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Abstract

Analyses of computer aided translation typi-
cally focus on either frontend interfaces and
human effort, or backend translation and
machine learnability of corrections. How-
ever, this distinction is artificial in prac-
tice since the frontend and backend must
work in concert. We present the first holis-
tic, quantitative evaluation of these issues
by contrasting two assistive modes: post-
editing and interactive machine translation
(MT). We describe a new translator inter-
face, extensive modifications to a phrase-
based MT system, and a novel objective
function for re-tuning to human correc-
tions. Evaluation with professional bilin-
gual translators shows that post-edit is faster
than interactive at the cost of translation
quality for French-English and English-
German. However, re-tuning the MT sys-
tem to interactive output leads to larger, sta-
tistically significant reductions in HTER
versus re-tuning to post-edit. Analysis
shows that tuning directly to HTER results
in fine-grained corrections to subsequent
machine output.

1 Introduction
The goal of machine translation has always been to
reduce human effort, whether by partial assistance
or by outright replacement. However, preoccupa-
tion with the latter—fully automatic translation—at
the exclusion of the former has been a feature of
the research community since its first nascent steps
in the 1950s. Pessimistic about progress during
that decade and future prospects, Bar-Hillel (1960,
p.3) argued that more attention should be paid to a
“machine-post-editor partnership,” whose decisive
problem is “the region of optimality in the contin-
uum of possible divisions of labor.” Today, with
human-quality, fully automatic machine translation

(MT) elusive still, that decades-old recommenda-
tion remains current.
This paper is the first to look at both sides of

the partnership in a single user study. We compare
two common flavors of machine-assisted transla-
tion: post-editing and interactive MT. We analyze
professional, bilingual translators working in both
modes, looking first at user productivity. Does the
additional machine assistance available in the inter-
active mode affect translation time and/or quality?
Then we turn to the machine side of the part-

nership. The user study results in corrections to
the baseline MT output. Do these corrections help
the MT system, and can it learn from them quickly
enough to help the user? We perform a re-tuning
experiment in which we directly optimize human
Translation Edit Rate (HTER), which correlates
highly with human judgments of fluency and ade-
quacy (Snover et al., 2006). It is also an intuitive
measure of human effort, making fine distinctions
between 0 (no editing) and 1 (complete rewrite).
We designed a new user interface (UI) for the

experiment. The interface places demands on the
MT backend—not the other way around. The most
significant new MT system features are prefix de-
coding, for translation completion based on a user
prefix; and dynamic phrase table augmentation, to
handle target out-of-vocabulary (OOV) words. Dis-
criminative re-tuning is accomplished with a novel
cross-entropy objective function.
We report three main findings: (1) post-editing

is faster than interactive MT, corroborating Koehn
(2009a); (2) interactive MT yields higher quality
translation when baseline MT quality is high; and
(3) re-tuning to interactive feedback leads to larger
held-out HTER gains relative to post-edit. Together
these results show that a human-centered approach
to computer aided translation (CAT) may involve
tradeoffs between human effort and machine
learnability. For example, if speed is the top
priority, then a design geared toward post-editing
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Figure 1: Main translation interface. The user sees the full document context, with French source inputs
(A) interleaved with suggested English translations (B). The sentence in focus is indicated by the blue
rectangle, which can be moved via two hot keys. Source coverage (C) of the user prefix—shaded in
blue—updates as the user works, as do autocomplete suggestions (D) and a full completion (E).

is appropriate. However, if reductions in HTER
ultimately correspond to lower human effort, then
investing slightly more time in the interactive mode,
which results in more learnable output, may be op-
timal. Mixed UI designs may offer a compromise.
Code and data from our experiments are available at:
http://nlp.stanford.edu/software/phrasal/

A holistic comparison with human subjects nec-
essarily involves many moving parts. Section 2
briefly describes the interface, focusing on NLP
components. Section 3 describes changes to the
backend MT system. Section 4 explains the user
study, and reports human translation time and qual-
ity results. Section 5 describes the MT re-tuning
experiment. Analysis (section 6) and related work
(section 7) round out the paper.

2 New Translator User Interface
Figure 1 shows the translator interface, which is
designed for expert, bilingual translators. Previ-
ous studies have shown that expert translators work
and type quickly (Carl, 2010), so the interface is
designed to be very responsive, and to be primar-
ily operated by the keyboard. Most aids can be
accessed via either typing or four hot keys. The
current design focuses on the point of text entry
and does not include conventional translator work-
bench features such as workflow management, spell
checking, and text formatting tools.

In the trivial post-edit mode, the interactive aids

are disabled and a 1-best translation pre-populates
the text entry box.

We have described the HCI-specific motivations
for and contributions of this new interface in Green
et al. (2014c). This section focuses on interface
elements built on NLP components.

2.1 UI Overview and Walkthrough
We categorized interactions into three groups:
source comprehension: word lookups, source cov-
erage highlighting; target gisting: 1-best transla-
tion, real-time target completion; target genera-
tion: real-time autocomplete, target reordering, in-
sert complete translation. The interaction designs
are novel; those in italic have, to our knowledge,
never appeared in a translation workbench.

Source word lookup When the user hovers over
a source word, a menu of up to four ranked trans-
lation suggestions appears (Figure 2). The menu
is populated by a phrase-table query of the word
plus one token of left context. This query usually
returns in under 50ms. The width of the horizontal
bars indicates confidence, with the most confident
suggestion ‘regularly’ placed at the bottom, near-
est to the cursor. The user can insert a translation
suggestion by clicking.

Source coverage highlighting The source cover-
age feature (Figure 1C) helps the user quickly find
untranslated words in the source. The interaction is
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Figure 2: Source word lookup and target autocom-
plete menus. The menus show different suggestions.
The word lookupmenu (top) is not dependent on the
target context Teachers, whereas the autocomplete
dropdown (bottom) is.

based on the word alignments between source and
target generated by the MT system. We found that
the raw alignments are too noisy to show users, so
the UI filters them with phrase-level heuristics.

1-best translation The most common use of MT
output is gisting (Koehn, 2010, p.21). The gray text
below each black source input shows the best MT
system output (Figure 1B).

Real-time target completion When the user ex-
tends the black prefix, the gray text will update to
the most probable completion (Figure 1E). This up-
date comes from decoding under the full translation
model. All previous systems performed inference
in a word lattice.

Real-time autocomplete The autocomplete
dropdown at the point of text entry is the main
translation aid (Figures 1D and 2). Each real-time
update actually contains a distinct 10-best list for
the full source input. The UI builds up a trie from
these 10-best lists. Up to four distinct suggestions
are then shown at the point of translation. The
suggestion length is based on a syntactic parse of
the fixed source input. As an offline, pre-processing
step, we parse each source input with Stanford
CoreNLP (Manning et al., 2014). The UI combines
those parses with word alignments from the full
translation suggestions to project syntactic con-
stituents to each item on the n-best list. Syntactic
projection is a very old idea that underlies many
MT systems (see: Hwa et al. (2002)). Here we
make novel use of it for suggestion prediction

filtering.1 Presently, we project noun phrases,
verb phrases (minus the verbal arguments), and
prepositional phrases. Crucially, these units are
natural to humans, unlike statistical target phrases.

Target Reordering Carl (2010) showed that ex-
pert translators tend to adopt local planning: they
read a few words ahead and then translate in a
roughly online fashion. However, word order differ-
ences between languages will necessarily require
longer range planning and movement. To that end,
the UI supports keyboard-based reordering. Sup-
pose that the user wants to move a span in gray
text to the insertion position for editing. Typing
the prefix of this string will update the autocom-
plete dropdown with matching strings from the gray
text. Consequently, sometimes the autocomplete
dropdown will contain suggestions from several
positions in the full suggested translation.

Insert complete translation The user can insert
the full completion via a hot key. Notice that if
the user presses this hot key immediately, all gray
text becomes black, and the interface effectively
switches to post-edit mode. This feature greatly ac-
celerates translation when the MT is mostly correct,
and the user only wants to make a few changes.

2.2 User Activity Logging
A web application serves the Javascript-based in-
terface, relays translation requests to the MT sys-
tem, and logs user records to a database. Each user
record is a tuple of the form (f, ê, h, u), where f
is the source sequence, ê is the latest 1-best ma-
chine translation of f , h is the correction of ê, and
u is the log of interaction events during the transla-
tion session. Our evaluation corpora also include
independently generated references e for each f .

3 Interactive MT Backend

Now we describe modifications to Phrasal (Green
et al., 2014b), the phrase-based MT system that sup-
ports the interface. Phrasal follows the log-linear
approach to phrase-based translation (Och and Ney,
2004) in which the decision rule has the familiar
linear form

ê = arg max
e

w>φ(e, f) (1)

1The classic TransType system included a probabilistic
prediction length component (Foster et al., 2002), but we find
that the simpler projection technique works well in practice.
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where w ∈ Rd is the model weight vector and
φ(·) ∈ Rd is a feature map.

3.1 Decoding
The default Phrasal search algorithm is cube prun-
ing (Huang and Chiang, 2007). In the post-edit con-
dition, search is executed as usual for each source
input, and the 1-best output is inserted into the tar-
get textbox. However, in interactive mode, the full
search algorithm is executed each time the user
modifies the partial translation. Machine sugges-
tions ê must match user prefix h. Define indicator
function pref(ê, h) to return true if ê begins with
h, and false otherwise. Eq. 1 becomes:

ê = arg max
e s.t.pref(e,h)

w>φ(e, f) (2)

Cube pruning can be straightforwardly modified to
satisfy this constraint by simple string matching of
candidate translations. Also, the pop limit must be
suspended until at least one legal candidate appears
on each beam, or the priority queue of candidates is
exhausted. We call this technique prefix decoding.2

There is another problem. Human translators are
likely to insert unknown target words, including
new vocabulary, misspellings, and typographical
errors. They might also reorder source text so as to
violate the phrase-based distortion limit. To solve
these problems, we perform dynamic phrase table
augmentation, adding new synthetic rules specific
to each search. Rules allowing any source word to
align with any unseen or ungeneratable (due to the
distortion limit) target word are created.3 These
synthetic rules are given rule scores lower than any
other rules in the set of queried rules for that source
input f . Then candidates are allowed to compete
on the beam. Candidates with spurious alignments
will likely be pruned in favor of those that only turn
to synthetic rules as a last resort.

3.2 Tuning
We choose BLEU (Papineni et al., 2002) for base-
line tuning to independent references, and HTER
for re-tuning to human corrections. Our rationale
is as follows: Cer et al. (2010) showed that BLEU-
tuned systems score well across automatic metrics
and also correlate with human judgment better than

2Och et al. (2003) describe a similar algorithm for word
graphs.

3Ortiz-Martínez et al. (2009) describe a related technique
in which all source and target words can align, with scores set
by smoothing.

systems tuned to other metrics. Conversely, sys-
tems tuned to edit-distance-based metrics like TER
tend to produce short translations that are heavily
penalized by other metrics.
When human corrections become available, we

switch to HTER, which correlates with human judg-
ment and is an interpretable measure of editing
effort. Whereas TER is computed as TER(e, ê),
HTER is HTER(h, ê). HBLEU is an alternative,
but since BLEU is invariant to some permutations
(Callison-Burch et al., 2006), it is less interpretable.
We find that it also does not work as well in practice.

We previously proposed a fast, online tuning al-
gorithm (Green et al., 2013b) based on AdaGrad
(Duchi et al., 2011). The default loss function is
expected error (EE) (Och, 2003; Cherry and Foster,
2012). Expected BLEU is an example of EE, which
we found to be unstable when switching metrics.
This may result from direct incorporation of the
error metric into the gradient computation.
To solve this problem, we propose a cross-

entropy loss which, to our knowledge, is new in
MT. Let Ê = {êi}ni=1 be an n-best list ranked
by a gold metric G(e, ê) ≥ 0. Assume we
have a preference of a higher G (e.g., BLEU or
1−HTER). Define the model distribution over Ê
as q(ê|f) ∝ exp[w>φ(ê, f)] normalized so that∑

ê∈Ê q(ê|f) = 1; q indicates howmuch the model
prefers each translation. Similarly, define p(ê|f)
based on any function of the gold metric so that∑

ê∈Ê p(ê|f) = 1; p indicates how much the met-
ric prefers each translation. We choose a DCG-
style4 parameterization that skews the p distribu-
tion toward higher-ranked items on the n-best list:
p(êi|f) ∝ G(e, êi)/ log(1 + i) for the ith ranked
item. The cross-entropy (CE) loss function is:

`CE(w;E) = Ep(ê|f)[− log(q(ê|f)] (3)

It turns out that if p is simply the posterior distribu-
tion of the metric, then this loss is related to the log
of the standard EE loss:5

`EE(w;E) = − log[Ep(ê|f)[q(ê|f)]] (4)

We can show that `CE ≥ `EE by applying Jensen’s
inequality to the function − log(·). So minimizing
`CE also minimizes a convex upper bound of the
log expected error. This convexity given the n-

4Discounted cumulative gain (DCG) is widely used in infor-
mation retrieval learning-to-rank settings. n-best MT learning
is standardly formulated as a ranking task.

5For expected error, p(êi) = G(e, êi) is not usually nor-
malized. Normalizing p adds a negligible constant.
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best list does not mean that the overall MT tuning
loss is convex, since the n-best list contents and
order depend on the parameters w. However, all
regret bounds and other guarantees of online con-
vex optimization would now apply in the CE case
since `CE,t(wt−1;Et) is convex for each t. This
is attractive compared to expected error, which is
non-convex even given the n-best list. We empiri-
cally observed that CE converges faster and is less
sensitive to hyperparameters than EE.

Faster decoding trick We found that online tun-
ing also permits a trick that speeds up decoding
during deployment. Whereas the Phrasal default
beam size is 1,200, we were able to reduce the beam
size to 800 and run the tuner longer to achieve the
same level of translation quality. For example, at
the default beam size for French-English, the algo-
rithm converges after 12 iterations, whereas at the
lower beam size it achieves that level after 20 itera-
tions. In our experience, batch tuning algorithms
seem to be more sensitive to the beam size.

3.3 Feature Templates
The baseline system contains 19 dense feature tem-
plates: the nine Moses (Koehn et al., 2007) baseline
features, the eight-feature hierarchical lexicalized
re-ordering model of Galley and Manning (2008),
the (log) count of each rule in the bitext, and an
indicator for unique rules. We found that sparse
features, while improving translation quality, came
at the cost of slower decoding due to feature extrac-
tion and inner products with a higher dimensional
feature map φ. During prototyping, we observed
that users found the system to be sluggish unless
it responded in approximately 300ms or less. This
budget restricted us to dense features.
When re-tuning to corrections, we extract fea-

tures from the user logs u and add them to the
baseline dense model. For each tuning input f ,
the MT system produces candidate derivations d =
(f, ê, a), where a is a word alignment. The user log
u also contains the last MT derivation6 accepted
by the user du = (f, êu, au). We extract features
by comparing d and du. The heuristic we take is
intersection: φ(d)← φ(d) ∩ φ(du).

Lexicalized and class-based alignments Con-
sider the alignment in Figure 3. We find that
user derivations often contain many unigram rules,

6Extracting features from intermediate user editing actions
is an interesting direction for future work.
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Figure 3: User translation word alignment obtained
via prefix decoding and dynamic phrase table aug-
mentation.

which are less powerful than larger phrases, but
nonetheless provide high-precision lexical choice
information. We fire indicators for both unigram
links and multiword cliques. We also fire class-
based versions of this feature.

Source OOV blanket Source OOVs are usually
more frequent when adapting to a new domain. In
the case of European languages—our experimental
setting—many of the words simply transfer to the
target, so the issue is where to position them. In Fig-
ure 3, the proper noun tarceva is unknown, so the de-
coder OOV model generates an identity translation
rule. We add features in which the source word is
concatenated with the left, right, and left/right con-
texts in the target, e.g., {<s>-tarceva, tarceva-

was, <s>-tarceva-was}. We also add versions
with target words mapped to classes.

3.4 Differences from Previous Work

Our backend innovations support the UI and enable
feature-based learning from human corrections. In
contrast, most previous work on incremental MT
learning has focused on extracting new translation
rules, language model updating, and modifying
translation model probabilities (see: Denkowski
et al. (2014a)). We regard these features as ad-
ditive to our own work: certainly extracting new,
unseen rules should help translation in a new do-
main. Moreover, to our knowledge, all previous
work on updating the weight vector w has consid-
ered simulated post-editing, in which the indepen-
dent references e are substituted for corrections h.
Here we extract features from and re-tune to actual
corrections to the baseline MT output.
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4 Translation User Study
We conducted a human translation experiment with
a 2 (translation conditions) × n (source sentences)
mixed design, where n depended on the language
pair. Translation conditions (post-edit and interac-
tive) and source sentences were the independent
variables (factors). Experimental subjects saw all
factor levels, but not all combinations, since one
exposure to a sentence would influence another.

Subjects completed the experiment remotely on
their own hardware. They received personalized
login credentials for the translation interface, which
administered the experiment. Subjects first com-
pleted a demographic questionnaire about prior ex-
perience with CAT and language proficiency. Next,
they completed a training module that included a
4-minute tutorial video and a practice “sandbox” for
developing proficiency with the UI. Then subjects
completed the translation experiment. Finally, they
completed an exit questionnaire.
Unlike the experiment of Koehn (2009a), sub-

jects were under time pressure. An idle timer pre-
vented subjects from pausing for more than three
minutes while the translator interface was open.
This constraint eliminates a source of confound in
the timing analysis.
We randomized the order of translation condi-

tions and the assignment of sentences to conditions.
At most five sentences appeared per screen, and
those sentences appeared in the source document
order. Subjects could move among sentences within
a screen, but could not revise previous screens. Sub-
jects received untimed breaks both between trans-
lation conditions and after about every five screens
within a translation condition.

4.1 Linguistic Materials
We chose two language pairs: French-English (Fr-
En) and English-German (En-De). Anecdotally,
French-English is an easy language pair for MT,
whereas English-German is very hard due to re-
ordering and complex German morphology.
We chose three text genres: software, medical,

and informal news. The software text came from
the graphical interfaces of Autodesk AutoCAD and
Adobe Photoshop. The medical text was a drug re-
view from the European Medicines Agency. These
two data sets came from TAUS7 and included inde-
pendent reference translations. The informal news
text came from the WMT 2013 shared task test set

7http://www.tausdata.org/

(Bojar et al., 2013). The evaluation corpus was con-
structed from equal proportions of the three genres.

The Fr-En dataset contained 3,003 source tokens
(150 segments); the En-De dataset contained 3,002
(173 segments). As a rule of thumb, a human trans-
lator averages about 2,700 source tokens per day
(Ray, 2013, p.36), so the experiment was designed
to replicate a slightly demanding work day.

4.2 Selection of Subjects
For each language pair, we recruited 16 profes-
sional, freelance translators on Proz, which is the
largest online translation community.8 We posted
ads for both language pairs at a fixed rate of $0.085
per source word, an average rate in the industry. In
addition, we paid $10 to each translator for complet-
ing the training module. All subjects had significant
prior experience with a CAT workbench.

4.3 Results
We analyze the translation conditions in terms of
two response variables: time and quality. We ex-
cluded one Fr-En subject and two En-De subjects
from the models. One subject misunderstood the in-
structions of the experiment and proceeded without
clarification; another skipped the training module
entirely. The third subject had a technical problem
that prevented logging. Finally, we also filtered
segment-level sessions for which the log of transla-
tion time was greater than 2.5 standard deviations
from the mean.

4.3.1 Translation Time
We analyze time with a linear mixed effects model
(LMEM) estimated with the lme4 (Bates, 2007) R
package. When experimental factors are sampled
from larger populations—e.g., humans, sentences,
words—LMEMs are more robust to type II errors
(see: Baayen et al. (2008)). The log-transformed
time is the response variable and translation condi-
tion is the main independent variable. The maximal
random effects structure (Barr et al., 2013) contains
intercepts for subject, sentence id, and text genre,
each with random slopes for translation condition.

We found significant main effects for translation
condition (Fr-En, p < 0.05; En-De, p < 0.01).
The orientation of the coefficients indicates that
interactive is slower for both language pairs. For Fr-
En, the LMEM predicts a mean time (intercept) of
46.0 sec/sentence in post-edit vs. 54.6 sec/sentence

8http://www.proz.com
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Fr-En En-De
TER HTER TER HTER

post-edit 47.32 23.51 56.16 37.15
interactive 47.05 24.14 55.89 39.55

Table 1: Automatic assessment of translation qual-
ity. Here we change the definitions of TER and
HTER slightly. TER is the human translations com-
pared to the independent references. HTER is the
baseline MT compared to the human corrections.

in interactive, or 18.7% slower. For En-De, the
mean is 51.8 sec/sentence vs. 63.3 sec/sentence in
interactive, or 22.1% slower.

We found other predictive covariates that reveal
more about translator behavior. When subjects did
not edit the MT suggestion, they were significantly
faster. When token edit distance fromMT or source
input length increased, they were slower. Subjects
were usually faster as the experiment progressed, a
result that may indicate increased proficiency with
practice. Note that all subjects reported profes-
sional familiarity with post-edit, whereas the in-
teractive mode was entirely new to them. In the
exit survey many translators suggested that with
more practice, they could have been as fast in the
interactive mode.9

4.3.2 Translation Quality
We evaluated translation quality with both auto-
matic and manual measures. Table 1 shows that
in the interactive mode, TER is lower and HTER
is higher: subjects created translations closer to
the references (lower TER), but performed more
editing (higher HTER). This result suggests better
translations in the interactive mode.

To confirm that intuition, we elicited judgments
from professional human raters. The setup followed
the manual quality evaluation of the WMT 2014
shared task (Bojar et al., 2014). We hired six raters—
three for each language pair—who were paid be-
tween $15–20 per hour. The raters logged into Ap-
praise (Federmann, 2010) and for each source seg-
ment, ranked five randomly selected translations.
From these 5-way rankings we extracted pairwise
judgments π = {<,=}, where u1 < u2 indicates
that subject u1 provided a better translation than
subject u2 for a given source input (Table 2).

9See (Green et al., 2014c) for significance levels of the
other covariates along with analysis of subject learning rates,
subject behavior, and qualitative feedback.

Fr-En En-De
#pairwise 14,211 15,001
#ties (=) 5,528 2,964
IAA 0.419 (0.357) 0.407 (0.427)
EW (inter.) 0.512 0.491

Table 2: Pairwise judgments for the manual qual-
ity assessment. Inter-annotator agreement (IAA)
κ scores are measured with the official WMT14
script. For comparison, the WMT14 IAA scores
are given in parentheses. EW (inter.) is expected
wins of interactive according to Eq. (6).

Fr-En En-De
sign p sign p

ui (interactive) + • −
log edit distance − ••• + •••
gender (female) − + •
log session order − + •

Table 3: LMEM manual translation quality results
for each fixed effect with contrast conditions for
binary predictors in (). The signs of the coefficients
can be interpreted as in ordinary regression. edit
distance is token-level edit distance from baseline
MT. session order is the order in which the subject
translated the sentence during the experiment. Sta-
tistical significance was computed with a likelihood
ratio test: ••• p < 0.001; • p < 0.05.

In WMT the objective is to rank individual sys-
tems; here we need only compare interface condi-
tions. However, we should control for translator
variability. Therefore, we build a binomial LMEM
for quality. The model is motivated by the simple
and intuitive expected wins (EW) measure used at
WMT. Let S be the set of pairwise judgments and
wins(u1, u2) = |{(u1, u2, π) ∈ S | π = <}|. The
standard EW measure is:

e(u1) =
1
|S|

∑
u1 6=u2

wins(u1, u2)
wins(u1, u2) + wins(u2, u1)

(5)
Sakaguchi et al. (2014) showed that, despite its sim-
plicity, Eq. (5) is nearly as effective as model-based
methods given sufficient high-quality judgments.
Since we care only about the two translation condi-
tions, we reinterpret the ui as interface conditions,
i.e., u1 = int and u2 = pe. We can then disregard
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the normalizing term to obtain:

e(u1) =
wins(u1, u2)

wins(u1, u2) + wins(u2, u1)
(6)

which is the expected value of a Bernoulli distribu-
tion (so e(u2) = 1 − e(u1)). The intercept-term
of the binomial LMEM will be approximately this
value subject to other fixed and random effects.

To estimate the model, we convert each pairwise
judgment u1 < u2 to two examples where the re-
sponse is 1 for u1 and 0 for u2. We add the fixed
effects shown in Table 3, where the numeric effects
are centered and scaled by their standard deviations.
The maximal random effects structure contains in-
tercepts for sentence id nested within subject along
with random slopes for interface condition.

Table 3 shows the p-values and coefficient orien-
tations. The models yield probabilities that can be
interpreted like Eq. (6) but with all fixed predictors
set to 0. For Fr-En, the value for post-edit is 0.472
vs. 0.527 for interactive. For En-De, post-edit is
0.474 vs. 0.467 for interactive. The difference is
statistically significant for Fr-En, but not for En-De.

When MT quality was anecdotally high (Fr-En),
high token-level edit distance from the initial sug-
gestion decreased quality. When MT was poor (En-
De), significant editing improved quality. Female
En-De translators were better than males, possibly
due to imbalance in the subject pool (12 females vs.
4 males). En-De translators seemed to improve with
practice (positive coefficient for session order).
The Fr-En results are the first showing an inter-

active UI that improves over post-edit.

5 MT Re-tuning Experiment
The human translators corrected the output of the
BLEU-tuned, baseline MT system. No updating of
the MT system occurred during the experiment to
eliminate a confound in the time and quality analy-
ses. Now we investigate re-tuning the MT system
to the corrections by simply re-starting the online
learning algorithm from the baseline weight vector
w, this time scoring with HTER instead of BLEU.
Conventional incremental MT learning experi-

ments typically resemble domain adaptation: small-
scale baselines are trained and tuned on mostly out-
of-domain data, and then re-tuned incrementally
on in-domain data. In contrast, we start with large-
scale systems. This is more consistent with a pro-
fessional translation environment where translators
receive suggestions from state-of-the-art systems
like Google Translate.

Bilingual Monolingual
#Segments #Tokens #Tokens

En-De 4.54M 224M 1.7B
Fr-En 14.8M 842M 2.24B

Table 4: Gross statistics of MT training corpora.

En-De Fr-En
baseline-tune 9,469 8,931
baseline-dev 9,012 9,030

int-tune 680 589
int-test 457 368
pe-tune 764 709
pe-test 492 447

Table 5: Tuning, development, and test corpora
(#segments). tune and dev were used for baseline
system preparation. Re-tuning was performed on
int-tune and pe-tune, respectively. We report held-
out results on the two test data sets. All sets are
supplied with independent references.

5.1 Datasets
Table 4 shows the monolingual and parallel train-
ing corpora. Most of the data come from the con-
strained track of the WMT 2013 shared task (Bojar
et al., 2013). We also added 61k parallel segments
of TAUS data to the En-De bitext, and 26k TAUS
segments to the Fr-En bitext. We aligned the par-
allel data with the Berkeley Aligner (Liang et al.,
2006) and symmetrized the alignments with the
grow-diag heuristic. For each target language we
used lmplz (Heafield et al., 2013) to estimate unfil-
tered, 5-gram Kneser-Ney LMs from the concate-
nation of the target side of the bitext and the mono-
lingual data. For the class-based features, we esti-
mated 512-class source and target mappings with
the algorithm of Green et al. (2014a).
The upper part of Table 5 shows the baseline

tuning and development sets, which also contained
1/3 TAUS medical text, 1/3 TAUS software text,
and 1/3 WMT newswire text (see section 4).

The lower part of Table 5 shows the organization
of the human corrections for re-tuning and testing.
Recall that for each unique source input, eight hu-
man translators produced a correction in each con-
dition. First, we filtered all corrections for which a
log u was not recorded (due to technical problems).
Second, we de-duplicated the corrections so that
each h was unique. Finally, we split the unique
(f, h) tuples according to a natural division in the
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System tune BLEU↑ TER↓ HTER
baseline bleu 23.12 60.29 44.05
re-tune hter 22.18 60.85 43.99
re-tune+feat hter 21.73 59.71 42.35

(a) En-De int-test results.

System tune BLEU↑ TER↓ HTER
baseline bleu 39.33 45.29 28.28
re-tune hter 39.99 45.73 26.96
re-tune+feat hter 40.30 45.28 26.40

(b) Fr-En int-test results.

Table 6: Main re-tuning results for interactive
data. baseline is the BLEU-tuned system used
in the translation user study. re-tune is the base-
line feature set re-tuned to HTER on int-tune. re-
tune+feat adds the human feature templates de-
scribed in section 3.3. bold indicates statistical
significance relative to the baseline at p < 0.001;
italic at p < 0.05 by the permutation test of Riezler
and Maxwell (2005).

data. There were five source segments per docu-
ment, and each document was rendered as a single
screen during the translation experiment. Segment
order was not randomized, so we could split the
data as follows: assign the first three segments of
each screen to tune, and the last two to test. This is
a clean split with no overlap.
This tune/test split has two attractive properties.

First, if we can quickly re-tune on the first few sen-
tences on a screen and provide better translations
for the last few, then presumably the user experience
improves. Second, source inputs f are repeated—
eight translators translated each input in each condi-
tion. This means that a reduction in HTER means
better average suggestions for multiple human trans-
lators. Contrast this experimental design with tun-
ing to the corrections of a single human translator.
There the system might overfit to one human style,
and may not generalize to other human translators.

5.2 Results
Table 6 contains the main results for re-tuning to in-
teractive MT corrections. For both language pairs,
we observe large statistically significant reductions
inHTER.However, the results for BLEU and TER—
which are computed with respect to the independent
references—are mixed. The lower En-De BLEU
score is explained by a higher brevity penalty for
the re-tuned output (0.918 vs. 0.862). However, the
re-tuned 4-gram and 3-gram precisions are signif-

System HTER↓ System HTER↓
int pe

baseline 44.05 baseline 41.05
re-tune (int) 43.99 re-tune (pe) 40.34
re-tune+feat 42.35 – –
∆ −1.80 −0.71

Table 7: En-De test results for re-tuning to post-edit
(pe) vs. interactive (int). Features cannot be ex-
tracted from the post-edit data, so the re-tune+feat
system cannot be learned. The Fr-En results are
similar but are omitted due to space.

icantly higher. The unchanged Fr-En TER value
can be explained by the observation that no human
translators produced TER scores higher than the
baselineMT. This odd result has also been observed
for BLEU (Culy and Riehemann, 2003), although
here we do observe a slight BLEU improvement.
The additional features (854 for Fr-En; 847 for

En-De) help significantly and do not slow down
decoding. We used the same L1 regularization
strength as the baseline, but feature growth could
be further constrained by increasing this parame-
ter. Tuning is very fast at about six minutes for the
whole dataset, so tuning during a live user session
is already practical.
Table 7 compares re-tuning to interactive vs.

post-edit corrections. Recall that the int-test and
pe-test datasets are different and contain different
references. The post-edit baseline is lower because
humans performed less editing in the baseline con-
dition (see Table 1). Features account for the great-
est reduction in HTER. Of course, the features are
based mostly on word alignments, which could be
obtained for the post-edit data by running an online
word alignment tool (see: Farajian et al. (2014)).
However, the interactive logs contain much richer
user state information that we could not exploit due
to data sparsity. We also hypothesize that the fi-
nal interactive corrections might be more useful
since suggestions prime translators (Green et al.,
2013a), and the MT system was able to refine its
suggestions.

6 Re-tuning Analysis

Tables 6 and 7 raise two natural questions: what
accounts for the reduction in HTER, and why are
the TER/BLEU results mixed? Comparison of the
BLEU-tuned baseline to the HTER re-tuned sys-
tems gives some insight. For both questions, fine-
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grained corrections appear to make the difference.
Consider this French test example (with gloss):

(1) une
one

ligne
line

de
of

chimiothérapie
chemotherapy

antérieure
previous

The independent reference for une ligne de chimio-
thérapie is ‘previous chemotherapy treatment’, and
the baseline produces ‘previous chemotherapy line.’
The source sentence appears seven times with the
following user translations: ‘one line or more
of chemotherapy’, ‘one prior line of chemother-
apy’, ‘one previous line of chemotherapy’ (2), ‘one
line of chemotherapy before’ (2), ‘one protocol of
chemotherapy’. The re-tuned, feature-based sys-
tem produces ‘one line of chemotherapy before’,
matching two of the humans exactly, and six of the
humans in terms of idiomatic medical jargon (‘line
of chemotherapy’ vs. ‘chemotherapy treatment’).
However, the baseline output would have received
better BLEU and TER scores.
Sometimes re-tuning improves the translations

with respect to both the reference and the human
corrections. This English phrase appears in the
En-De test set:

(2) depending
abhängig

on
von

the
der

file
datei

The baseline produces exactly the gloss shown in Ex.
(2). The human translators produced: ‘je nach datei’
(6), ‘das dokument’, and ‘abhängig von der datei’.
The re-tuned system rendered the phrase ‘je nach
dokument’, which is closer to both the independent
reference ‘je nach datei’ and the human corrections.
This change improves TER, BLEU, and HTER.

7 Related Work
The process study most similar to ours is that of
Koehn (2009a), who compared scratch, post-edit,
and simple interactive modes. However, he used un-
dergraduate, non-professional subjects, and did not
consider re-tuning. Our experimental design with
professional bilingual translators follows our previ-
ous work Green et al. (2013a) comparing scratch
translation to post-edit.
Many research translation UIs have been pro-

posed including TransType (Langlais et al., 2000),
Caitra (Koehn, 2009b), Thot (Ortiz-Martínez and
Casacuberta, 2014), TransCenter (Denkowski et
al., 2014b), and CasmaCat (Alabau et al., 2013).
However, to our knowledge, none of these inter-
faces were explicitly designed according to mixed-
initiative principles from the HCI literature.

Incremental MT learning has been investigated
several times, usually starting from no data (Bar-
rachina et al., 2009; Ortiz-Martínez et al., 2010),
via simulated post-editing (Martínez-Gómez et al.,
2012; Denkowski et al., 2014a), or via re-ranking
(Wäschle et al., 2013). No previous experiments
combined large-scale baselines, full re-tuning of
the model weights, and HTER optimization.
HTER tuning can be simulated by re-

parameterizing an existing metric. Snover et
al. (2009) tuned TERp to correlate with HTER,
while Denkowski and Lavie (2010) did the same
for METEOR. Zaidan and Callison-Burch (2010)
showed how to solicit MT corrections for HTER
from Amazon Mechanical Turk.

Our learning approach is related to coactive learn-
ing (Shivaswamy and Joachims, 2012). Their basic
preference perceptron updates toward a correction,
whereas we use the correction for metric scoring
and feature extraction.

8 Conclusion
We presented a new CAT interface that supports
post-edit and interactive modes. Evaluation with
professional, bilingual translators showed post-edit
to be faster, but prior subject familiarity with post-
edit may have mattered. For French-English, the
interactive mode enabled higher quality translation.
Re-tuning the MT system to interactive corrections
also yielded large HTER gains. Technical contri-
butions that make re-tuning possible are a cross-
entropy objective, prefix decoding, and dynamic
phrase table augmentation. Larger quantities of cor-
rections should yield further gains, but our current
experiments already establish the feasibility of Bar-
Hillel’s virtuous “machine-post-editor partnership”
which benefits both humans and machines.
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