light package (Joachims, 1999)) as
our classification algorithm. The following sub-
section describes the set of features that we pro-
pose.

4.1 Feature Extraction

We introduce a set of diverse types of features
including keyword specific features such as the
stem and the part-of-speech (POS) of the keyword,
and keyword context features such as the words
surrounding the keyword, the dependency rela-
tion types originating at the keyword, the other
keywords that occur in the same sentence as the
keyword, and positional features such as the sec-
tion of the paper in which the keyword occurs.
While designing the features, we were inspired by
studies on other natural language processing prob-
lems such as Word Sense Disambiguation (WSD)
and summarization. For example, machine learn-
ing methods with features based on part-of-speech
tags, word stems, surrounding and co-occurring
words, and dependency relationships have been
successfully used in WSD (Montoyo et al., 2005;
Ng and Lee, 1996; Dligach and Palmer, 2008) and
positional features such as the position of a sen-
tence in the document have been used in text sum-
marization (e.g. (Radev et al., 2004)).

4.1.1 Keyword Features
Statistics from the BioScope corpus suggest that
different keywords have different likelihoods of
being used in a speculative context (Vincze et al.,
2008). For example, the keyword “suggest” has
been used in a speculative context in all its oc-
currences in the abstracts and in the full papers.
On the other hand, “appear” is a real specula-
tion keyword in 86% of its occurrences in the ab-
stracts and in 83% of its occurrences in the full
papers, whereas “can” is a real speculation key-
word in 12% of its occurrences in the abstracts and
in 16% of its occurrences in the full papers. POS
of a keyword might also play a role in determining
whether it is a real speculation keyword or not. For
example, consider the keyword “can”. It is more
likely to have been used in a speculative context
when it is a modal verb, than when it is a noun.
Based on these observations, we hypothesize that
features specific to a keyword such as the keyword
itself, the stem of the keyword, and the POS of
the keyword might be useful in discriminating the
speculative versus non-speculative use of it. We
use Porter’s Stemming Algorithm (Porter, 1980)
to obtain the stems of the keywords and Stanford
Parser (de Marneffe et al., 2006) to get the POS of
the keywords. If a keywords consists of multiple
words, we use the concatenation of the POS of the
words constituting the keyword as a feature. For
example, the extracted POS feature for the key-
words “no evidence” and “no proof” is “DT.NN”
.

4.1.2 Dependency Relation Features
Besides the occurrence of a speculation keyword,
the syntactic structure of the sentence also plays
an important role in characterizing speculations.
Kilicoglu and Bergler (2008) showed that man-
ually identified syntactic patterns are effective in
classifying sentences as speculative or not. They
identified that, while some keywords do not in-
dicate hedging when used alone, they might act
as good indicators of hedging when used with a
clausal complement or with an infinitival clause.
For example, the “appears” keyword in the ex-
ample sentences, which are given in the beginning
of Section 4, is not a real speculation keyword in
the second example “...soon after AP-1 appears.”
, whereas it is a real speculation keyword in the
first example, where it is used with a that clausal
complement “...it appears that...”. Similarly, “ap-
pears” is used in a speculative context in the fol-
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lowing sentence, where it is used with an infini-
tival clause: “Synergistic transactivation of the
BMRF1 promoter by the Z/c-myb combination ap-
pears to involve direct binding by the Z protein.”.

Another observation is that, some keywords
act as real speculation keywords only when used
with a negation. For example, words such as
“know”, “evidence”, and “proof” express cer-
tainty when used alone, but express a speculation
when used with a negation (e.g., “not known”,
“no evidence”, “no proof” ).

Auxiliaries in verbal elements might also give
clues for the speculative meaning of the main
verbs. Consider the example sentence: “Our find-
ings may indicate the presence of a reactivated
virus hosted in these cells.”. The modal auxiliary
“may” acts as a clue for the speculative context of
the main verb “indicate”.

We defined boolean features to represent the
syntactic structures of the contexts of the key-
words. We used the Stanford Dependency Parser
(de Marneffe et al., 2006) to parse the sentences
that contain a candidate speculation keyword and
extracted the following features from the depen-
dency parse trees.

Clausal Complement: A Boolean feature which is set to 1,
if the keyword has a child which is connected to it with
a clausal complement or infinitival clause dependency
type.

Negation: A Boolean feature which is set to 1, if the key-
word (1) has a child which is connected to it with a
negation dependency type (e.g. “not known”: “not” is
a child of “known”, and the Stanford Dependency Type
connecting them is “neg”) or (2) the determiner “no” is
a child of the keyword (e.g., “no evidence”: “no” is a
child of “evidence” and the Stanford Dependency Type
connecting them is “det”).

Auxiliary: A Boolean feature which is set to 1, if the key-

word has a child which is connected to it with an auxil-

iary dependency type (e.g. “may indicate”: “may” is a

child of “indicate”, and the Stanford Dependency Type

connecting them is “aux”).

If a keyword consists of multiple-words, we ex-
amine the children of the word which is the an-
cestor of the other words constituting the key-
word. For example, “no evidence” is a multi-word
keyword, where “evidence” is the parent of “no”.
Therefore, we extract the dependency parse tree
features for the word “evidence”.

4.1.3 Surrounding Words
Recent studies showed that using machine learn-
ing with variants of the “bag-of-words” feature

representation is effective in classifying sentences
as speculative vs. non-speculative (Light et al.,
2004; Medlock and Briscoe, 2007; Szarvas, 2008).
Therefore, we also decided to include bag-of-
words features that represent the context of the
speculation keyword. We extracted the words sur-
rounding the keyword and performed experiments
both with and without stemming, and with win-
dow sizes of one, two, and three. Consider the
sentence: “Our findings may indicate the presence
of a reactivated virus hosted in these cells.”. The
bag-of-words features for the keyword “indicate”,
when a window size of three and no stemming is
used are: “our”, “findings”, “may”, “indicate”,
“the”, “presence”, “of”. In other words, the fea-
ture set consists of the keyword, the three words to
the left of the keyword, and the three words to the
right of the keyword.

4.1.4 Positional Features
Different parts of a scientific article might have
different characteristics in terms of the usage of
speculative language. For example, Hyland (1998)
analyzed a data set of molecular biology articles
and reported that the distribution of speculations
is similar between abstracts and full text articles,
whereas the Results and Discussion sections tend
to contain more speculative statements compared
to the other sections (e.g. Materials and Methods
or Introduction and Background sections). The
analysis of Light et al. (2004) showed that the last
sentence of an abstract is more likely to be specu-
lative than non-speculative.

For the scientific abstracts data set, we defined
the following boolean features to represent the po-
sition of the sentence the keyword occurs in. Our
intuition is that titles and the first sentences in the
abstract tend to be non-speculative, whereas the
last sentence of the abstract tends to be specula-
tive.

Title: A Boolean feature which is set to 1, if the keyword
occurs in the title.

First Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the

keyword occurs in the last sentence of the abstract.

For the scientific full text articles data set, we
defined the following features that represent the
position of the sentence in which the keyword oc-
curs. Our assumption is that the “Results and Dis-
cussion” and the “Conclusion” sections tend to
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contain more speculative statements than the “Ma-
terials and Methods” and “Introduction and Back-
ground” sections. We also assume that figure and
table legends are not likely to contain speculative
statements.

Title: A Boolean feature which is set to 1, if the keyword
occurs in the title of the article, or in the title of a sec-
tion or sub-section.

First Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the first sentence of the abstract.

Last Sentence: A Boolean feature which is set to 1, if the
keyword occurs in the last sentence of the abstract.

Background: A Boolean feature which is set to 1, if the
keyword occurs in the Background or Introduction sec-
tion.

Results: A Boolean feature which is set to 1, if the keyword
occurs in the Results or in the Discussion section.

Methods: A Boolean feature which is set to 1, if the key-
word occurs in the Materials and Methods section.

Conclusion: A Boolean feature which is set to 1, if the key-
word occurs in the Conclusion section.

Legend: A Boolean feature which is set to 1, if the keyword

occurs in a table or figure legend.

4.1.5 Co-occurring Keywords
Speculation keywords usually co-occur in the sen-
tences. Consider the sentence: “We, therefore,
wished to determine whether T3SO4 could mimic
the action of thyroid hormone in vitro.”. Here,
“whether” and “could” are speculation keywords
and their co-occurence might be a clue for their
speculative context. Therefore, we decided to in-
clude the co-occurring keywords to the feature set
of a keyword.

5 Resolving the Scope of a Speculation

After identifying the real speculation keywords,
the next step is determining their scopes in the sen-
tences, so that the speculative sentence fragments
can be detected. Manual analysis of sample sen-
tences from the BioScope corpus and their parse
trees suggests that the scope of a keyword can be
characterized by its part-of-speech and the syntac-
tic structure of the sentence in which it occurs.
Consider the example sentence whose parse tree
is shown in Figure 1. The sentence contains three
speculation keywords, “or” and two occurrences
of “might”. The scope of the conjunction “or”, ex-
tends to the “VP” whose children it coordinates.
In other words, the scope of “or” is “[might be

one of the earliest crucial steps in the lysis of nor-
mal and dex-resistant CEM cells, or might serve
as a marker for the process]”. Here, “or” con-
veys a speculative meaning, since we are not cer-
tain which of the two sub-clauses (sub-clause 1:
[might be one of the earliest crucial steps in the
lysis of normal and dex-resistant CEM cells] or
sub-clause 2: [might serve as a marker for the pro-
cess]) is correct. The scope of both occurrences
of the modal verb “might” is the parent “VP”. In
other words, the scope of the first occurrence of
“might” is “[might be one of the earliest crucial
steps in the lysis of normal and dex-resistant CEM
cells]” and the scope of the second occurrence of
“might” is “[might serve as a marker for the pro-
cess]”. By examining the keywords, sample sen-
tences and their syntactic parse trees we devel-
oped the following rule-based approach to resolve
the scopes of speculation keywords. The exam-
ples given in this section are based on the syntactic
structure of the Penn Tree Bank. But, the rules are
generic (e.g. “the scope of a verb followed by an
infinitival clause, extends to the whole sentence”).

The scope of a conjunction or a determiner (e.g.
or, and/or, vs) is the syntactic phrase to which it
is attached. For example, the scope of “or” in
Figure 1 is the “VP” immediately dominating the
“CC”.

The scope of a modal verb (e.g. may, might,
could) is the “VP” to which it is attached. For
example, the scope of “might” in Figure 1 is the
“VP” immediately dominating the “MD”.

The scope of an adjective or an adverb starts
with the keyword and ends with the last token of
the highest level “NP” which dominates the ad-
jective or the adverb. Consider the sentence “The
endocrine events that are rapidly expressed (sec-
onds) are due to a [possible interaction with cellu-
lar membrane].” The scope of the speculation key-
word “possible” is enclosed in rectangular brack-
ets. The sub-tree that this scope maps to is: “(NP
(NP (DT a) (JJ possible) (NN interaction)) (PP
(IN with) (NP (JJ cellular) (NN membrane))))”.
If there does not exist a “NP” dominating the ad-
verb or adjective keyword, the scope extends to
the whole sentence. For example the scope of
the speculation adverb “probably” in the sentence
“[The remaining portion of the ZFB motif was
probably lost in TPases of insect Transib trans-
posons]” is the whole sentence.

The scope of a verb followed by an infinitival
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Figure 1: The syntactic parse tree of the sentence “Positive induction of GR mRNA might be one of the earliest crucial steps
in the lysis of normal and dex-resistant CEM cells, or might serve as a marker for the process.”

clause extends to the whole sentence. For exam-
ple, the scope of the verb “appears” followed by
the “to” infinitival clause is the whole sentence in
“[The block of pupariation appears to involve sig-
naling through the adenosine receptor (AdoR)]”.

The scope of a verb in passive voice extends
to the whole sentence such as the scope of “sug-
gested” in “[The existence of such an indepen-
dent mechanism has also been suggested in mam-
mals]”.

If none of the above rules apply, the scope of a
keyword starts with the keyword and ends at the
end of the sentence (or clause). An example is
the scope of “suggested” in “This [suggested that
there is insufficient data currently available to de-
termine a reliable ratio for human]”.

6 Evaluation

We evaluated our approach on two different types
of scientific text from the biomedical domain,
namely the scientific abstracts sub-corpus and the
full text articles sub-corpus of the BioScope cor-
pus (see Section 3). We used stratified 10-fold
cross-validation to evaluate the performance on
the abstracts. In each fold, 90% of the abstracts are
used for training and 10% are used to test. To facil-
itate comparison with future studies the PubMed
Identifiers of the abstracts that we used as a test
set in each fold are provided3. The full text pa-
pers sub-corpus consists of nine articles. We used
leave-one-out cross-validation to evaluate the per-

3http://belobog.si.umich.edu/clair/bioscope/

formance on the full text papers. In each iteration
eight articles are used for training and one article
is used to test. We report the average results over
the runs for each data set.

6.1 Evaluation of Identifying Speculation
Keywords

To classify whether the occurrence of a keyword is
in speculative context or not, we built linear SVM
models by using various combinations of the fea-
tures introduced in Section 4.1. Tables 2 and 3
summarize the results obtained for the abstracts
and the full text papers, respectively. BOW N is
the bag-of-words features obtained from the words
surrounding the keyword (see Section 4.1.3). N is
the window size. We experimented both with the
stemmed and non-stemmed versions of this fea-
ture type. The non-stemmed versions performed
slightly better than the stemmed versions. The rea-
son might be due to the different likelihoods of
being used in a speculative context of different in-
flected forms of words. For example, consider the
words “appears” and “appearance”. They have the
same stems, but “appearance” is less likely to be a
real speculation keyword than “appears”. Another
observation is that, decreasing the window size
led to improvement in performance. This suggests
that the words right before and right after the can-
didate speculation keyword are more effective in
distinguishing its speculative vs. non-speculative
context compared to a wider local context. Wider
local context might create sparse data and degrade
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performance. Consider the example, “it appears
that TP53 interacts with AR”. The keyword “ap-
pears”, and BOW1 (“it” and “that”) are more rel-
evant for the speculative context of the keyword
than “TP53”, “interacts”, and “with”. Therefore,
for the rest of the experiments we used the BOW
1 version, i.e., the non-stemmed surrounding bag-
of-words with window size of 1. KW stands for
the keyword specific features, i.e., the keyword, its
stem, and its part-of-speech (discussed in Section
4.1.1). DEP stands for the dependency relation
features (discussed in Section 4.1.2). POS stands
for the positional features (discussed in Section
4.1.4) and CO-KW stands for the co-occurring
keywords feature (discussed in Section 4.1.5).

Our results are not directly comparable with
the prior studies about identifying speculative sen-
tences (see Section 2), since we attempted to solve
a different problem, which is identifying specula-
tive parts of sentences. Only the substring match-
ing approach that was introduced in (Light et al.,
2004) could be adapted as a keyword classification
task, since the substrings are keywords themselves
and we used this approach as a baseline in the
keyword classification sub-problem. We compare
the performances of our models with two baseline
methods, which are based on the substring match-
ing approach. Light et al. (2004) have shown that
the substring matching method with a predefined
set of 14 strings performs slightly better than an
SVM model with bag-of-words features in classi-
fying sentences as speculative vs. non-speculative
(see Section 2). In baseline 1, we use the 14 strings
identified in (Light et al., 2004) and classify all the
keywords in the test set that match any of them as
real speculation keywords. Baseline 2 is similar
to baseline 1, with the difference that rather than
using the set of strings in (Light et al., 2004), we
extract the set of keywords from the training set
and classify all the words (or phrases) in the test
set that match any of the keywords in the list as
real speculation keywords.

Baseline 1 achieves high precision, but low re-
call. Whereas, baseline 2 achieves high recall in
the expense of low precision. All the SVM mod-
els in Tables 2 and 3 achieve more balanced preci-
sion and recall values, with F-measure values sig-
nificantly higher than the baseline methods. We
start with a model that uses only the keyword-
specific features (KW). This type of feature alone
achieved a significantly better performance than

the baseline methods (90.61% F-measure for the
abstracts and 80.57% F-measure for the full text
papers), suggesting that the keyword-specific fea-
tures are important in determining its specula-
tive context. We extended the feature set by in-
cluding the dependency relation (DEP), surround-
ing words (BOW 1), positional (POS), and co-
occurring keywords (CO-KW) features. Each new
type of included feature improved the performance
of the model for the abstracts. The best F-measure
(91.69%) is achieved by using all the proposed
types of features. This performance is close to the
upper bound, which is the human inter-annotator
agreement F-measure of 92.05%.

Including the co-occurring keywords to the fea-
ture set for full text articles slightly improved pre-
cision, but deceased recall, which led to lower F-
measure. The best F-measure (82.82%) for the
full text articles is achieved by using all the fea-
ture types except the co-occurring keywords. The
achieved performance is significantly higher than
the baseline methods, but lower than the human
inter-annotator agreement F-measure of 90.81%.
The lower performance for the full text papers
might be due to the small size of the data set (9
full text papers compared to 1273 abstracts).

Method Recall Precision F-Measure
Baseline 1 52.84 92.71 67.25
Baseline 2 97.54 43.66 60.30
BOW 3 - stemmed 81.47 92.36 86.51
BOW 2 - stemmed 81.56 93.29 86.97
BOW 1 - stemmed 83.08 93.83 88.05
BOW 3 82.58 92.04 86.98
BOW 2 82.77 92.74 87.41
BOW 1 83.27 93.67 88.10
KW: kw, kw-stem, kw-pos 88.62 92.77 90.61
KW, DEP 88.77 92.67 90.64
KW, DEP, BOW 1 88.46 94.71 91.43
KW, DEP, BOW 1, POS 88.16 95.21 91.50
KW, DEP, BOW 1, POS, CO-KW 88.22 95.56 91.69

Table 2: Results for the Scientific Abstracts

Method Recall Precision F-Measure
Baseline 1 33.77 86.75 47.13
Baseline 2 88.22 52.57 64.70
BOW 3 - stemmed 70.79 83.88 76.58
BOW 2 - stemmed 72.31 85.49 78.11
BOW 1 - stemmed 73.49 84.35 78.41
BOW 3 70.54 82.56 75.88
BOW 2 71.52 85.93 77.94
BOW 1 73.72 86.27 79.43
KW: kw, kw-stem, kw-pos 75.21 87.08 80.57
KW, DEP 75.02 89.49 81.53
KW, DEP, BOW 1 76.15 89.54 82.27
KW, DEP, BOW 1, POS 76.17 90.81 82.82
KW, DEP, BOW 1, POS, CO-KW 75.76 90.82 82.58

Table 3: Results for the Scientific Full Text Papers
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6.2 Evaluation of Resolving the Scope of a
Speculation

We compared the proposed rule-based approach
for scope resolution with two baseline methods.
Previous studies classify sentences as speculative
or not, therefore implicitly assigning the scope of
a speculation to the whole sentence (Light et al.,
2004; Medlock and Briscoe, 2007; Szarvas, 2008;
Kilicoglu and Bergler, 2008). Baseline 1 follows
this approach and assigns the scope of a specu-
lation keyword to the whole sentence. Szarvas
(2008) suggest assigning the scope of a keyword
from its occurrence to the end of the sentence.
They state that this approach works accurately for
clinical free texts, but no any results are reported
(Szarvas, 2008). Baseline 2 follows the approach
proposed in (Szarvas, 2008) and assigns the scope
of a keyword to the fragment of the sentence that
starts with the keyword and ends at the end of the
sentence. Table 4 summarizes the accuracy results
obtained for the abstracts and the full text papers.

The poor performance of baseline 1, empha-
sizes the importance of detecting the portions of
sentences that are speculative, since less than 5%
of the sentences that contain speculation keywords
are entirely speculative. Classifying the entire sen-
tences as speculative or not leads to loss in infor-
mation for more than 95% of the sentences. The
rule-based method significantly outperformed the
two baseline methods, indicating that the part-of-
speech of the keywords and the syntactic parses
of the sentences are effective in characterizing the
speculation scopes.

Method Accuracy-Abstracts Accuracy-Full text
Baseline 1 4.82 4.29
Baseline 2 67.60 42.82
Rule-based method 79.89 61.13

Table 4: Scope resolution results

7 Conclusion

We presented an approach to identify speculative
sentence fragments in scientific articles. Our ap-
proach is based on solving two sub-problems. The
first one is identifying the keywords which are
used in speculative context and the second one is
determining the scopes of these keywords in the
sentences. We evaluated our approach for two
types of scientific texts, namely abstracts and full
text papers from the BioScope corpus.

We formulated the first sub-problem as a super-

vised classification task, where the aim is to learn
models to classify the candidate speculation key-
words as real speculation keywords or not. We fo-
cused on identifying different types of linguistic
features that capture the contexts of the keywords.
We achieved a performance which is significantly
better than the baseline methods and comparable
to the upper-bound, which is the human inter-
annotator agreement F-measure.

We hypothesized that the scope of a specula-
tion keyword can be characterized by its part-of-
speech and the syntactic structure of the sentence
and developed rules to map the scope of a key-
word to the nodes in the syntactic parse tree. We
achieved a significantly better performance com-
pared to the baseline methods. The considerably
lower performance of the baseline of assigning the
scope of a speculation keyword to the whole sen-
tence indicates the importance of detecting specu-
lative sentence portions rather than classifying the
entire sentences as speculative or not.
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