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Abstract

We introduce bilingual word embeddings: se-

mantic embeddings associated across two lan-

guages in the context of neural language mod-

els. We propose a method to learn bilingual

embeddings from a large unlabeled corpus,

while utilizing MT word alignments to con-

strain translational equivalence. The new em-

beddings significantly out-perform baselines

in word semantic similarity. A single semantic

similarity feature induced with bilingual em-

beddings adds near half a BLEU point to the

results of NIST08 Chinese-English machine

translation task.

1 Introduction

It is difficult to recognize and quantify semantic sim-

ilarities across languages. The Fr-En phrase-pair

{‘un cas de force majeure’, ‘case of absolute neces-

sity’}, Zh-En phrase pair {‘依然故我’,‘persist in a

stubborn manner’} are similar in semantics. If co-

occurrences of exact word combinations are rare in

the training parallel text, it can be difficult for classi-

cal statistical MT methods to identify this similarity,

or produce a reasonable translation given the source

phrase.

We introduce an unsupervised neural model

to learn bilingual semantic embedding for words

across two languages. As an extension to their

monolingual counter-part (Turian et al., 2010;

Huang et al., 2012; Bengio et al., 2003), bilin-

gual embeddings capture not only semantic infor-

mation of monolingual words, but also semantic re-

lationships across different languages. This prop-

erty allows them to define semantic similarity met-

rics across phrase-pairs, making them perfect fea-

tures for machine translation.

To learn bilingual embeddings, we use a new ob-

jective function which embodies both monolingual

semantics and bilingual translation equivalence. The

latter utilizes word alignments, a natural sub-task

in the machine translation pipeline. Through large-

scale curriculum training (Bengio et al., 2009), we

obtain bilingual distributed representations which

lie in the same feature space. Embeddings of di-

rect translations overlap, and semantic relationships

across bilingual embeddings were further improved

through unsupervised learning on a large unlabeled

corpus.

Consequently, we produce for the research com-

munity a first set of Mandarin Chinese word embed-

dings with 100,000 words trained on the Chinese

Gigaword corpus. We evaluate these embedding

on Chinese word semantic similarity from SemEval-

2012 (Jin and Wu, 2012). The embeddings sig-

nificantly out-perform prior work and pruned tf-idf

base-lines. In addition, the learned embeddings

give rise to 0.11 F1 improvement in Named Entity

Recognition on the OntoNotes dataset (Hovy et al.,

2006) with a neural network model.

We apply the bilingual embeddings in an end-to-

end phrase-based MT system by computing seman-

tic similarities between phrase pairs. On NIST08

Chinese-English translation task, we obtain an im-

provement of 0.48 BLEU from a competitive base-

line (30.01 BLEU to 30.49 BLEU) with the Stanford

Phrasal MT system.
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2 Review of prior work

Distributed word representations are useful in NLP

applications such as information retrieval (Paşca et

al., 2006; Manning et al., 2008), search query ex-

pansions (Jones et al., 2006), or representing se-

mantics of words (Reisinger et al., 2010). A num-

ber of methods have been explored to train and ap-

ply word embeddings using continuous models for

language. Collobert et al. (2008) learn embed-

dings in an unsupervised manner through a con-

trastive estimation technique. Mnih and Hinton (

2008), Morin and Bengio ( 2005) proposed efficient

hierarchical continuous-space models. To system-

atically compare embeddings, Turian et al. (2010)

evaluated improvements they bring to state-of-the-

art NLP benchmarks. Huang et al. (2012) intro-

duced global document context and multiple word

prototypes. Recently, morphology is explored to

learn better word representations through Recursive

Neural Networks (Luong et al., 2013).

Bilingual word representations have been ex-

plored with hand-designed vector space mod-

els (Peirsman and Padó , 2010; Sumita, 2000),

and with unsupervised algorithms such as LDA and

LSA (Boyd-Graber and Resnik, 2010; Tam et al.,

2007; Zhao and Xing, 2006). Only recently have

continuous space models been applied to machine

translation (Le et al., 2012). Despite growing in-

terest in these models, little work has been done

along the same lines to train bilingual distributioned

word represenations to improve machine translation.

In this paper, we learn bilingual word embeddings

which achieve competitive performance on seman-

tic word similarity, and apply them in a practical

phrase-based MT system.

3 Algorithm and methods

3.1 Unsupervised training with global context

Our method starts with embedding learning formu-

lations in Collobert et al. (2008). Given a context

window c in a document d, the optimization mini-

mizes the following Context Objective for a word w

in the vocabulary:

J
(c,d)
CO =

∑

wr∈VR

max(0, 1− f(cw, d) + f(cw
r

, d))

(1)

Here f is a function defined by a neural network.

wr is a word chosen in a random subset VR of the

vocabulary, and cw
r

is the context window contain-

ing word wr. This unsupervised objective func-

tion contrasts the score between when the correct

word is placed in context with when a random word

is placed in the same context. We incorporate the

global context information as in Huang et al. (2012),

shown to improve performance of word embed-

dings.

3.2 Bilingual initialization and training

In the joint semantic space of words across two lan-

guages, the Chinese word ‘政府’ is expected to be

close to its English translation ‘government’. At the

same time, when two words are not direct transla-

tions, e.g. ‘lake’ and the Chinese word ‘潭’ (deep

pond), their semantic proximity could be correctly

quantified.

We describe in the next sub-sections the methods

to intialize and train bilingual embeddings. These

methods ensure that bilingual embeddings retain

their translational equivalence while their distribu-

tional semantics are improved during online training

with a monolingual corpus.

3.2.1 Initialization by MT alignments

First, we use MT Alignment counts as weighting

to initialize Chinese word embeddings. In our ex-

periments, we use MT word alignments extracted

with the Berkeley Aligner (Liang et al., 2006) 1.

Specifically, we use the following equation to com-

pute starting word embeddings:

Wt-init =
S∑

s=1

Cts + 1

Ct + S
Ws (2)

In this equation, S is the number of possible tar-

get language words that are aligned with the source

word. Cts denotes the number of times when word t

in the target and word s in the source are aligned in

the training parallel text; Ct denotes the total num-

ber of counts of word t that appeared in the target

language. Finally, Laplace smoothing is applied to

this weighting function.

1On NIST08 Zh-En training data and data from GALE MT

evaluation in the past 5 years
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Single-prototype English embeddings by Huang

et al. (2012) are used to initialize Chinese em-

beddings. The initialization readily provides a set

(Align-Init) of benchmark embeddings in experi-

ments (Section 4), and ensures translation equiva-

lence in the embeddings at start of training.

3.2.2 Bilingual training

Using the alignment counts, we form alignment

matrices Aen→zh and Azh→en. For Aen→zh, each

row corresponds to a Chinese word, and each col-

umn an English word. An element aij is first as-

signed the counts of when the ith Chinese word is

aligned with the jth English word in parallel text.

After assignments, each row is normalized such that

it sums to one. The matrix Azh→en is defined sim-

ilarly. Denote the set of Chinese word embeddings

as Vzh, with each row a word embedding, and the

set of English word embeddings as Ven. With the

two alignment matrices, we define the Translation

Equivalence Objective:

JTEO-en→zh = ‖Vzh −Aen→zhVen‖
2 (3)

JTEO-zh→en = ‖Ven −Azh→enVzh‖
2 (4)

We optimize for a combined objective during train-

ing. For the Chinese embeddings we optimize for:

JCO-zh + λJTEO-en→zh (5)

For the English embeddings we optimize for:

JCO-en + λJTEO-zh→en (6)

During bilingual training, we chose the value of λ

such that convergence is achieved for both JCO and

JTEO. A small validation set of word similarities

from (Jin and Wu, 2012) is used to ensure the em-

beddings have reasonable semantics. 2

In the next sections, ‘bilingual trained’ embed-

dings refer to those initialized with MT alignments

and trained with the objective defined by Equa-

tion 5. ‘Monolingual trained’ embeddings refer to

those intialized by alignment but trained without

JTEO-en→zh.

2In our experiments, λ = 50.

3.3 Curriculum training

We train 100k-vocabulary word embeddings using

curriculum training (Turian et al., 2010) with Equa-

tion 5. For each curriculum, we sort the vocabu-

lary by frequency and segment the vocabulary by a

band-size taken from {5k, 10k, 25k, 50k}. Separate

bands of the vocabulary are trained in parallel using

minibatch L-BFGS on the Chinese Gigaword cor-

pus 3. We train 100,000 iterations for each curricu-

lum, and the entire 100k vocabulary is trained for

500,000 iterations. The process takes approximately

19 days on a eight-core machine. We show visual-

ization of learned embeddings overlaid with English

in Figure 1. The two-dimensional vectors for this vi-

sualization is obtained with t-SNE (van der Maaten

and Hinton, 2008). To make the figure comprehen-

sible, subsets of Chinese words are provided with

reference translations in boxes with green borders.

Words across the two languages are positioned by

the semantic relationships implied by their embed-

dings.

Figure 1: Overlaid bilingual embeddings: English words

are plotted in yellow boxes, and Chinese words in green;

reference translations to English are provided in boxes

with green borders directly below the original word.

4 Experiments

4.1 Semantic Similarity

We evaluate the Mandarin Chinese embeddings with

the semantic similarity test-set provided by the or-

3Fifth Edition. LDC catelog number LDC2011T13. We only

exclude cna cmn, the Traditional Chinese segment of the cor-

pus.
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Table 1: Results on Chinese Semantic Similarity

Method Sp. Corr. K. Tau

(×100) (×100)

Prior work (Jin and Wu, 2012) 5.0

Tf-idf

Naive tf-idf 41.5 28.7

Pruned tf-idf 46.7 32.3

Word Embeddings

Align-Init 52.9 37.6

Mono-trained 59.3 42.1

Biling-trained 60.8 43.3

ganizers of SemEval-2012 Task 4. This test-set con-

tains 297 Chinese word pairs with similarity scores

estimated by humans.

The results for semantic similarity are shown in

Table 1. We show two evaluation metrics: Spear-

man Correlation and Kendall’s Tau. For both, bilin-

gual embeddings trained with the combined objec-

tive defined by Equation 5 perform best. For pruned

tf-idf, we follow Reisinger et al. (2010; Huang et

al. (2012) and count word co-occurrences in a 10-

word window. We use the best results from a

range of pruning and feature thresholds to compare

against our method. The bilingual and monolingual

trained embeddings4 out-perform pruned tf-idf by

14.1 and 12.6 Spearman Correlation (×100), respec-

tively. Further, they out-perform embeddings initial-

ized from alignment by 7.9 and 6.4. Both our tf-idf

implementation and the word embeddings have sig-

nificantly higher Kendall’s Tau value compared to

Prior work (Jin and Wu, 2012). We verified Tau cal-

culations with original submissions provided by the

authors.

4.2 Named Entity Recognition

We perform NER experiments on OntoNotes (v4.0)

(Hovy et al., 2006) to validate the quality of the

Chinese word embeddings. Our experimental set-

up is the same as Wang et al. (2013). With em-

beddings, we build a naive feed-forward neural net-

work (Collobert et al., 2008) with 2000 hidden neu-

rons and a sliding window of five words. This naive

setting, without sequence modeling or sophisticated

4Due to variations caused by online minibatch L-BFGS, we

take embeddings from five random points out of last 105 mini-

batch iterations, and average their semantic similarity results.

Table 2: Results on Named Entity Recognition

Embeddings Prec. Rec. F1 Improve

Align-Init 0.34 0.52 0.41

Mono-trained 0.54 0.62 0.58 0.17

Biling-trained 0.48 0.55 0.52 0.11

Table 3: Vector Matching Alignment AER (lower is bet-

ter)

Embeddings Prec. Rec. AER

Mono-trained 0.27 0.32 0.71

Biling-trained 0.37 0.45 0.59

join optimization, is not competitive with state-of-

the-art (Wang et al., 2013). Table 2 shows that the

bilingual embeddings obtains 0.11 F1 improvement,

lagging monolingual, but significantly better than

Align-Init (as in Section3.2.1) on the NER task.

4.3 Vector matching alignment

Translation equivalence of the bilingual embeddings

is evaluated by naive word alignment to match word

embeddings by cosine distance.5 The Alignment Er-

ror Rates (AER) reported in Table 3 suggest that

bilingual training using Equation 5 produces embed-

dings with better translation equivalence compared

to those produced by monolingual training.

4.4 Phrase-based machine translation

Our experiments are performed using the Stan-

ford Phrasal phrase-based machine translation sys-

tem (Cer et al., 2010). In addition to NIST08 train-

ing data, we perform phrase extraction, filtering

and phrase table learning with additional data from

GALE MT evaluations in the past 5 years. In turn,

our baseline is established at 30.01 BLEU and rea-

sonably competitive relative to NIST08 results. We

use Minimum Error Rate Training (MERT) (Och,

2003) to tune the decoder.

In the phrase-based MT system, we add one fea-

ture to bilingual phrase-pairs. For each phrase, the

word embeddings are averaged to obtain a feature

vector. If a word is not found in the vocabulary, we

disregard and assume it is not in the phrase; if no

word is found in a phrase, a zero vector is assigned

5This is evaluated on 10,000 randomly selected sentence

pairs from the MT training set.
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Table 4: NIST08 Chinese-English translation BLEU

Method BLEU

Our baseline 30.01

Embeddings

Random-Init Mono-trained 30.09

Align-Init 30.31

Mono-trained 30.40

Biling-trained 30.49

to it. We then compute the cosine distance between

the feature vectors of a phrase pair to form a seman-

tic similarity feature for the decoder.

Results on NIST08 Chinese-English translation

task are reported in Table 46. An increase of

0.48 BLEU is obtained with semantic similarity

with bilingual embeddings. The increase is modest,

just surpassing a reference standard deviation 0.29

BLEU Cer et al. (2010)7 evaluated on a similar sys-

tem. We intend to publish further analysis on statis-

tical significance of this result as an appendix. From

these suggestive evidence in the MT results, random

initialized monolingual trained embeddings add lit-

tle gains to the baseline. Bilingual initialization and

training seem to be offering relatively more consis-

tent gains by introducing translational equivalence.

5 Conclusion

In this paper, we introduce bilingual word embed-

dings through initialization and optimization con-

straint using MT alignments The embeddings are

learned through curriculum training on the Chinese

Gigaword corpus. We show good performance on

Chinese semantic similarity with bilingual trained

embeddings. When used to compute semantic simi-

larity of phrase pairs, bilingual embeddings improve

NIST08 end-to-end machine translation results by

just below half a BLEU point. This implies that se-

mantic embeddings are useful features for improv-

ing MT systems. Further, our results offer sugges-

tive evidence that bilingual word embeddings act as

high-quality semantic features and embody bilingual

translation equivalence across languages.

6We report case-insensitive BLEU
7With 4-gram BLEU metric from Table 4
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