
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 462–471
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

A Cognition Based Attention Model for Sentiment Analysis

Yunfei Long1, Qin Lu1, Rong Xiang2, Minglei Li1 and Chu-Ren Huang3

1Department of Computing, The Hong Kong Polytechnic University
csylong,csluqin,csmli@comp.polyu.edu.hk
2Advanced Micro Devices, Inc.(Shanghai)

Rong.Xiang@amd.com
3Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University

churen.huang@polyu.edu.hk

Abstract

Attention models are proposed in senti-
ment analysis because some words are
more important than others. However,
most existing methods either use local
context based text information or user
preference information. In this work, we
propose a novel attention model trained by
cognition grounded eye-tracking data. A
reading prediction model is first built us-
ing eye-tracking data as dependent data
and other features in the context as in-
dependent data. The predicted reading
time is then used to build a cognition
based attention (CBA) layer for neural
sentiment analysis. As a comprehensive
model, We can capture attentions of words
in sentences as well as sentences in doc-
uments. Different attention mechanisms
can also be incorporated to capture other
aspects of attentions. Evaluations show
the CBA based method outperforms the
state-of-the-art local context based atten-
tion methods significantly. This brings in-
sight to how cognition grounded data can
be brought into NLP tasks.

1 Introduction

Sentiment analysis is critical for many applica-
tions such as sentimental product recommenda-
tion (Dong et al., 2013), public opinion detec-
tion (Pang et al., 2008), and human-machine inter-
action (Clavel and Callejas, 2016), etc.Sentiment
analysis has been well-explored (Pang et al., 2002;
Vanzo et al., 2014; Tang et al., 2015a; Chen et al.,
2016; Maas et al., 2011).Recently, deep learning
based methods have further elevated the perfor-
mance of sentiment analysis without the need for
labor intensive feature engineering.

Attention models are incorporated into senti-
ment analysis because not all words are created
equal. Some words are more important than oth-
ers in conveying the message in a sentence. Simi-
larly, some sentences are more important than oth-
ers in a document. Although the overall reading
time as a cognitive process may reflect the syn-
tax and discourse complexity, reading time of in-
dividual words is also an indicator of their seman-
tic importance in text (Roseman, 2001; Demberg
and Keller, 2008). Previous attention models are
built using information embedded in text including
users, products and text in local context for senti-
ment classification (Tang et al., 2015b; Yang et al.,
2016; Chen et al., 2016; Gui et al., 2016). How-
ever, attention models using local context based
text through distributional similarity lack theoret-
ical foundation to reflect the cognitive basis. But,
the key in sentiment analysis lies in its cognitive
basis. Thus, we envision that cognition grounded
data obtained in text reading should be helpful in
building an attention model.

In this paper, we propose a novel cognition
based attention(CBA) model for sentiment analy-
sis learned from cognition grounded eye-tracking
data. Eye-tracking is the process of measuring ei-
ther the point of gaze or the motion of an eye rel-
ative to the head1. In psycho-linguistics experi-
ments, Barrett(2016) shows that readers are less
likely to fixate on close-class words that are pre-
dictable from context. Readers also fixate longer
on words which play significant semantic roles
(Demberg and Keller, 2008) in addition to infre-
quent words, ambiguous words, and morphologi-
cal complex words (Rayner, 1998). Since reading
time can be learned from an eye-tracking dataset,
predicted reading time of words in its context can
be used as indicators of attention weights.

1https://en.wikipedia.org/wiki/Eye-tracking

462

We first build a regression model to map syn-
tax, and context features of a word to its reading
time based on eye-tracking data. We then apply
the model to sentiment analysis text to obtain the
estimated reading time of words at the sentence
level. The estimated reading time can then be used
as the attention weights in its context to build the
attention layer in a neural network based senti-
ment analysis model. Evaluation on the four sen-
timent analysis benchmark datasets (IMDB, Yelp
13, Yelp 14 and IMDB2) show that our proposed
model can significantly improve the performance
compared to the state-of-the-art attention methods.

To sum up, we have two major contributions:
(1) We propose a novel cognition grounded at-
tention model to improve the state-of-the-art neu-
ral network based sentiment analysis models by
learning attention information from eye-tracking
data. This is one of the first attempts to use cog-
nition grounded data in sentiment analysis. The
CBA model not only can capture attention of
words at the sentence level, it can also be aggre-
gated to work at the document level. (2) Evalu-
ation on several real-world datasets in sentiment
analysis shows that our method outperforms other
state-of-the-art methods significantly. This work
validates the effectiveness of cognition grounded
data in building attention models.

2 Related works

The basic task in sentiment analysis can be formu-
lated as a classification problem. Class labels can
either be binary (positive/negative) or polarity ei-
ther as intensity by continuous values or as ratings
in certain range such as 0 to 5 or 1 to 10, etc..

In recent years, deep learning based methods
have greatly improved the performance of senti-
ment analysis. Commonly used models include
Convolutional Neural Networks (Socher et al.,
2011), Recursive Neural Network (Socher et al.,
2013), and Recurrent Neural Networks (Irsoy and
Cardie, 2014). RNN naturally benefits sentiment
classification because of its ability to capture se-
quential information in text. However, standard
RNN suffers from the gradient vanishing problem
(Bengio et al., 1994) where gradients may grow
or decay exponentially over long sequences. To
address this problem, Long-Short Term Memory
model (LSTM) is introduced by adding a gated
mechanism to keep long term memory. Each
LSTM layer is generally followed by mean pool-

ing and then feed into the next layer. Experiments
in datasets which contain long documents and sen-
tences demonstrate that the LSTM model outper-
forms the traditional RNN (Tang et al., 2015a,c).

Not all words contribute equally to the seman-
tics of a sentence (Hahn and Keller, 2016). Atten-
tion based neural networks are proposed to high-
light their difference in contribution (Yang et al.,
2016). In document level sentiment classifica-
tion, both sentence level attention and document
level attention are proposed. In the sentence level
attention layer, an attention mechanism identi-
fies words that are important. Those informative
words are aggregated as attention weights to form
sentence embedding representation. This method
is generally called local context attention method.
Similarly, some sentences can also be highlighted
to indicate their importance in a document.

Apart from local context attention, user/product
attentions are also included in deep learning based
methods either in a separate network (Gui et al.,
2016) or a unified network (Tang et al., 2015c; Gui
et al., 2016). Some feature engineering method to
some specific datasets can also achieve very good
result(Sadeghian and Sharafat, 2015). However,
they are not suited for other genre of text as user-
product information are not generally available.

Attention models can be built not only from lo-
cal text or user/product information but also from
cognitive grounded data, especially eye-tracking
data (Rayner, 1998; Allopenna et al., 1998). Joshi
(2014) proposes a novel metric called Sentiment
Annotation Complexity for measuring sentiment
annotation complexity based on eye-tracking data.
Mishra (2014) presents a cognitive study of senti-
ment detection from the perspective of AI where
readers are tested as sentiment readers. Mishra
(Mishra et al., 2016b) recently proposes a model in
sentiment analysis and sarcasm detection by using
eye-tracking data as a feature in addition to text
features using Naive-Bayes and SVM classifiers.

In other NLP tasks, Joshi (2013) shows that
Word-Sense-Disambiguation can make use of si-
multaneous eye-tracking. Eye-tracking data are
also used to measure the difficulty in translation
annotation (Mishra et al., 2013). Barrett (2016)
finds that gaze patterns during reading are strongly
influenced by the role a word plays in terms of syn-
tax, semantic, and discourse.

Among different available eye-tracking
datasets, the Dundee corpus, GECO (the Ghent

463

Eye-Tracking Corpus), and Mishra et al. (Mishra
et al., 2016b) are considered high-quality re-
sources (Kennedy, 2003; Cop et al., 2016; Mishra
et al., 2016b). The Dundee corpus contains eye
movement data from English and French news-
papers (Kennedy, 2003). Measurements were
taken while 10 participants read 20 newspaper
articles. GECO is an English-Dutch bilingual
corpus with eye-tracking data from 17 participants
collected from reading the complete novel The
Mysterious Affair at Styles. The corpus has 4,934
sentences, 774,015 tokens, and 9,876 words. The
Mishra(Mishra et al., 2016a) dataset contains 994
text snippets with 383 positive and 611 negative
examples from newspaper clippings, sampled
from seven native speakers.

To predict reading time using eye-tracking data,
Tomanek et al. (2010) proposes a regression
model using linguistic features related to syntax
and semantics for calibration. Hahn (2016) pro-
poses a novel approach to model both skipping and
reading using unsupervised method which com-
bines neural attention with auto-encoding trained
on raw text using reinforcement learning.

3 Our proposed CBA model

The basic idea of our method is to add a CBA
model into a neural-network based LSTM senti-
ment classifier. Let D be a collection of docu-
ments. A document dk, dk ∈ D, has m number
of sentences S1, S2, ...Sj , ..., Sm. A sentence Sj is
formed by a sequence of words Sj = wj1w

j
2...w

j
lj

,
where lj is the length of Sj . The features of
a word wi ∈ D form a feature vector ~vwi =
[F1

wi , F2
wiFn

wi] where n is the feature space
size. The purpose of document level sentiment
classification is to project a document dk into the
target space of L class labels. Similarly, at the sen-
tence level, the purpose is to project a sentence Sj
into the target class space.

To build the CBA model, we need to first build
a reading time prediction model for words within
each sentence. Reading time is predicted based on
word features and text features calibrated by eye-
tracking data. Note that reading time from an eye-
tracking dataset cannot be used directly because
the text of any eye-tracking dataset is too small for
sufficient coverage. Consequently, our method has
four tasks: (1) to predict the reading time of words
using eye-tracking data and ~vwi as features; (2) to
build attention models based on predicted reading

time at sentence level and document level; (3) to
integrate attentions from other attention models;
and (4) to add the attention model into the LSTM
based sentiment classifier.

3.1 Modeling of reading time

To learn the reading time of words in a sentence,
our method is based on regression analysis us-
ing eye-tracking data as dependent variables and
context information in ~vw∈Sj as independent vari-
ables. In the eye-tracking process, a number of
different time measures such as first fixation dura-
tion, gaze duration, and total reading time. In this
work, we only use the total reading time.

Since a document set is always available for
sentiment analysis, we use features extracted from
these documents to train the regression model. We
select features based on the works from Dem-
berg(2008) and Tomanek (2010) to include word
features such as word length and POS tags as well
as context level syntax and semantic features such
as the total number of dominated nodes in a depen-
dency parsing three, the maximum dependency
distance, semantic category etc..

Given a word w in a sentence Sj , w ∈ Sj ,
and its feature vector ~vw∈Sj = [Fw1 , F

w
2 , ..., F

w
n]

where n is the dimension size in feature space, the
regression model on eye-tracking data is a map-
ping function g between reading time tw∈Sj and
~vw∈Sj as defined below:

tw∈Sj = g(α1F
w
1 + α2F

w
2 + ...+ αnF

w
n + b),

(1)

where tw∈Sj is the predicted reading time for w,
αi is the weight of feature Fwi , and b is a con-
stant. Note that the set of αi(i = 1...n) forms the
weight vector ~αw for tw∈Sj . When ~vw∈Sj takes
scalar values, g can be an identity function and
thus this model becomes a typical linear regres-
sion model. When tw∈Sj takes discrete values, g
can be a logistic function and this model becomes
a typical logistic regression model.

we set g to be the identity function. The objec-
tive function then becomes:

min
~α

n∑
ai∈~α
||tw∈Sj − yw∈Sj ||22 + λR(~α), (2)

where yw∈Sj is the true eye-tracking values of
reading time, R(~α) is the regularization of ~α, and
λ is the regularization weight. When λ = 0, the

464

model degrades to a linear regression function. In
this work, we evaluate the use of both the linear
regression model and the Ridge regression model.

3.2 Building the attention based model
Once we have predicted reading time for words
used in sentences, the attention model can be built
with two components. The first component works
at the sentence level to give different words differ-
ent emphasis in a sentence. The second compo-
nent works at the document level to give different
sentences different emphasis in a document.

For a sentence Sj = w1w2...wi...wlj with
length lj , each word wi in Sj has a corresponding
reading time twi . Let tSj denote the total reading
time of Sj . Then,

tSj =
lj∑

i=1,wi∈Sj

twi . (3)

For sentence level attention, the CBA weight for
wi in Sj , denoted as ASj :wi , can be defined as:

ASj :wi =
twi

tSj

. (4)

This sentence level attention model defined
above gives more weights to words that have
longer reading time relative to the total reading
time of the sentence.

Let a document dk, dk ∈ D, be formed by a set
of sentences Sj = w1w2...wi...wlj . Now the CBA
weight for a sentence Sj in dk is defined as:

Adk:Sj
=

tsj∑m
i=1 tSi

. (5)

This aggregated document level attention model
gives more weights to the sentences that have
longer reading time relative to the total reading
time of the document. Let ~Adk

denote the doc-
ument level attention weight vector. The size of
~Adk

should be m, the number of sentences in dk.
Let ~Sj denote the embedding of Sj inN dimen-

sional space, where Sj ∈ dk. Then, the set of sen-
tence representations for dk should be a matrix of
size m × N , denoted by Ŝdk

. After the inclusion
of the attention model, Ŝdk

should be:

Ŝdk
= ~Adk

~STj . (6)

Let ~dk denote the document embedding of dk.
Since ~dk is an N dimensional vector, ~dk can now

be defined by the adjusted attention model as

(~dk)i =
m∑
j=1

(Ŝdk
)i,j . (7)

3.3 Incorporation of other attention models

Since document embedding representation allows
the combined use of multiple attention mecha-
nisms, it is to our advantage to incorporate dif-
ferent attention mechanisms which may help to
capture different aspects of attentions. Generally
speaking, different attention mechanisms can be
incorporated either serially or in parallel.

In principle, any number of attention models
can be included. As an an example to illustrate the
capability of our proposed method, we choose one
state-of-the-art local attention model(shorthanded
as LA). The model is a semantic-based local at-
tention model proposed by Yang (2016) and also
used by Chen (2016). For inclusion serially, the
attention weight is formulated as follows:

AsSj :wi = LASj :wi ∗ASj :wi , (8)

where LAsj :wi the sentence level attention model
by the local attention model. To incorporate LA in
parallel mode, the attention weight can be formu-
lated by:

ApSj :wi = LASj :wi +ASj :wi. (9)

Similar methods can be used at document level.

3.4 General sentiment analysis model

We take the neural network based LSTM senti-
ment classifier (Gers, 2001) to be applied in both
the sentence level and the document level because
of its excellent performance on long sentences
(Tang et al., 2015a). The basic LSTM model has
five internal vectors for a node i including an input
gate ~ii, a forget gate ~fi, an output gate ~oi, a candi-
date memory cell~c′i, and a memory cell~ci, and ~ii~fi
and ~oi are used to indicate which values will be up-
dated, forget or for keeping in the LSTM model. ~c′i
and ~ci are used to keep the candidate features and
the actual accepted features, respectively.

At the sentence level, each word wi in a sen-
tence Sj is represented by its word embedding ~wi
in the N dimensional space. The LSTM cell state
~ci and the hidden state ~hSj :wi can be updated in
two steps. In the first step, the previous hidden

465

state ~hSj :wi−1 uses a hyperbolic function to form
~c′i as defined below.

~c′i = tanh(Ŵc ∗ [~hSj :wi−1 ∗ ~wi] + b̂), (10)

where Ŵc is a parameter matrix, ~hSj :wi−1 is the
previous hidden state and ~wi is the word vector. b̂
is the regularization parameter matrix. In the sec-
ond step, ~ci is updated by ~c′i and its previous state
~ci−1 to form ~ci according to the below formula:

~ci = ~fi � ~ci−1 + ~ii � ~c′i. (11)

The hidden state of wi can be obtained by

~hSj :wi = ~oitanh(~fi � ~ci). (12)

The forget gate ~fi is designed to keep the long
term memory. A series of hidden states ~h1

~h2...~hi
can serve as input to the attention layer to obtain
sentence representation ~Sj . In the document level,
similar method is used to get the sentence matrix
Ŝ in the document level LSTM layer to obtain the
final document representation ~dk.

In our work, the final document representation
~dk encodes both the sentence level information
and the document level information. In the LSTM
model, we use a hidden layer to project the final
document vector ~dfk through a hyperbolic function.

~dfk = tanh(Ŵh
~dk + b̂h), (13)

where Ŵh is the hidden layer weight matrix and
b̂h is the regularization matrix.

Finally, sentiment prediction for any label lεL
obtained by the softmax function defined below:

P (y = l|~dfk) =
e
~dfT
k

~Wl∑L
l=1 e

~dfT
k

~Wl

(14)

where ~Wl is the softmax weight for each label.

4 Performance evaluation

Our proposed CBA for sentiment classification
is evaluated on four document sets: The first
three datasets IMDB, Yelp 13, and Yelp14 which
are review texts including user/product informa-
tion developed by Tang (2015a). The last dataset
IMDB2 is a plain text by Maas (2011). All four
datasets are tokenized through the Stanford NLP
tool (Manning et al., 2014).

Table 1 list the statistics of the datasets in-
cluding number of classes, number of docu-
ments, and average length of sentence. We split

train/development/test set in the rate of 8:1:1. The
best configuration of the development dataset is
used in the test set to obtain the final result.

Data #class #doc #user #pro #len*2

IMDB 10 84,919 1,310 1,635 24.56
Yelp14 5 231,163 4,818 4,194 17.25
Yelp13 5 78,966 1,631 1,631 17.37
IMDB2 2 50,000 N/A N/A 20.10

Table 1: Statistics of three benchmark datasets

Two commonly used performance evaluation
metrics are used. The first one is accuracy and the
second one is rooted mean square error (RMSE)3.
Let GRi be the golden sentiment ratings, PRi be
the predicted sentiment rating, and T be the num-
ber of documents where GRi = PRi. Accuracy
is then defined by

Accuracy =
T

N
, (15)

and RMSE is defined by

RMSE =

√√√√ N∑
i=1

(GRi − PRi)2 ∗ 1
N
. (16)

We train the skip-gram word embedding
(Mikolov et al., 2013) on each dataset separately
to initialize the word vectors. All embedding sizes
on the model are set to 200, a commonly used size.

Three sets of experiments are conducted. The
first is on the selection of the regression model for
reading time prediction. The second set of experi-
ments compares our proposed CBA with another
sentiment analysis method which use text only.
The third set of experiments evaluates the effec-
tiveness of combining different attention models.

4.1 Reading time prediction
The training for the regression model for reading
time prediction using eye-tracking data requires
the learning from text and context features as dis-
cussed in Section 3.1. We compare our regression
model with more complex deep learning based re-
gression models in each of the three eye-tracking
datasets.4

3Normally accuracy is a problematic measure in highly
unbalanced data sets. But in In IMDB, the largest class
only takes less than 20% of all instances out of classes. The
most imbalanced data are Yelp 13 whose largest class is 41%
among 5 classes and second largest is about 30%. IMDB has
a 50/50 split for 2-classes.

4Mishra et.al (Mishra et al., 2016a) only provides fixation
time. So, fixation time is used when training by this set of
eye-tracking data.

466

We take the first 90% of sentences as training
data and the rest 10% as test data. The configu-
ration that performs the best is selected and pred-
icated on the document sentiment analysis dataset
to obtain estimated reading time. Ideally, an eye-
tracking corpus built from on-line reviews is more
suitable for our experiments. But, we can only
work with what is available.

In addition to the linear regression model(LL)
and the Ridge regression model(RR), we also
choose the Recurrent Neural Network (RNN)
model and the Long Short Time Memory (LSTM)
model for regression learning. For both models,
there are two versions. The basic version inputs
the extracted feature sets as word representation,
labeled as RNN-1 and LSTM-1, respective. The
second version takes word embedding (Penning-
ton et al., 2014) as the initial word representa-
tion input, labeled as RNN-2 and LSTM-2, respec-
tively. The RMSE results are listed in Table 2.

GECO DUNDEE Mishra
LR 72.47 73.52 87.25
RR 69.47 70.52 84.22
RNN-1 75.47 83.52 96.23
LSTM-1 79.47 84.52 114.25
RNN-2 79.57 86.47 101.25
LSTM-2 83.88 95.88 122.27

Table 2: RMSE for reading time predic-
tion(Unit:Milliseconds)

Note that Ridge Regression(RR) has the best
performance on all the three datasets because reg-
ularization in RR reduces over-fitting problem.In
three eye tracking datasets, the RR can achieve co-
efficient of determination5 of 0.32, 0.30 and 0.27
in three eye tracking datasets. The features, their
types and the corresponding coefficients in RR are
shown in Table 3.

The more complicated deep learning models
suffer from serious over-fitting problem. And the
result of Deep learning model with word embed-
ding initialization partly supports the fact that the
reading time are more depend on the micro level
syntax and semantic feature for the word, such as
number of letters in word and complexity score of
the word instead of the deep level context features.

4.2 Comparison of different sentiment
classification methods

Because the features used in our model are all
text based, we compare CBA with two groups

5https : //en.wikipedia.org/wiki/Coefficientofdetermination

Feature Name Type Cofficient
Number of letters Num 22.441
Start with capital letter Bool 1.910
Capital letters only Bool 161.580
Have alphanumeric letters Bool 6.020
Is punctuation Bool -8.930
Is abbreviation Bool 10.551
Is entity-critical word Bool 7.612
Number of dominated nodes Num 0.980
Max dependency distance Num 1.982
Inverse document frequency Num -9.291
Number of senses in wordnet Num 7.494
Complexity score Num 57.240
Constant Num 239.910

Table 3: Major features used by the Ridge Regres-
sion Model

of baseline methods which also only use review
text for learning. Group 1 methods include com-
monly known linguistic and context features for
SVM classifiers. Group 2 includes recent senti-
ment classification algorithms which are top per-
formers using review text for training including
one method that uses local attention model. Be-
low is the list of Group1 methods.

• Majority — A simple majority based classi-
fier based on sentence labels.

• Trigram — A SVM classifier using uni-
grams/bigrams/trigram as features.

• Text feature — A SVM classifier using word
level and context level features, such as n-
gram and sentiment lexicons.

• AvgWordvec — A SVM classifier that
takes the average of word embeddings in
Word2Vec as document embedding.

Here is a list of Group 2 methods:

• SSWE (Tang et al., 2014) — A SVM clas-
sifier using sentiment specific word embed-
ding.

• RNTN+RNN (Socher et al., 2013) — A Re-
cursive Neural Tensor Network(RNTN) to
represent sentences and trained using RNN.

• Paragraph vector (Le and Mikolov, 2014)
— A SVM classifier using document embed-
ding as features.

• LSTM+LA (Chen et al., 2016) — State-of-
the-art LSTM using local context as attention
mechanism in both sentence level and docu-
ment level.

467

IMDB Yelp13 Yelp14
ACC RMSE ACC RMSE ACC RMSE

General baseline
(Group 1)

Majority 0.196 2.495 0.411 1.060 0.392 1.097
Trigram 0.399 1.783 0.569 0.814 0.577 0.804
TextFeature 0.402 1.793 0.556 0.845 0.572 0.801
AveWord2vec 0.304 1.985 0.526 0.898 0.531 0.893

Recently developed
methods
(Group 2)

SSWE+SVM 0.312 1.973 0.549 0.849 0.557 0.851
Paragraph Vector 0.314 1.814 0.554 0.832 0.564 0.802
RNTN+RNN 0.401 1.764 0.574 0.804 0.582 0.821
CLSTM 0.421 1.549 0.592 0.769 0.594 0.766
B-CLSTM 0.462 1.453 0.619 0.705 0.592 0.741
LSTM 0.443 1.465 0.627 0.701 0.637 0.686
LSTM+LA 0.487 1.381 0.631 0.706 0.631 0.715

CBA based models
LSTM+CBAM 0.447 1.495 0.610 0.746 0.613 0.768
LSTM+CBAD 0.468 1.419 0.623 0.706 0.628 0.702
LSTM+CBAG 0.489 1.365 0.638 0.697 0.641 0.678

Table 4: Evaluation on sentiment classification using review text for training

• CLSTM (Xu et al., 2016) — Cached LSTM
to capture the overall semantic information in
long text. The two variations include regular
CLSTM and bi-directional B-CLSTM.

• LSTM+UPA (Chen et al., 2016) — State-
of-the-art LSTM including LA as well as
user/product as attention mechanism at both
sentence level and document level.

Our proposed CBA model has several variations
as explained below.

• LSTM+CBA — The LSTM classifier us-
ing only CBA model at sentence level
and document level. Based on the three
eye-tracking datasets(GECO, DUNDEE and
Mishra’s) for reading time prediction, we
label the same model by different training
data as LSTM+CBAG,LSTM+CBAD and
LSTM+CBAM .

• LSTM+CBA+LAG — The LSTM based
classifier using both the CBA model and the
local text context based attention model(LA)
(Chen et al., 2016). Since combining method
can either be serial or in parallel, there
are actually two corresponding variations:
LSTM+CBA+LAG

s and LSTM+CBA+LAG
p .

• LSTM+CBA+UPAG — The same frame-
work to LSTM+CBA+LAG with additional
user/product attention. The two correspond-
ing variations are LSTM+CBA+UPAG

s and
LSTM+CBA+UPAG

p .

Table 4 shows the performance of the three
groups using review text without user/product in-
formation on only the first three datasets meth-
ods in Group 1 and Group 2 do not have evalua-
tions on IMDB2. Among all the reference meth-
ods that do not use any attention mechanism in-
cluding all methods in Group 1 and Group 2(ex-
cept LSTM+LA), LSTM is the best performer.
LSTM+LA (2016), which is the state-of-the-art
method, uses local attention mechanism to im-
prove performance significantly. Among our CBA
based variations, using the GECO dataset gives the
best result outperforming LSTM+LA in all three
datasets. LSTM+CBAG has significant improve-
ment over LSTM+LA with p values of p < 0.016
on IMDB, p < 0.0019 on Yelp 13, and p <
0.00023 on Yelp 14. LSTM+CBAG has the best
result compared to the other two variations be-
cause GECO has larger participant size. Its text
genre is also closer to the review datasets for sen-
timent analysis.

In the third set of experiment, we compare our
LSTM+CBA model with the combination of other
attention models including the LA model and the
UPA model as shown in Table 5. In the second set
of experiment, since the GECO dataset gives the
best performance, Table 5 shows the performance
of LSTM+CBA using only the GECO dataset
including LSTM+CBAG, LSTM+CBA+LAG

s ,
LSTM+CBA+LAG

p , LSTM+CBA+UPAG
s ,and

LSTM+CBA+UPAG
p . Note that UPA is build

based on user/product information. So it works

468

IMDB Yelp13 Yelp14 IMDB2
ACC RMSE ACC RMSE ACC RMSE ACC RMSE

LSTM+LA 0.487 1.381 0.631 0.706 0.631 0.715 0.885 0.337
LSTM+CBAG 0.489 1.365 0.638 0.697 0.641 0.678 0.894 0.332
LSTM+CBA+LAG

s 0.488 1.369 0.633 0.706 0.643 0.672 0.898 0.328
LSTM+CBA+LAG

p 0.492 1.362 0.639 0.696 0.639 0.675 0.901 0.322
LSTM+UPA 0.533 1.281 0.650 0.692 0.667 0.654 N/A N/A
LSTM+CBA+UPAG

s 0.523 1.277 0.654 0.693 0.664 0.645 N/A N/A
LSTM+CBA+UPAG

p 0.521 1.278 0.655 0.685 0.668 0.644 N/A N/A

Table 5: Evaluation on sentiment classification on using dual attention

only if user/product information is available. Such
data is provided in the first three sets of data.

Table 5 shows that among all three single atten-
tion models, UPA outperforms both LA and CBA
in the first three datasets. This is easier to under-
stand as UPA already included LA and it has more
explicit information from users and products for
its attention model compared to CBA which needs
to learn hidden attention information. The com-
bined method of CBA with UPA can still further
improve performance. When CBA+UPA are com-
bined in parallel, it has the best performance for
both Yelp13 and Yelp14 (with p value of 0.027 and
0.032 respectively compare to LSTM+UPA). In
the IMDB dataset, however, UPA has the best per-
formance. This may be because user/product in-
formation is more effective in movie review IMDB
dataset which is more subjective.

However, the UPA model works only if user and
product information is available. Thus for IMDB2
where user/product information is not available,
only CBA and LA models work and the combined
use of CBA+LA gives the best performance.

4.3 Case study

A random sentence sample ’The Shelton hotel is
lucky to receive 2stars from me considering ...’ is
taken from the Yelp13 dataset to demonstrate the
difference in the two attention mechanisms, i.e. lo-
cal text(LA), and cognition-based(CBA). Figure 1
shows visually the difference in attention weights
of the two models.

The attention weights of words in the LA model
does not change much. CBA, on the other hand,
gives higher weights to the sentiment linked word
2stars and the verb receive. This two words do
play significant roles as an indirect object and a
main verb, respectively. This case shows that CBA
does a better job in capturing micro level informa-

tion in the sentence level. This support the experi-
mental results in Table 4 and Table 5.

Figure 1: Case Study on attention weights

5 Conclusion and future works

In this paper, we propose a novel cognition based
attention model to improve the state-of-the-art
neural sentiment analysis model through cognition
grounded eye-tracking data. A simple and effec-
tive regression model is used to predict reading
time using both eye-tracking data and local text
features. The predicted reading time is then used
to build an attention layer in neural sentiment anal-
ysis models. The attention model considers both
reading time and other syntactic and context fea-
tures. It works in both the sentence level and the
document level sentiment analysis.

Evaluation on benchmarking datasets validates
the effectiveness of our method in sentiment anal-
ysis as our method clearly outperforms other state-
of-the-art methods that use local context informa-
tion to build their attention models. Our CBA
mechanism can also be combined with other at-
tention mechanisms to provide room for further

469

improvement. Future work includes using other
eye-tracking information such as saccade and fix-
ation. The incorporation of other information such
as user-product information can also be explored.

Acknowledgments

The work is partially supported by the research
grants from Hong Kong Polytechnic University
(PolyU RTVU) and GRF grant(CERG PolyU
15211/14E).

References
Paul D Allopenna, James S Magnuson, and Michael K

Tanenhaus. 1998. Tracking the time course of spo-
ken word recognition using eye movements: Evi-
dence for continuous mapping models. Journal of
memory and language, 38(4):419–439.

Maria Barrett, Joachim Bingel, Frank Keller, and An-
ders Søgaard. 2016. Weakly supervised part-of-
speech tagging using eye-tracking data. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics: Short Papers, vol-
ume 579, page 584.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin,
and Zhiyuan Liu. 2016. Neural sentiment classifica-
tion with user and product attention. EMNLP.

Chloé Clavel and Zoraida Callejas. 2016. Sentiment
analysis: from opinion mining to human-agent in-
teraction. IEEE Transactions on affective comput-
ing, 7(1):74–93.

Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter
Duyck. 2016. Presenting geco: An eyetracking cor-
pus of monolingual and bilingual sentence reading.
Behavior research methods, pages 1–14.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Ruihai Dong, Michael P O’Mahony, Markus Schaal,
Kevin McCarthy, and Barry Smyth. 2013. Senti-
mental product recommendation. In Proceedings of
the 7th ACM conference on Recommender systems,
pages 411–414. ACM.

Felix Gers. 2001. Long short-term memory in recur-
rent neural networks. Ph.D. thesis, Universität Han-
nover.

Lin Gui, Ruifeng Xu, Yulan He, Qin Lu, and Zhongyu
Wei. 2016. Intersubjectivity and sentiment: from

language to knowledge. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence,
pages 2789–2795.

Michael Hahn and Frank Keller. 2016. Modeling hu-
man reading with neural attention. arXiv preprint
arXiv:1608.05604.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In EMNLP,
pages 720–728.

Aditya Joshi, Abhijit Mishra, Nivvedan Senthamilsel-
van, and Pushpak Bhattacharyya. 2014. Measuring
sentiment annotation complexity of text. In ACL (2),
pages 36–41.

Salil Joshi, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2013. More than meets the eye: Study
of human cognition in sense annotation. In HLT-
NAACL, pages 733–738.

Michael Hahn Frank Keller. 2016. Modeling human
reading with neural attention. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, volume 85, page 95.

A Kennedy. 2003. The dundee corpus [cd-rom]. Psy-
chology Department, University of Dundee.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML,
volume 14, pages 1188–1196.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 142–150. As-
sociation for Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations), pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Abhijit Mishra, Pushpak Bhattacharyya, Michael Carl,
and IBC CRITT. 2013. Automatically predicting
sentence translation difficulty. In ACL (2), pages
346–351.

Abhijit Mishra, Aditya Joshi, and Pushpak Bhat-
tacharyya. 2014. A cognitive study of subjectivity
extraction in sentiment annotation. ACL 2014, page
142.

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2016a. Predicting readers’ sarcasm un-
derstandability by modeling gaze behavior. In AAAI,
pages 3747–3753.

470

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kun-
tal Dey, and Pushpak Bhattacharyya. 2016b. Lever-
aging cognitive features for sentiment analysis.
CoNLL 2016, page 156.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural
language processing-Volume 10, pages 79–86. As-
sociation for Computational Linguistics.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Keith Rayner. 1998. Eye movements in reading and
information processing: 20 years of research. Psy-
chological bulletin, 124(3):372.

Ira J Roseman. 2001. A model of appraisal in the emo-
tion system: Integrating theory, research, and appli-
cations.

Amir Sadeghian and Ali Reza Sharafat. 2015. Bag of
words meets bags of popcorn.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP),
volume 1631, page 1642. Citeseer.

Duyu Tang, Bing Qin, and Ting Liu. 2015a. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1422–1432.

Duyu Tang, Bing Qin, and Ting Liu. 2015b. Learn-
ing semantic representations of users and products
for document level sentiment classification. In Proc.
ACL.

Duyu Tang, Bing Qin, and Ting Liu. 2015c. Learning
semantic representations of users and products for
document level sentiment classification. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1014–1023,

Beijing, China. Association for Computational Lin-
guistics.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1), pages 1555–1565.

Katrin Tomanek, Udo Hahn, Steffen Lohmann, and
Jürgen Ziegler. 2010. A cognitive cost model of
annotations based on eye-tracking data. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1158–
1167. Association for Computational Linguistics.

Andrea Vanzo, Danilo Croce, and Roberto Basili. 2014.
A context-based model for sentiment analysis in
twitter. In COLING, pages 2345–2354.

Jiacheng Xu, Danlu Chen, Xipeng Qiu, and Xuangjing
Huang. 2016. Cached long short-term memory neu-
ral networks for document-level sentiment classifi-
cation. arXiv preprint arXiv:1610.04989.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

471

