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Abstract 

This paper approaches the scope learning 
problem via simplified shallow semantic pars-
ing. This is done by regarding the cue as the 
predicate and mapping its scope into several 
constituents as the arguments of the cue. 
Evaluation on the BioScope corpus shows that 
the structural information plays a critical role 
in capturing the relationship between a cue 
and its dominated arguments. It also shows 
that our parsing approach significantly outper-
forms the state-of-the-art chunking ones. Al-
though our parsing approach is only evaluated 
on negation and speculation scope learning 
here, it is portable to other kinds of scope 
learning.  

1 Introduction 

Recent years have witnessed an increasing interest 
in the analysis of linguistic scope in natural lan-
guage. The task of scope learning deals with the 
syntactic analysis of what part of a given sentence 
is under user’s special interest. For example, of 
negation assertion concerned, a negation cue (e.g., 
not, no) usually dominates a fragment of the given 
sentence, rather than the whole sentence, especially 
when the sentence is long. Generally, scope learn-
ing involves two subtasks: cue recognition and its 
scope identification. The former decides whether a 
word or phrase in a sentence is a cue of a special 
interest, where the semantic information of the 
word or phrase, rather than the syntactic informa-
tion, plays a critical role. The latter determines the 
sequences of words in the sentence which are 
dominated by the given cue.  

Recognizing the scope of a special interest (e.g., 
negative assertion and speculative assertion) is es-
sential in information extraction (IE), whose aim is 
to derive factual knowledge from free text. For 
example, Vincze et al. (2008) pointed out that the 
extracted information within the scope of a nega-
tion or speculation cue should either be discarded 
or presented separately from factual information. 
This is especially important in the biomedical and 
scientific domains, where various linguistic forms 
are used extensively to express impressions, hy-
pothesized explanations of experimental results or 
negative findings. Besides, Vincez et al. (2008) 
reported that 13.45% and 17.70% of the sentences 
in the abstracts subcorpus of the BioScope corpus 
contain negative and speculative assertions, respec-
tively, while 12.70% and 19.44% of the sentences 
in the full papers subcorpus contain negative and 
speculative assertions, respectively. In addition to 
the IE tasks in the biomedical domain, negation 
scope learning has attracted increasing attention in 
some natural language processing (NLP) tasks, 
such as sentiment classification (Turney, 2002). 
For example, in the sentence “The chair is not 
comfortable but cheap”, although both the polari-
ties of the words “comfortable” and “cheap” are 
positive, the polarity of “the chair” regarding the 
attribute “cheap” keeps positive while the polarity 
of “the chair” regarding the attribute “comfortable” 
is reversed due to the negation cue “not”. Similarly, 
seeing the increasing interest in speculation scope 
learning, the CoNLL’2010 shared task (Farkas et 
al., 2010) aims to detect uncertain information in 
resolving the scopes of speculation cues. 

Most of the initial research in this literature fo-
cused on either recognizing negated terms or iden-
tifying speculative sentences, using some heuristic 
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rules (Chapman et al., 2001; Light et al., 2004), 
and machine learning methods (Goldin and Chap-
man, 2003; Medlock and Briscoe, 2007). However, 
scope learning has been largely ignored until the 
recent release of the BioScope corpus (Szarvas et 
al., 2008), where negation/speculation cues and 
their scopes are annotated explicitly. Morante et al. 
(2008) and Morante and Daelemans (2009a & 
2009b) pioneered the research on scope learning 
by formulating it as a chunking problem, which 
classifies the words of a sentence as being inside or 
outside the scope of a cue. Alternatively, Özgür 
and Radev (2009) and Øvrelid et al. (2010) defined 
heuristic rules for speculation scope learning from 
constituency and dependency parse tree perspec-
tives, respectively. 

Although the chunking approach has been 
evaluated on negation and speculation scope learn-
ing and can be easily ported to other scope learning 
tasks, it ignores syntactic information and suffers 
from low performance. Alternatively, even if the 
rule-based methods may be effective for a special 
scope learning task (e.g., speculation scope learn-
ing), it is not readily adoptable to other scope 
learning tasks (e.g., negation scope learning). In-
stead, this paper explores scope learning from 
parse tree perspective and formulates it as a simpli-
fied shallow semantic parsing problem, which has 
been extensively studied in the past few years 
(Carreras and Màrquez, 2005). In particular, the 
cue is recast as the predicate and the scope is recast 
as the arguments of the cue. The motivation behind 
is that the structured syntactic information plays a 
critical role in scope learning and should be paid 
much more attention, as indicated by previous 
studies in shallow semantic parsing (Gildea and 
Palmer, 2002; Punyakanok et al., 2005). Although 
our approach is evaluated only on negation and 
speculation scope learning here, it is portable to 
other kinds of scope learning. 

The rest of this paper is organized as follows. 
Section 2 reviews related work. Section 3 intro-
duces the Bioscope corpus on which our approach 
is evaluated. Section 4 describes our parsing ap-
proach by formulating scope learning as a simpli-
fied shallow semantic parsing problem. Section 5 
presents the experimental results. Finally, Section 
6 concludes the work. 
 
 

2 Related Work  

Most of the previous research on scope learning 
falls into negation scope learning and speculation 
scope learning.  

Negation Scope Learning 

Morante et al. (2008) pioneered the research on 
negation scope learning, largely due to the avail-
ability of a large-scale annotated corpus, the Bio-
scope corpus. They approached negation cue 
recognition as a classification problem and formu-
lated negation scope identification as a chunking 
problem which predicts whether a word in the sen-
tence is inside or outside of the negation scope, 
with proper post-processing to ensure consecutive-
ness of the negation scope. Morante and Daele-
mans (2009a) further improved the performance by 
combing several classifiers and achieved the accu-
racy of ~98% for negation cue recognition and the 
PCS (Percentage of Correct Scope) of ~74% for 
negation scope identification on the abstracts sub-
corpus. However, this chunking approach suffers 
from low performance, in particular on long sen-
tences. For example, given golden negation cues 
on the Bioscope corpus, Morante and Daelemans 
(2009a) only got the performance of 50.26% in 
PCS on the full papers subcorpus (22.8 words per 
sentence on average), compared to 87.27% in PCS 
on the clinical reports subcorpus (6.6 words per 
sentence on average). 

Speculation Scope Learning 

Similar to Morante and Daelemans (2009a), 
Morante and Daelemans (2009b) formulated 
speculation scope identification as a chunking 
problem which predicts whether a word in the sen-
tence is inside or outside of the speculation scope, 
with proper post-processing to ensure consecutive-
ness of the speculation scope. They concluded that 
their method for negation scope identification is 
portable to speculation scope identification. How-
ever, of speculation scope identification concerned, 
it also suffers from low performance, with only 
60.59% in PCS for the clinical reports subcorpus 
of short sentences. 

Alternatively, Özgür and Radev (2009) em-
ployed some heuristic rules from constituency 
parse tree perspective on speculation scope identi-
fication. Given golden speculation cues, their rule-
based method achieves the accuracies of 79.89% 
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and 61.13% on the abstracts and the full papers 
subcorpora, respectively. The more recent 
CoNLL’2010 shared task was dedicated to the de-
tection of speculation cues and their linguistic 
scope in natural language processing (Farkas et al., 
2010). As a representative, Øvrelid et al. (2010) 
adopted some heuristic rules from dependency 
parse tree perspective to identify their speculation 
scopes. 

3 Cues and Scopes in the BioScope Cor-
pus 

This paper employs the BioScope corpus (Szarvas 
et al., 2008; Vincze et al., 2008) 1 , a freely 
downloadable resource from the biomedical do-
main, as the benchmark corpus. In this corpus, 
every sentence is annotated with negation cues and 
speculation cues (if it has), as well as their linguis-
tic scopes. Figure 1 shows a self-explainable ex-
ample. It is possible that a negation/speculation cue 
consists of multiple words, i.e., “can not”/“indicate 
that” in Figure 1. 

 
The Bioscope corpus consists of three sub-

corpora: biological full papers from FlyBase and 
from BMC Bioinformatics, biological paper ab-
stracts from the GENIA corpus (Collier et al., 
1999), and clinical (radiology) reports. Among 
them, the full papers subcorpus and the abstracts 
subcorpus come from the same genre, and thus 
share some common characteristics in statistics, 
such as the number of words in the nega-
tion/speculation scope to the right (or left) of the 
negation/speculation cue and the average scope 
length. In comparison, the clinical reports subcor-
pus consists of clinical radiology reports with short 
sentences. For detailed statistics and annotation 

                                                           

                                                          

1 http://www.inf.u-szeged.hu/rgai/bioscope 

guidelines about the three subcorpora, please see 
Morante and Daelemans (2009a & 2009b). 

For preprocessing, all the sentences in the Bio-
scope corpus are tokenized and then parsed using 
the Berkeley parser (Petrov and Klein, 2007) 2  
trained on the GENIA TreeBank (GTB) 1.0 
(Tateisi et al., 2005)3, which is a bracketed corpus 
in (almost) PTB style. 10-fold cross-validation on 
GTB1.0 shows that the parser achieves the per-
formance of 86.57 in F1-measure. It is worth not-
ing that the GTB1.0 corpus includes all the 
sentences in the abstracts subcorpus of the Bio-
scope corpus. 

4 Scope Learning via Simplified Shallow 
Semantic Parsing 

In this section, we first formulate the scope learn-
ing task as a simplified shallow semantic parsing 
problem. Then, we deal with it using a simplified 
shallow semantic parsing framework. 

4.1 Formulating Scope Learning as a Simpli-
fied Shallow Semantic Parsing Problem 

<sentence id="S26.8">These findings <xcope 
id="X26.8.2"><cue type="speculation" 
ref="X26.8.2">indicate that</cue> <xcope 
id="X26.8.1">corticosteroid resistance in bron-
chial asthma <cue type="negation" 
ref="X26.8.1">can not</cue> be explained by 
abnormalities in corticosteroid receptor charac-
teristics</xcope></xcope>.</sentence> 

Figure 1: An annotated sentence in the BioScope 
corpus 

Given a parse tree and a predicate in it, shallow 
semantic parsing recognizes and maps all the con-
stituents in the sentence into their corresponding 
semantic arguments (roles) of the predicate or not. 
As far as scope learning considered, the cue can be 
regarded as the predicate4, while its scope can be 
mapped into several constituents dominated by the 
cue and thus can be regarded as the arguments of 
the cue. In particular, given a cue and its scope 
which covers wordm, …, wordn, we adopt the fol-
lowing two heuristic rules to map the scope of the 
cue into several constituents which can be deemed 
as its arguments in the given parse tree. 
1) The cue itself and all of its ancestral constituents 

are non-arguments. 
2) If constituent X is an argument of the given cue, 

then X should be the highest constituent domi-
nated by the scope of wordm, …, wordn. That is 
to say, X’s parent constituent must cross-bracket 
or include the scope of wordm, …, wordn. 

 
2 http://code.google.com/p/berkeleyparser/ 
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 
4 If a speculation cue consists of multiply words (e.g., whether 
or not), the first word (e.g., whether) is chosen to represent the 
speculation signal. However, the last word (e.g., not) is chosen 
to represent the negation cue if it consists of multiple words 
(e.g., can not). 
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Figure 2: Examples of a negation/speculation cue and its arguments in a parse tree 

These findings 

indicate 

that 

corticosteroid resistance

NP0,1

VBP2,2 SBAR3,11

can not

IN3,3

be
explained by abnormalities

NP4,5

MD6,6 RB7,7

VB8,8 VP9,11

VP8,11

VP6,11

S4,11

VP2,11

S0,11

neg-predicate

neg-arguments

spec-predicate
spec-argument

 
The first rule ensures that no argument covers 

the cue while the second rule ensures no overlap 
between any two arguments. These two constraints 
between a cue and its arguments are consistent 
with shallow semantic parsing (Carreras and 
Màrquez, 2005). For example, in the sentence 
“These findings indicate that corticosteroid resis-
tance can not be explained by abnormalities”, the 
negation cue “can not” has the negation scope 
“corticosteroid resistance can not be explained by 
abnormalities” while the speculation cue “indicate 
that” has the speculation scope “indicate that cor-
ticosteroid resistance can not be explained by ab-
normalities”. As shown in Figure 2, the node 
“RB7,7” (i.e., not) represents the negation cue “can 
not” while its arguments include three constituents 
{NP4,5, MD6,6, and VP8,11}. Similarly, the node 
“VBP2,2” (i.e., indicate) represents the  speculation 
cue “indicate that” while its arguments include one 
constituent SBAR3,11. It is worth noting that ac-
cording to the above rules, scope learning via shal-
low semantic parsing, i.e. determining the 
arguments of a given cue, is robust to some varia-
tions in the parse trees. This is also empirically 
justified by our later experiments. For example, if 
the VP6,11 in Figure 2 is incorrectly expanded by 
the rule VP6,11 → MD6,6+RB7,7+VB8,8+VP9,11, the 
negation scope of the negation cue “can not” can 
still be correctly detected as long as {NP4,5, MD6,6, 
VB8,8, and VP9,11} are predicated as the arguments 
of the negation cue “can not”. 

Compared with common shallow semantic pars-
ing which needs to assign an argument with a se-
mantic label, scope identification does not involve 
semantic label classification and thus could be di-
vided into three consequent phases: argument 
pruning, argument identification and post-
processing. 
 

4.2 Argument Pruning 

Similar to the predicate-argument structures in 
common shallow semantic parsing, the cue-scope 
structures in scope learning can be also classified 
into several certain types and argument pruning 
can be done by employing several heuristic rules 
accordingly to filter out constituents, which are 
most likely non-arguments of a given cue. Similar 
to the heuristic algorithm proposed in Xue and 
Palmer (2004) for argument pruning in common 
shallow semantic parsing, the argument pruning 
algorithm adopted here starts from designating the 
cue node as the current node and collects its sib-
lings. It then iteratively moves one level up to the 
parent of the current node and collects its siblings. 
The algorithm ends when it reaches the root of the 
parse tree. To sum up, except the cue node itself 
and its ancestral constituents, any constituent in the 
parse tree whose parent covers the given cue will 
be collected as argument candidates. Taking the 
negation cue node “RB7,7” in Figure 2 as an exam-
ple, constituents {MD6,6, VP8,11, NP4,5, IN3,3,  
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Feature Remarks 
B1 Cue itself: the word of the cue, e.g., not,

rather_than. (can_not) 
B2 Phrase Type: the syntactic category of the

argument candidate. (NP) 
B3 Path: the syntactic path from the argument 

candidate to the cue. (NP<S>VP>RB) 
B4 Position: the positional relationship of the

argument candidate with the cue. “left” or 
“right”. (left) 

Table 1: Basic features and their instantiations for ar-
gument identification in scope learning, with NP4,5 as 
the focus constituent (i.e., the argument candidate) and 
“can not” as the given cue, regarding Figure 2. 

 

 

Feature Remarks 
Argument Candidate (AC) related 
AC1 The headword (AC1H) and its POS

(AC1P). (resistance, NN) 
AC2 The left word (AC2W) and its POS

(AC2P). (that, IN) 
AC3 The right word (AC3W) and its POS

(AC3P). (can, MD) 
AC4 The phrase type of its left sibling (AC4L)

and its right sibling (AC4R). (NULL, VP)
AC5 The phrase type of its parent node. (S) 
AC6 The subcategory. (S:NP+VP) 
Cue/Predicate (CP) related 
CP1 Its POS. (RB) 
CP2 Its left word (CP2L) and right word

(CP2R). (can, be) 
CP3 The subcategory. (VP:MD+RB+VP) 
CP4 The phrase type of its parent node. (VP) 
Combined Features related with the Argument Candi-
date  (CFAC1-CFAC2) 
b2&AC1H, b2&AC1P 
Combined Features related with the given
Cue/Predicate  (CFCP1-CFCP2) 
B1&CP2L, B1&CP2R 
Combined Features related with both the Argument 
Candidate and the given Cue/Predicate (CFACCP1-
CFACCP7) 
B1&B2, B1&B3, B1&CP1, B3&CFCP1, B3&CFCP2, 
B4&CFCP1, B4&CFCP2 

Table 2: Additional features and their instantiations for 
argument identification in scope identification, with 
NP4,5 as the focus constituent (i.e., the argument candi-
date) and “can not” as the given cue, regarding Figure 2. 

 

VBP2,2, and NP0,1} are collected as its argument 
candidates consequently. 

4.3 Argument Identification 

Here, a binary classifier is applied to determine the 
argument candidates as either valid arguments or 
non-arguments. Similar to argument identification 
in common shallow semantic parsing, the struc-
tured syntactic information plays a critical role in 
scope learning. 

Basic Features 

Table 1 lists the basic features for argument identi-
fication. These features are also widely used in 
common shallow semantic parsing for both verbal 
and nominal predicates (Xue, 2008; Li et al., 2009). 

Additional Features 

To capture more useful information in the cue-
scope structures, we also explore various kinds of 
additional features. Table 2 shows the features in 
better capturing the details regarding the argument 
candidate and the cue. In particular, we categorize 
the additional features into three groups according 
to their relationship with the argument candidate 
(AC, in short) and the given cue/predicate (CP, in 
short). 

Some features proposed above may not be effec-
tive in argument identification. Therefore, we 
adopt the greedy feature selection algorithm as de-
scribed in Jiang and Ng (2006) to pick up positive 
features incrementally according to their contribu-
tions on the development data. The algorithm re-
peatedly selects one feature each time, which con-
tributes most, and stops when adding any of the 
remaining features fails to improve the perform-
ance. 

4.4 Post-Processing 

Although a cue in the BioScope corpus always has 
only one continuous block as its scope (including 
the cue itself), the scope identifier may result in 
discontinuous scope due to independent predica-
tion in the argument identification phase. Given the 
golden negation/speculation cues, we observe that 
6.2%/9.1% of the negation/speculation scopes pre-
dicted by our scope identifier are discontinuous. 
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Figure 3 demonstrates the projection of all the 

argument candidates into the word level. Accord-
ing to our argument pruning algorithm in Section 
4.2, except the words presented by the cue, the pro-
jection covers the whole sentence and each con-
stituent (LACi or RACj in Figure 3) receives a 
probability distribution of being an argument of the 
given cue in the argument identification phase. 

Since a cue is deemed inside its scope in the 
BioScope corpus, our post-processing algorithm 
first includes the cue in its scope and then starts to 
identify the left and the right scope boundaries, 
respectively. 

As shown in Figure 3, the left boundary has 
m+1 possibilities, namely the cue itself, the left-
most word of constituent LACi (1<=i<=m). Sup-
posing LACi receives probability of Pi being an 
argument, we use the following formula to deter-
mine LACk* whose leftmost word represents the 
boundary of the left scope. If k*=0, then the cue 
itself represents its left boundary. 

( )*

1 1
arg max 1

k m

i i
k i i k

k P
= = +

= ∗∏ ∏  P−

Similarly, the right boundary of the given cue 
can be decided. 

4.5 Cue Recognition 

Automatic recognition of cues of a special interest 
is the prerequisite for a scope learning system. The 
approaches to recognizing cues of a special interest 
usually fall into two categories: 1) substring 
matching approaches, which require a set of cue 
words or phrases in advance (e.g., Light et al., 
2004); 2) machine learning approaches, which 
train a classifier with either supervised or semi-
supervised learning methods (e.g., Özgür and 
Radev, 2009; Szarvas, 2008). Without loss of gen-
erality, we adopt a machine learning approach and 
train a classifier with supervised learning. In par-
ticular, we make an independent classification for 
each word with a BIO label to indicate whether it 

is the first word of a cue, inside a cue, or outside of 
it, respectively. 

LACm    ….      LAC1 RAC1      ….    RACn

m n 

Figure 3: Projecting the left and the right argument 
candidates into the word level. 

Inspired by previous studies on similar tasks 
such as WSD and nominal predicate recognition in 
shallow semantic parsing (Lee and Ng, 2002; Li et 
al., 2009), where various features on the word it-
self, surrounding words and syntactic information 
have been successfully used, we believe that such 
information is also valuable to automatic recogni-
tion of cues. Table 3 shows the features employed 
for cue recognition. In particular, we categorize 
these features into three groups: 1) features about 
the cue candidate itself (CC in short); 2) features 
about surrounding words (SW in short); and 3) 
structural features derived from the syntactic parse 
tree (SF in short).
 
Feature Remarks 
Cue Candidate (CC) related 
CC1 The cue candidate itself. (indicate) 
CC2 The stem of the cue candidate. (indicate)
CC3 The POS tag of the cue candidate. (VBP)
Surrounding Words (SW) related 
SW1 The left surrounding words with the win-

dow size of 3. (these, findings) 
SW2 The right surrounding words with the 

window size of 3. (that, corticosteroid,
resistance) 

Structural Features (SF) 
SF1 The subcategory of the candidate node.  

(VP-->VBP+SBAR) 
SF2 The subcategory of the candidate node’s 

parent. (S-->NP+VP) 
SF3 POS tag of the candidate node + Phrase 

type of its parent node + Phrase type of its 
grandpa node. (VBP + VP + S) 

Table 3: Features and their instantiations for cue recog-
nition, with VBP2,2 as the cue candidate, regarding Fig-
ure 2. 

5 Experimentation 

We have evaluated our simplified shallow seman-
tic parsing approach to negation and speculation 
scope learning on the BioScope corpus. 

5.1 Experimental Settings 

Following the experimental setting in Morante et al. 
(2008) and Morante and Daelemans (2009a & 
2009b), the abstracts subcorpus is randomly di-
vided into 10 folds so as to perform 10-fold cross-
validation, while the performance on both the pa-
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pers and clinical reports subcorpora is evaluated 
using the system trained on the whole abstracts 
subcorpus. In addition, SVMLight  is selected as 
our classifier. 

5

For cue recognition, we report its performance 
using precision/recall/F1-measure. For scope iden-
tification, we report the accuracy in PCS (Percent-
age of Correct Scopes) when the golden cues are 
given, and report precision/recall/F1-measure 
when the cues are automatically recognized. 

5.2 Experimental Results on Golden Parse 
Trees and Golden Cues 

In order to select beneficial features from the addi-
tional features proposed in Section 4.3, we ran-
domly split the abstracts subcorpus into the 
training data and the development data with pro-
portion of 4:1. After performing the greedy feature 
selection algorithm on the development data, 7 
features {CFACCP5, CP2R, CFCP1, AC1P, CP3, 
CFACCP7, AC4R} are selected consecutively for 
negation scope identification while 11 features 
{CFACCP5, AC2W, CFACCP2, CFACCP4, AC5, 
CFCP1, CFACCP7, CFACCP1, CP4, AC3P, 
CFAC2} are selected for speculation scope identi-
fication. Table 4 gives the contribution of addi-
tional features on the development data. It shows 
that the additional features significantly improve 
the performance by 11.66% in accuracy from 
74.93% to 86.59% ( ) for negation scope 
identification and improve the performance by 
11.07% in accuracy from 77.29% to 88.36% 
( ) for speculation scope identification. 
The feature selection experiments suggest that the 
features (e.g., CFACCP5, AC2W, CFCP1) related 
to neighboring words of the cue play a critical role 
for both negation and speculation scope identifica-
tion. This may be due to the fact that neighboring 
words usually imply important sentential informa-
tion. For example, “can not be” indicates a passive 
clause while “did not” indicates an active clause. 

2; 0.0pχ < 1

1

                                                          

2; 0.0pχ <

Since the additional selected features signifi-
cantly improve the performance for both negation 
and speculation scope identification, we will in-
clude those additional selected features in all the 
remaining experiments. 
 
 

 
5 http://svmlight.joachims.org/ 

Task Features Acc (%) 
Baseline 74.93 Negation scope 

identification +selected features 86.59 
Baseline 77.29 Speculation scope 

identification +selected features 88.36 
Table 4: Contribution of additional selected features on 
the development dataset of the abstracts subcorpus 
 

Since all the sentences in the abstracts subcorpus 
are included in the GTB1.0 corpus while we do not 
have golden parse trees for the sentences in the full 
papers and the clinical reports subcorpora, we only 
evaluate the performance of scope identification on 
the abstracts subcorpus with golden parse trees. 
Table 5 presents the performance on the abstracts 
subcorpus by performing 10-fold cross-validation. 
It shows that given golden parse trees and golden 
cues, speculation scope identification achieves 
higher performance (e.g., ~3.3% higher in accu-
racy) than negation scope identification. This is 
mainly due to the observation on the BioScope 
corpus that the scope of a speculation cue can be 
usually characterized by its POS and the syntactic 
structures of the sentence where it occurs. For ex-
ample, the scope of a verb in active voice usually 
starts at the cue itself and ends at its object (e.g., 
the speculation cue “indicate that” in Figure 2 
scopes the fragment of “indicate that corticoster-
oid resistance can not be explained by abnormali-
ties”). Moreover, the statistics on the abstracts 
subcorpus shows that the number of arguments per 
speculation cue is smaller than that of arguments 
per negation cue (e.g., 1.5 vs. 1.8). 
 
Task Acc (%) 
Negation scope identification 83.10 
Speculation scope identification 86.41 
Table 5: Accuracy (%) of scope identification with 
golden parse trees and golden cues on the abstracts sub-
corpus using 10-fold cross-validation 
 

It is worth nothing that we adopted the post-
processing algorithm proposed in Section 4.4 to 
ensure the continuousness of identified scope. As 
to examine the effectiveness of the algorithm, we 
abandon the proposed algorithm by simply taking 
the left and right-most boundaries of any nodes in 
the tree which are classified as in scope. Experi-
ments on the abstracts subcorpus using 10-fold 
cross-validation shows that the simple post-
processing rule gets the performance of 80.59 and 
86.08 in accuracy for negation and speculation 
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scope identification, respectively, which is lower 
than the performance in Table 5 achieved by our 
post-processing algorithm.  

5.3 Experimental Results on Automatic 
Parse Trees and Golden Cues 

The GTB1.0 corpus contains 18,541 sentences in 
which 11,850 of them (63.91%) overlap with the 
sentences in the abstracts subcorpus6. In order to 
get automatic parse trees, we train the Berkeley 
parser with the remaining 6,691 sentences in 
GTB1.0, which achieves the performance of 85.22 
in F1-measure on the remaining 11,850 sentences 
in GTB1.0. Table 6 shows the performance of 
scope identification on automatic parse trees and 
golden cues. In addition, we also report an oracle 
performance to explore the best possible perform-
ance of our system by assuming that our scope 
finder can always correctly determine whether a 
candidate is an argument or not. That is, if an ar-
gument candidate falls within the golden scope, 
then it is a argument. This is to measure the impact 
of automatic syntactic parsing itself. Table 6 shows 
that: 
1) For both negation and speculaiton scope 

identification, automatic syntactic parsing 
lowers the performance on the abstracts 
subcorpus (e.g., from 83.10% to 81.84% in 
accuracy for negation scope identification and 
from 86.41% to 83.74% in accuracy for 
speculaiton scope identification). However, the 
performance drop shows that both negation and 
speculation scope identification are not as 
senstive to automatic syntactic parsing as 
common shallow semantic parsing, whose 
performance might decrease by about ~10 in F1-
measure (Toutanova et al., 2005). This indicates 
that scope identification via simplified shallow 
semantic parsing is robust to some variations in 
the parse trees.  

2) Although speculation scope identification 
consistently achieves higher performance than 
negaiton scope identification when golden parse 
trees are availabe, speculation scope 
identification achieves comparable performance 
with negation scope identification on the 
abstracts subcorpus and the full papers 

                                                           
6 There are a few cases where two sentences in the abstracts 
subcorpus map into one sentence in GTB1.0. 

subcorpus while speculation scope identification 
even performs ~20% lower in accuracy than 
negation scope identification on the clinical 
report subcorpus. This is largely due to that 
specuaiton scope identification is more sensitive 
to syntactic parsing errors than negation scope 
identification due to the wider scope of a 
speculation cue while the sentences of the 
clinical reports come from a different genre, 
which indicates low performance in syntactic 
parsing.  

3) Given the performance gap between the 
performance of our scope finder and the oracle 
performance, there is still much room for further 
performance improvement. 

 
Task Method Abstracts Papers Clinical

auto 81.84 62.70 85.21 Negation scope 
identification oracle 94.37 83.33 98.39 

auto 83.74 61.29 67.90 Speculation scope
identification oracle 95.69 83.72 83.29 
Table 6: Accuracy (%) of scope identification on the 
three subcorpora using automatic parser trained on 
6,691 sentences in GTB1.0 
 
Task Method Abstracts Papers Clinical

M et al. (2008) 57.33 n/a n/a 
M & D (2009a) 73.36 50.26 87.27 
Our baseline 73.42 53.70 88.42 

Negation 
scope 
identification 

Our final  81.84 64.02 89.79 
M & D (2009b) 77.13 47.94 60.59 
Ö & R (2009) 79.89 61.13 n/a 
Our baseline 77.39 54.55 61.92 

Speculation 
scope 
identification 

Our final  83.74 63.49 68.78 
Table 7: Performance comparison of our system with 
the state-of-the-art ones in accuracy (%). Note that all 
the performances achieved on the full papers subcorpus 
and the clinical subcorpus are achieved using the whole 
GTB1.0 corpus of 18,541 sentences while all the per-
formances achieved on the abstract subcorpus are 
achieved using 6,691 sentences from GTB1.0 due to 
overlap of the abstract subcorpus with GTB1.0. 
 

Table 7 compares our performance with related 
ones. It shows that even our baseline system with 
the four basic features presented in Table 1 
achieves comparable performance with Morante et 
al. (2008) and Morante and Daelemans (2009a & 
2009b). This further indicates the appropriateness 
of our simplified shallow semantic parsing ap-
proach and the effectiveness of structured syntactic 
information on scope identification. It also shows 
that our final system significantly outperforms the 
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state-of-the-art ones using a chunking approach, 
especially on the abstracts and full papers subcor-
pora. However, the improvement on the clinical 
reports subcorpora for negation scope identifica-
tion is much less apparent, partly due to the fact 
that the sentences in this subcorpus are much sim-
pler (with average length of 6.6 words per sentence) 
and thus a chunking approach can achieve high 
performance. Table 7 also shows that our parsing 
approach to speculation scope identification out-
performs the rule-based method in Özgür and 
Radev (2009), where 10-fold cross-validation is 
performed on both the abstracts and the full papers 
subcorpora. 

5.4 Experimental Results with Automatic 
Parse Trees and Automatic Cues 

So far negation/speculation cues are assumed to be 
manually annotated and available. Here we turn to 
a more realistic scenario in which cues are auto-
matically recognized. In the following, we first 
report the results of cue recognition and then the 
results of scope identification with automatic cues. 

Cue Recognition 

Task Features R (%) P (%) F1 
CC + SW 93.80 94.39 94.09Negation cue  

recognition CC+SW+SF 95.50 95.72 95.61
CC + SW 83.77 92.04 87.71Speculation cue  

recognition CC+SW+SF 84.33 93.07 88.49
Table 8: Performance of automatic cue recognition with 
gold parse trees on the abstracts subcorpus using 10-fold 
cross-validation 
 
Table 8 lists the performance of cue recognition on 
the abstracts subcorpus, assuming all words in the 
sentences as candidates. It shows that as a com-
plement to features derived from word/pos infor-
mation (CC+SW features), structural features (SF 
features) derived from the syntactic parse tree sig-
nificantly improve the performance of cue recogni-
tion by about 1.52 and 0.78 in F1-measure for 
negation and speculation cue recognition, respec-
tively, and thus included thereafter. In addition, we 
have also experimented on only these words, 
which happen to be a cue or inside a cue in the 
training data as cue candidates. However, this ex-
perimental setting achieves a lower performance 
than that when all words are considered. 
 

Task Corpus R (%) P (%) F1 
Abstracts 94.99 94.35 94.67 
Papers 90.48 87.47 88.95 

Negation cue 
recognition 

Clinical 86.81 88.54 87.67 
Abstracts 83.74 93.14 88.19 
Papers 73.02 82.31 77.39 

Speculation cue 
recognition 

Clinical 33.33 91.77 48.90 
Table 9: Performance of automatic cue recognition with 
automatic parse trees on the three subcorpora 
 

Table 9 presents the performance of cue recog-
nition achieved with automatic parse trees on the 
three subcorpora. It shows that: 
1) The performance gap of cue recognition 

between golden parse trees and automatic parse 
trees on the abstracts subcorpus is not salient 
(e.g., 95.61 vs. 94.67 in F1-measure for negation 
cues and 88.49 vs. 88.19 for speculation cues), 
largely due to the features defined for cue 
recognition are local and insenstive to syntactic 
variations. 

2) The performance of negation cue recognition is 
higher than that of speculation cue recognition 
on all the three subcorpora. This is prabably due 
to the fact that the collection of negation cue 
words or phrases is limitted while speculation 
cue words or phrases are more open. This is 
illustrated by our statistics that about only 1% 
and 1% of negation cues in the full papers and 
the clinical reports subcorpora are absent from 
the abstracts subcorpus, compared to about 6% 
and 20% for speculation cues. 

3) Unexpected, the recall of speculation cue 
recognition on the clinical reports subcorpus is 
very low (i.e., 33.33% in recall measure). This is 
probably due to the absence of about 20% 
speculation cues from the training data of the 
abstracts subcorpus. Moreover, the speculation 
cue “or”, which accounts for about 24% of 
specuaiton cues in the clinical reports subcorpus, 
only acheives about 2% in recall largely due to 
the errors caused by the classifier trained on the 
abstracts subcorpus, where only about 11% of 
words “or” are annotated as speculation cues. 

Scope Identification with Automatic Cue Rec-
ognition 

Table 10 lists the performance of both negation 
and speculation scope identification with automatic 
cues and automatic parse trees. It shows that auto-
matic cue recognition lowers the performance by 
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3.34, 6.80, and 8.38 in F1-measure for negation 
scope identification on the abstracts, the full papers 
and the clinical reports subcorpora, respectively, 
while it lowers the performance by 6.50, 13.14 and 
31.23 in F1-measures for speculation scope identi-
fication on the three subcorpora, respectively, sug-
gesting the big challenge of cue recognition in the 
two scope learning tasks. 
 
Task Corpus R (%) P (%) F1 

Abstracts 78.77 78.24 78.50
Papers 58.20 56.27 57.22

Negation scope 
identification 

Clinical 80.62 82.22 81.41
Abstracts 73.34 81.58 77.24
Papers 47.51 53.55 50.35

Speculation scope 
identification 

Clinical 25.59 70.46 37.55
Table 10: Performance of both negation and speculation 
scope identification with automatic cues and automatic 
parse trees 

6 Conclusion  

In this paper we have presented a new approach to 
scope learning by formulating it as a simplified 
shallow semantic parsing problem, which has been 
extensively studied in the past few years. In par-
ticular, we regard the cue as the predicate and map 
its scope into several constituents which are 
deemed as arguments of the cue. Evaluation on the 
Bioscope corpus shows the appropriateness of our 
parsing approach and that structured syntactic in-
formation plays a critical role in capturing the 
domination relationship between a cue and its 
dominated arguments. It also shows that our pars-
ing approach outperforms the state-of-the-art 
chunking ones. Although our approach is only 
evaluated on negation and speculation scope learn-
ing here, it is portable to other kinds of scope 
learning. 

For the future work, we will explore tree kernel-
based methods to further improve the performance 
of scope learning in better capturing the structural 
information, and apply our parsing approach to 
other kinds of scope learning. 
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