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Abstract

Distantly supervised approaches have be-
come popular in recent years as they allow
training relation extractors without text-
bound annotation, using instead known
relations from a knowledge base and a
large textual corpus from an appropri-
ate domain. While state of the art dis-
tant supervision approaches use off-the-
shelf named entity recognition and clas-
sification (NERC) systems to identify re-
lation arguments, discrepancies in domain
or genre between the data used for NERC
training and the intended domain for the
relation extractor can lead to low perfor-
mance. This is particularly problematic
for “non-standard” named entities such as
album which would fall into the MISC
category. We propose to ameliorate this
issue by jointly training the named entity
classifier and the relation extractor using
imitation learning which reduces struc-
tured prediction learning to classification
learning. We further experiment with
Web features different features and com-
pare against using two off-the-shelf su-
pervised NERC systems, Stanford NER
and FIGER, for named entity classifica-
tion. Our experiments show that imita-
tion learning improves average precision
by 4 points over an one-stage classification
model, while removing Web features re-
sults in a 6 points reduction. Compared to
using FIGER and Stanford NER, average
precision is 10 points and 19 points higher
with our imitation learning approach.

1 Introduction

Factual answers to queries such as “What albums
did The Beatles release?” are commonly stored in

knowledge bases and can then be accessed by an
information retrieval system, a commercial exam-
ple for this being Google’s knowledge vault (Xin
et al., 2014). In order to keep knowledge bases up
to date should new facts emerge, and to quickly
adapt to new domains, there is a need for flexi-
ble and accurate information extraction (IE) ap-
proaches which do not require manual effort to be
developed for new domains. A popular approach
for creating IE methods to extract such relations
is distant supervision (Craven and Kumlien, 1999;
Mintz et al., 2009) which is a method for learn-
ing relation extractors using relations stored in a
knowledge base combined with raw text to auto-
matically generate training data.

An important first step in distant supervision is
to identify named entities (NEs) and their types
to determine if a pair of NEs is a suitable candi-
date for the relation. As an example, the album
relation has a Musical Artist and an Album as ar-
guments. Existing works use supervised named
entity recognisers and classifiers (NERC) with ei-
ther a small set of types such as the Stanford NER
system (Manning et al., 2014), or fine-grained NE
types (Ling and Weld, 2012; Liu et al., 2014).
However, supervised NERCs typically focus on
recognising persons, locations and organisations
and perform poorly for other types of NEs, e.g. we
find that Stanford NER only recognises 43% of all
MISC NEs in our corpus. In addition, they do not
always perform well if they are trained on a dif-
ferent type of text or for a different domain (Der-
czynski et al., 2015). This issue becomes more im-
portant as focus is shifting from using curated text
collections such as Wikipedia to texts collected
from the Web via search queries (Web-based dis-
tant supervision) which can provide better cover-
age (West et al., 2014).

In order to ameliorate this issue, we propose to
recognise NEs with simple heuristics, then use the
imitation learning algorithm DAGGER (Ross et al.,
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2011) to learn the NEC component jointly with re-
lation extraction (RE), without requiring explicitly
labeled data for NERC. Instead, training signal is
obtained by assessing the predictions of the rela-
tion extraction component. In this paper we make
the following contributions:

1. We learn jointly training a named entity clas-
sifier and a relation extractor for Web-based
distant supervision. Our method does not rely
on hand-labeled training data and is appli-
cable to any domain, which is shown in our
evaluation on 18 different relations.

2. We compare different methods for this pur-
pose: (1) we use imitation learning to train
separate classifiers for NEC and RE jointly;
(2) we aggregate NEC features and RE
features and train a one-stage classification
model; (3) we train a one-stage classification
model with only RE features; (4) we classify
NEs with two supervised off-the-shelf NEC
systems (Stanford NER and FIGER) and use
the NE types as features in RE to achieve a
soft NE type constraint.

3. We explore the effects of using different
NEC and RE features, including Web fea-
tures such as links and lists on Web pages,
and show that Web-based features improve
average precision by 7 points. We further find
that high-precision, but low-frequency fea-
tures perform better than low-precision and
high-frequency features.

4. Our experiments show that joint learning of
NEC and RE with imitation learning outper-
forms one-stage classification models by 4
points in average precision, and models based
on Stanford NER and FIGER by 19 and 10
points respectively.

2 Distant Supervision

Distantly supervised RE is defined as automati-
cally labelling a corpus with properties, P , and re-
sources, R, where resources stand for entities from
a knowledge base, KB, to train a classifier to learn
to predict binary relations. The distant supervision
paradigm is defined as (Mintz et al., 2009):

If two entities participate in a relation, any sen-
tence that contains those two entities might ex-
press that relation.

In general relations are of the form (s, p, o) ∈

R × P × R, consisting of a subject, a predicate
and an object; during training, we only consider
statements which are contained in a knowledge
base, i.e. (s, p, o) ∈ KB ⊂ R × P × R. In
any single extraction we consider only those sub-
jects in a particular class C ⊂ R, i.e. (s, p, o) ∈
KB ∩C × P ×R. Each resource r ∈ R has a set
of lexicalisations, Lr ⊂ L. Lexicalisations are re-
trieved from the KB, where they are represented
as the name or alias, i.e. less frequent name of a
resource.

3 Approach Overview

The input to the approach is a KB which con-
tains entities and is partly populated with relations,
the task is to complete the knowledge base. As
an example, consider a KB about musical artists
and their albums, which contains names of mu-
sical artists, and albums for some of them. The
task is then to find albums for the remaining musi-
cal artists. Queries are automatically formulated
containing C, s and o, e.g. “Musical Artist al-
bum ‘The Beatles”’ and we obtain Web pages us-
ing a search engine. For each sentence on the Web
pages retrieved which contains s, all candidates
for C are identified using NER heuristics (Sec-
tion 4.2). Next, the distant supervision assump-
tion is applied to all such sentences containing s
(e.g. “Michael Jackson”) and a candidate for that
relation (e.g. “Music & Me”). If the candidate
is an example of a relation according to the KB,
it is used as a positive example, and if not, as a
negative example. The examples are then used to
train a model to recognise if the candidate is of
the right type for the relation (NEC) and if it is of
the correct relation (RE). The model is applied to
the sentences of all the incomplete entries in the
KB. Since different sentences could predict differ-
ent answers to the query, all predictions are com-
bined for the final answer.

4 Named Entity Recognition and
Relation Extraction

The input to the learning task is a collection of
training examples for a specific relation. The ex-
amples are sentences containing the subject of the
relation and one further NE identified using simple
heuristics. The examples are labeled as true (rela-
tion is contained in knowledge base) or as false
(relation is not contained in the knowledge base).

We model the task in two binary classifica-
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Figure 1: Overview of approach

tion stages: named entity classification (NEC) and
relation extraction (RE). Existing approaches as-
sume that named entity recognition and classifica-
tion is done as part of the pre-processing. How-
ever, this is not possible domains for which NE
classifiers are not readily available. To amelio-
rate this issue, existing approaches — e.g Mintz et
al. (2009) — perform NEC to provide additional
features for relation extraction. We use two such
baselines with off-the-shelf NECs and add the NE
labels to the relation features. The first baseline
(Stanf) is with the Stanford NER 7-class (Time,
Location, Organization, Person, Money, Percent
and Date) model, the second (FIGER) is with the
fine-grained FIGER (Ling and Weld, 2012).

An alternative approach is to simply add NEC
features to relation extraction features, which we
call one-stage model (OS) here. NEC features are
typically morphological features extracted from
the NE mention and features to model its con-
text, whereas relation features typically model the
path between the subject and object of the rela-
tion. While NEC features may be useful to deter-
mine if the NE has the correct type for the rela-
tion, such features are usually less sparse and also
not directly related to the relation extraction task.
Consider the following sentence, containing an ex-
ample of the relation director:

“One of director <o>Steven Spielberg</o>’s
greatest heroes was <o>Alfred Hitchcock</o>,
the mastermind behind <s>Psycho</s>.

This sentence contains two relation candidates,
“Steven Spielberg” and “Alfred Hitchcock”, be-
tween which the decision for the final prediction
has to be made. Both of the candidates are direc-
tors, but only one of them is the director of “Psy-
cho”. Because the context around “Steven Spiel-
berg” is stronger (preceded by “director”), NEC
features alone are more likely to indicate that as
the correct candidate and also likely overpower re-
lation features for the final prediction, as the latter
tend to be sparser.

Ideally, we would like to train two models, one
for NEC and one for RE, which would be applied
in sequence. If the NEC stage concludes that the
candidate is of the correct type for the relation, the
RE stage determines whether the relation between
the two entities is expressed. If the NEC stage con-
cludes that the entity is not of the correct type, then
the RE stage is not reached. However, distant su-
pervision only provides positive labels for NEC,
since if a sentence is labeled as false we do not
know if it is due to the candidate not being of the
correct type, or the relation not being true for the
two entities. To overcome this, we learn models
for the two stages, NEC and RE, jointly using the
imitation learning algorithm DAGGER (Ross et al.,
2011), as described in the next section.
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4.1 Imitation Learning

Imitation learning1 algorithms such as SEARN

(Daumé III et al., 2009) and DAGGER (Ross et
al., 2011) have been applied successfully to a va-
riety of structured prediction tasks due to their
flexibility in incorporating features and their abil-
ity to learn with non-decomposable loss functions.
Sample applications include biomedical event ex-
traction (Vlachos and Craven, 2011), dynamic fea-
ture selection (He et al., 2013), and machine trans-
lation (Grissom II et al., 2014).

Imitation learning algorithms for structured pre-
diction decompose the prediction task into a se-
quence of actions; these actions are predicted by
classifiers which are trained to take into account
the effect of their predictions on the whole se-
quence by assessing their effect using a (possibly
non-decomposable) loss function on the complete
structure predicted. The dependencies between
the actions are learnt via appropriate generation of
training examples.

The ability to learn by assessing only the final
prediction and not the intermediate steps is very
useful in the face of missing labels, such as in the
case of the labels for the NEC stage. Recall that
the action sequence in our case consists of one
NEC action and possibly one RE action, depen-
dent on whether the NEC action is true, i.e. the en-
tity is of the appropriate type for the relation. Fol-
lowing Vlachos and Clark (2014), for each train-
ing instance, we obtain supervision for the NEC
stage by taking both options for this stage, true or
false, obtaining the prediction from the RE stage
in the former case and then comparing the out-
comes against the label obtained from distant su-
pervision. Thus the NEC stage is learned so that
it enhances the performance of RE. In parallel, the
RE stage is learned using only instances that actu-
ally reach this stage. The process is iterated so that
the models learned adjust to each other. For more
details on this we refer the reader to Vlachos and
Clark (2014).

4.2 Relation Candidate Identification

To extract relations among NEs, the latter have to
be detected first. Most distantly supervised ap-
proaches use supervised NER systems for this,
which, especially for relations involving MISC
NEs, achieve a low recall. High recall for NE

1Also referred to as search-based structured prediction or
learning to search.

identification is more important than high preci-
sion, since precision errors can be dealt with by
the NEC stage. For a relation candidate identi-
fication stage with higher recall we instead rely
on POS-based heuristics for detecting NEs2 and
HTML markup. We use the following POS heuris-
tics:

• Noun phrases: Sequences of N tags
• Capitalised phrases: Those can be distinct

from noun phrases, e.g. some album titles are
capitalised verb phrases.

We further consider as relation candidates words
which contain the following HTML markup:

• Phrases from HTML markup: All se-
quences of words marked as: <ahref>
(links), <li> (list elements), <h1> or
<h2> or <h3> (headers and subheaders, i.e.
titles), <strong> or <b> (bold), <em>
(emphasised), <i> (italics)

Different relation candidate identification strate-
gies are then applied depending on the coarse NE
types of objects of relation as defined in the KB
(Table 2).

• PER: All capitalised noun phrases. We allow
for a maximum of two characters to be sur-
rounded by quotes to capture alternative first
names, e.g. “Jerome David ‘J. D.’ Salinger”.
• LOC: All capitalised noun phrases.
• ORG: All capitalised phrases and phrases

from HTML markup. The latter is to capture
ORG names which are not capitalised, e.g.
the school “Woodrow Wilson School of Pub-
lic and International Affairs” or the record la-
bel “Sympathy for the Record Industry”.
• MISC: As for ORG, we use all capitalised

phrases and phrases from HTML markup.
MISC NEs are even more varied than ORG
NEs and it is difficult to find the right balance
between recognising most of them and gener-
ating unecessary candidates.

To assess how useful these strategies are, we
randomly sample 30 instances of each Freebase
class per coarse NE type of the object and manu-
ally examine all sentences which contain the sub-
ject of the relation. We used precision, i.e. how
many of the relation candidates are appropriate

2The Stanford POS tagger uses Penn Treebank POS
tags, see http://www.ling.upenn.edu/courses/
Fall_2003/ling001/penn_treebank_pos.html
for a list of tags
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NE type Model R P F1
PER heuristic 0.976 0.1287 0.227
PER Stanford 0.774 0.1781 0.29
LOC heuristic 0.963 0.1176 0.21
LOC Stanford 0.889 0.1611 0.272727273
ORG heuristic 0.95 0.0265 0.0516
ORG Stanford 0.8 0.0505 0.095
MISC heuristic 0.854 0.0496 0.0938
MISC Stanford 0.427 0.053 0.0943

Table 1: Results for POS-based candidate identifi-
cation strategies compared to Stanford NER

for the relation, and recall to compare the relation
candidate identification strategies described above
against the identification of candidates by Stanford
NER (ignoring the NE label). As shown in Ta-
ble 1, while supervised identification of NE labels
achieves a higher precision for all NE types, the
recall is higher for all NE types using POS-based
heuristics. The simple heuristics are especially
helpful for MISC NEs, for which recall is twice
as high compared to Stanford NER and precision
only marginally higher. If we were to use the NE
label to enforce hard constraints, recall would be
reduced even further: 88% of all PER entities are
correctly identified as persons, compared to 58%
for locations and 87% for organisations. MISC NE
are identified as PER (45%), LOC (40%) or ORG
(15%). Overall, precision is not as important for
candidate identification as recall, since choosing
correct entities among the candidates can be dealt
with in a NEC stage.

4.3 NEC features
For the one-stage and imitation learning model,
we use the following Web features based on
HTML markup, both as local features if the
entity mention contains the markup, and as global
features if a mention somewhere else in the
document with the same lexicalisation contains
that markup: is link, is list element, is header or
subheader, is bold, is emphasised, is italics, is
title, is in title.

In addition, the following NEC features are ex-
tracted, based on Nadeau et al. (2007) and Hoff-
mann et al. (2011):
Word features (mentfeats):

• Object occurrence
• Sequence and BOW of occurrence
• Sequence and bag of POS of occurrence

• Number of words, characters and digits of
object
• Ends with period, is roman number, contains

apostrophe, hyphen, ampersand, possessive
• Digit and capitalisation pattern

Context features, as 1-grams (1cont) and 2-grams,
2 words to left and right of occurrence (2cont):
BOW, sequence, bag of POS, POS sequence.

4.4 RE Features

The following features are used for RE, based on
Hoffman et al (2011) and Mintz et al. (2009):

• 1cont and 2cont features
• Flag indicating which entity came first in sen-

tence
• Sequence of POS tags and bag of words

(BOW) between the subject and the object
occurrence

Parsing features as full sequences (parse):

• Dependency path between subject and object,
POS tags of words on that path
• Lemmas on dependency path, same with

NNP and CD tokens substituted by POS tags

4.5 Supervised NEC Features for RE

For the baselines with off-the-shelf NECs, sen-
tences are preprocessed with the two NEC systems
Stanford NER and FIGER. NE labels are then used
in addition to the RE features listed in Section 4.4.
For the Stanf baseline, Stanford NER 7-class la-
bels are added as RE features. Those are: Time,
Location, Organization, Person, Money, Percent,
Date. FIGER classifies NEs according to 112
types, most of which are subtypes of Person, Orga-
nization, Location, Product, Art, Event and Build-
ing. Some of the types are relation types we eval-
uate (see Table 2 for relation types): educational
institution, city, director, actor and author. Since
FIGER performs multi-label classification, it an-
notates some of the relation candidates with more
than one NE label. In that case, we add all NE
labels returned as features, though more experi-
ments on how best to integrate multiple NE labels
as features could be performed, as shown by Liu
et al. (2014).
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Musical Artist Politician
Relation type NE type Relation type NE type
album MISC birthplace LOC
record label ORG educational institution ORG
track MISC spouse PER

Business Educational Institution
Relation type NE type Relation type NE type
employees PER mascot MISC
founders PER city LOC

Film Book
Relation type NE type Relation type NE type
director PER author PER
producer PER characters MISC
actor PER
character MISC

River
Relation type NE type
origin LOC
mouth LOC

Table 2: Relation types and corresponding coarse
NE types

5 Evaluation

5.1 Corpus

To create a corpus3 for Web RE, seven Free-
base classes and two to four of their relations
are selected (Table 2). The selected classes are
subclasses of PER (Musical Artist, Politician),
LOC (River), ORG (Business (Operation)), Ed-
ucation(al Institution)) or MISC (Film, Book).
To avoid noisy training data, we only use enti-
ties which have values for all of those properties,
which resulted in 1800 to 2200 entities per class.
For each entity, 10 Web pages were retrieved via
the Google Search API using the search pattern
“‘subject entity” class name relation name’, e.g.
“‘The Beatles” Musical Artist Origin’. In total, the
corpus consists of around one million pages drawn
from 76,000 different websites. Text content is ex-
tracted from HTML pages using the Jsoup API4

and processed with Stanford CoreNLP5.

5.2 Models and Metrics

We evaluate the following models: imitation
learning (IL) as described in Section 4.1, a one-
stage model (OS), a one-stage model with rela-
tion features only (RelOnly), and using Stanford

3The resources for experiments documented in this pa-
per are available online via http://tinyurl.com/
o8ykn4y

4http://jsoup.org
5http://nlp.stanford.edu/software/corenlp.shtml

Model R-top P-top F1-top R-all P-all P-avg
RelOnly 0.1943 0.404 0.255 0.223 0.309 0.373

Stanf 0.233 0.436 0.304 0.268 0.329 0.398
FIGER 0.228 0.497 0.298 0.251 0.413 0.483

OS 0.269 0.58 0.356 0.288 0.486 0.552
IL 0.246 0.600 0.329 0.271 0.521 0.588

Table 3: Results for best model for each relation,
macro average over all relations.

(Stanf) and FIGER (FIGER) NE labels as fea-
tures (Section 4). For all models we use lin-
ear classifiers learned with passive-aggressive up-
dates (Crammer et al., 2006). For imitation learn-
ing, we use the learning algorithm DAGGER (Ross
et al., 2011), which requires two parameters: the
learning rate, i.e. how quickly the learning algo-
rithm moves away from the optimal policy, and
the number of iterations. We found empirically
that the best learning rate for our prediction task is
0.25 and that the best number of iterations is 12.

The output of the models is a score for each re-
lation example and stage, i.e. for the one-stage
model, the output is one score and for the imita-
tion learning model, there is a score each for the
NEC stage and the RE stage. The default for de-
ciding whether the relation label should be true or
false depends on stage thresholds, which are 0 by
default. Instead of using the default thresholds, we
automatically pick thresholds for all models on 1/3
of the training set, which we set aside as a develop-
ment set, then retrain on the whole training set and
predict relations based on the learnt thresholds.

We use the metrics first best precision (P-top),
first best recall (R-top), first best F1 (F1-top), all
precision (P-all), all recall (P-all), and all average
precision (P-avg). For top, only the top-ranked
answer is considered, whereas for all all answers
are returned until either the correct one is found
or they are exhausted. Finally, in the all mode we
evaluated precision at all recall points by varying
the thresholds used in the respective classifiers and
we report average precision (P-avg) (Manning et
al., 2008). This evaluation measure provides an
assessment of how well a system trades precision
for recall. The number of all results for computing
recall is the number of all relation tuples in the
KB.
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Relation RelOnly Stanf FIGER OS IL
F1-top P-avg F1-top P-avg F1-top P-avg F1-top P-avg F1-top P-avg

Musical Artist : album 0.071 0.175 0.079 0.109 0.116 0.203 0.158 0.409 0.115 0.569
Musical Artist : record label 0.090 0.182 0.100 0.345 0.179 0.636 0.404 0.758 0.376 0.926

Musical Artist : track 0.093 0.109 0.053 0.175 0.104 0.400 0.118 0.471 0.114 0.367
Politician : birthplace 0.410 0.594 0.514 0.541 0.496 0.609 0.585 0.709 0.516 0.548

Politician : educational institution 0.321 0.387 0.330 0.426 0.366 0.560 0.419 0.719 0.381 0.831
Politician : spouse 0.148 0.197 0.152 0.197 0.082 0.309 0.218 0.319 0.150 0.181

Business : employees 0.059 0.090 0.097 0.153 0.082 0.325 0.149 0.291 0.133 0.493
Business : founders 0.341 0.256 0.462 0.332 0.404 0.542 0.448 0.663 0.429 0.693
Education : mascot 0.148 0.362 0.195 0.483 0.226 0.500 0.225 0.506 0.206 0.585

Education : city 0.630 0.705 0.711 0.740 0.701 0.770 0.724 0.847 0.690 0.872
Film : director 0.383 0.548 0.445 0.603 0.358 0.554 0.439 0.601 0.387 0.612
Film : producer 0.149 0.384 0.209 0.395 0.164 0.387 0.198 0.355 0.227 0.400

Film : actor 0.246 0.576 0.308 0.633 0.351 0.609 0.342 0.684 0.312 0.732
Film : character 0.093 0.123 0.093 0.117 0.180 0.195 0.194 0.298 0.173 0.319
Book : author 0.629 0.852 0.703 0.852 0.781 0.878 0.773 0.867 0.781 0.885

Book : characters 0.224 0.127 0.193 0.127 0.262 0.328 0.268 0.315 0.231 0.355
River : origin 0.175 0.328 0.232 0.493 0.160 0.351 0.256 0.406 0.228 0.550
River : mouth 0.336 0.594 0.423 0.564 0.347 0.529 0.488 0.709 0.479 0.668

Table 4: Results for best model for each relation, highest P-avg in bold

6 Results and Discussion

6.1 Comparison of Models

Overall results in Table 3 show that both of our
models (IL and OS) outperform the baselines with
off-the-shelf supervised NEC (Stanf, FIGER) for
all metrics. Detailed results for different relations
(Table 4) show that IL outperforms both OS and
Base in terms of average precision. FIGER re-
sults fall in between Stanf and OS results. For
some relations, there is a dramatic improvement
by using fine-grained FIGER NE features over
coarse-grained Stanford NE features; occasionally
FIGER even outperforms OS, as for the relation
author. This is because FIGER has a correspond-
ing NE type (see Section 4.5).
For most relations, including those whose objects
are of type MISC, IL shows a significant improve-
ment in terms of F1 or average precision over OS
(Table 5). This confirms our hypothesis that sepa-
rating the NEC and relation extraction stages using
imitation learning can achieve a higher precision
and recall for non-standard relations than prepro-
cessing sentences with a supervised NEC model.
Furthermore, we show that it can also be useful
for most standard relations. The main relations for
which Stanf, FIGER or OS can have a benefit over
IL are those for which entities are easy to classify,
specifically LOC NEs, but also PER NEs. This
is because, if NEs are easy to classify, a separate
NEC is less likely to be useful.

6.2 Imitation Learning vs One-Stage

To give more insight into why IL is overall more
successful than OS, common errors made by OS
are shown here, along with an explanation of how
those errors are prevented by using IL. One exam-
ple of IL predicting correctly but OS incorrectly is
from the following sentence, expressing the direc-
tor relation:

“In 2010 he appeared in a leading role
in <o>Alicia Duffy</o>’s <s>All Good
Children</s>.

In that example, the NEC features extracted for
<o>Alicia Duffy</o> are not very strong indi-
cators, since neither the object string itself nor the
surrounding context give any direct indication for
the director relation. The RE features, which are
based on the dependency path, are a stronger indi-
cator. Since in the OS model all features are com-
bined, the NEC features overpower the RE fea-
tures. The IL model, on the other hand, learns a
permissive NEC as a first stage, which filters NEs
with respect to if they are generally appropriate for
the relation or not, and then leaves the RE to the
second stage.

Another example is a sentence for which OS in-
correctly predicts the relation author, whereas IL
correctly predicts “false”:

“<o>Laura</o> and Mary went to school for
the first time in Pepin rather than Walnut Grove,
which is not included in <s>Little House in the
Big Woods</s>.”
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Relation NEC Features Rel Features
Musical Artist : album 2cont + 1cont + mentfeats + web parse

Musical Artist : record label 2cont + 1cont + mentfeats + web parse + 2contword
Musical Artist : track parse + 2cont + 1cont + mentfeats parse
Politician : birthplace 2cont + 1cont + mentfeats + web parse

Politician : educational institution parse + cont + ment parse
Politician : spouse parse + 2cont + 1cont + web parse

Business : employees 2cont + 1cont + mentfeats + web parse + 2contword
Business : founders parse + cont + ment parse
Education : mascot parse + 2contwordpos parse + cont

Education : city parse + cont + ment parse + 2contwordpos
Film : director 2cont + 1cont + mentfeats + web parse + 2contword
Film : producer parse + cont parse + 2contwordpos

Film : actor parse + 2cont + web parse + 2contwordpos
Film : character parse + cont + ment parse + 2contword
Book : author 2cont + 1cont + mentfeats + web parse

Book : characters parse + cont + ment parse
River : origin 2cont + 1cont + mentfeats + web parse + 2contword
River : mouth 2cont + 1cont + mentfeats + web parse

Table 5: Best feature combination for IL

NEC Features Rel Features P-top R-top F1-top P-all R-all P-avg
2cont parse 0.215 0.399 0.28 0.253 0.316 0.381

2cont + 1cont + mentfeats parse 0.239 0.456 0.313 0.275 0.378 0.441
2cont + 1cont + mentfeats + web parse 0.248 0.51 0.322 0.276 0.431 0.502

2cont + web parse 0.204 0.375 0.264 0.244 0.289 0.35
2cont parse + 2contwordpos 0.236 0.43 0.305 0.275 0.338 0.402

2cont + 1cont + mentfeats parse + 2contwordpos 0.239 0.456 0.313 0.275 0.378 0.441
2cont + 1cont + mentfeats + web parse + 2contwordpos 0.248 0.518 0.324 0.275 0.421 0.486

2cont + web parse + 2contwordpos 0.24 0.402 0.3 0.279 0.305 0.371
2cont parse + 2contword 0.215 0.394 0.278 0.258 0.309 0.372

2cont + 1cont + mentfeats parse + 2contword 0.231 0.453 0.295 0.266 0.352 0.43
2cont + 1cont + mentfeats + web parse + 2contword 0.25 0.54 0.325 0.284 0.433 0.505

2cont + web parse + 2contword 0.223 0.395 0.285 0.263 0.305 0.373

Table 6: Imitation learning results for different NE and relation features, macro average over all relations.

For this example, OS relation features have
small positive weights, which then overall lead
to a positive prediction. For IL, the first
stage predicts “false”, since the one-token string
<o>Laura</o> is not a likely candidate for au-
thor.

6.3 Comparison of Features
All different feature groups have an overall posi-
tive effect on the results (see Table 6). While low
precision, high frequency features improve recall
(1cont), they do not always improve precision.
Both OS and IL benefit from high precision, low
frequency features, e.g. for author and mouth, the
best results are achieved with only sparse parsing
features for RE.
Web features improve performance for 10 out of
18 relations. For n-ary relations the is list ele-
ment feature is very useful because Web pages

about musical artist, films or books often contain
lists with their attributes, e.g. a Web page about
a musical artist typically contains a list with their
albums. For relations with persons as objects, is
link and is bold is useful because Web pages often
highlight persons or provide links to Web pages
with more information about them. As an exam-
ple, for the author relation, the strongest positive
Web feature is is in title and the strongest nega-
tive feature is is list element. This makes sense
since a book is frequently mentioned with its au-
thor and one of the most important attributes of
a book, whereas lists on Web pages about books
mention less important attributes, such as the char-
acters.

6.4 Overall Comparison
Overall, we showed that using an off-the-shelf
NEC as a pre-processing step for distant super-
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vision as done by existing works often causes er-
rors which can be prevented by instead separat-
ing NEC and RE with imitation learning. We also
showed that using Web features increases preci-
sion for NEC. Finally, it is worth noting that the
recall for some of the relations is quite low be-
cause they only infrequently occur in text, espe-
cially in the same sentence as the subject of the
relation. These issues can be overcome by per-
forming coreference resolution (Augenstein et al.,
2014; Koch et al., 2014), by retrieving more Web
pages or improving the information retrieval com-
ponent of the approach (West et al., 2014) and
by combining extractors operating on sentences
with other extractors for semi-structured content
on Web pages (Carlson et al., 2010).

7 Related Work

One of the first papers to introduce distant su-
pervision was Mintz et al. (2009), which aims at
extracting relations between entities in Wikipedia
for the most frequent relations in Freebase. Most
distant supervision research focuses on addressing
the disadvantages of heuristic labelling, namely
reducing false positive training data (Hoffmann
et al., 2011; Surdeanu et al., 2012; Riedel et al.,
2010; Riedel et al., 2013; Yao et al., 2010; Alfon-
seca et al., 2012; Roth and Klakow, 2013; Taka-
matsu et al., 2012; Xu et al., 2013) and deal-
ing with false negatives due to missing entries in
the knowledge base (Min et al., 2013), as well as
combining distant supervision with active learning
(Angeli et al., 2014)
Distant supervision has been researched for dif-
ferent domains, including newswire (Riedel et
al., 2010; Riedel et al., 2013), Wikipedia (Mintz
et al., 2009; Nguyen and Moschitti, 2011), the
biomedical domain (Craven and Kumlien, 1999;
Roller and Stevenson, 2014), the architecture do-
main (Vlachos and Clark, 2014) and the Web (Xin
et al., 2014; Augenstein et al., 2014; Augenstein
et al., 2015).
To date, there is very little research on improv-
ing NERC for distant supervision to extract rela-
tions between non-standard entities such as musi-
cal artists and albums. Some research has been
done on improving distant supervision by using
fine-grained named entity classifiers (Ling and
Weld, 2012; Liu et al., 2014) and on using named
entity linking for distant supervision (Koch et al.,
2014). Liu et al. (2014) train a supervised fine-

grained NERC on Wikipedia and show that us-
ing those types as entity contraints improves pre-
cision and recall for a distantly supervised RE
on newswire. However, they assume that labeled
training data is available, making it unsuitable for
applying distant supervision to domains with rela-
tions involving non-standard entity types.
Vlachos and Clark (2014) also proposed a dis-
tantly supervised approach for joint learning of
NEC and RE with imitation learning for the archi-
tecture domain. However, they only used two re-
lations in their experiments which involved rather
standard entity types and they did not compare
against using off-the shelf NEC systems.

8 Conclusion and Future Work

In this paper, we proposed a method for extract-
ing non-standard relations with distant supervi-
sion that learns a NEC jointly with relation ex-
traction using imitation learning. Our proposed
imitation learning approach outperforms models
with supervised NEC for relations involving non-
standard entities as well as relations involving per-
sons, locations and organisations. We achieve an
increase of 4 points in average precision over a
simple one-stage classification model, and an in-
crease in 10 points and 19 points over baselines
with FIGER and Stanford NE labels. We further
demonstrate that using specialised Web features,
such as appearances of entities in lists and links to
other Web pages, improves average precision by 7
points, which other Web search-based relation ex-
traction approaches could also benefit from (Xin
et al., 2014; Augenstein et al., 2014).
In future work, the proposed approach could be
combined with other approaches to solve typical
issues arising in the context of distant supervision,
such as dealing with overlapping relations (Hoff-
mann et al., 2011), improving heuristic labelling
of sentences (Takamatsu et al., 2012) or deal-
ing with incomplete knowledge bases (Min et al.,
2013).
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