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Abstract

We introduce the task of book structure la-
beling: segmenting and assigning a fixed
category (such as TABLE OF CONTENTS,
PREFACE, INDEX) to the document struc-
ture of printed books. We manually anno-
tate the page-level structural categories for
a large dataset totaling 294,816 pages in
1,055 books evenly sampled from 1750–
1922, and present empirical results com-
paring the performance of several classes
of models. The best-performing model,
a bidirectional LSTM with rich features,
achieves an overall accuracy of 95.8 and a
class-balanced macro F-score of 71.4.

1 Introduction

The availability of large-scale book corpora (such
as those created by Google Books, the Inter-
net Archive and the HathiTrust) has driven a
flurry of work in cultural analytics over the past
decade, in which the text contained in historical
books has provided the raw material for the analy-
sis of genre (Underwood, 2016), literary charac-
ter (Bamman et al., 2014), geographic attention
(Wilkens, 2013), fame (Michel et al., 2010), and
much more.

Books, however, are not undifferentiated
streams of text in the same way that born-digital
documents like tweets or emails are; they are phys-
ical objects with materiality (Werner, 2012) and
are arranged in a complex structure steeped in a
long design tradition, with the core content of the
work placed between structured frontmatter (such

as a table of contents and introduction) and back-
matter (such as an appendix and index). Not all
of this content is desirable for all analyses; as we
show below, 11% of all pages in books belong to
the peritext (Genette, 1987) that surrounds the core
content, with wide variability from book to book.
For other analyses, such as those addressing ques-
tions in book history (Kirschenbaum and Werner,
2014), isolating this structure in a consistent way
across historical documents can enable research
into how the form of the printed book has, for ex-
ample, changed over time.

While other work has focused on extracting the
idiosyncratic structure inherent in each book, such
as recognizing chapter boundaries in order to au-
tomatically generate a table of contents, or link
a parsed table of contents to positions in a book
(Déjean and Meunier, 2005, 2009; Wu et al., 2013;
Gao et al., 2009), labeling document segments
with a fixed typology has complementary bene-
fits, allowing researchers to identify consistent cat-
egories in all books regardless of the names as-
signed by a specific author or publisher, or popular
at a given time.1

At the same time, book structure labeling
presents real challenges to automatic identifica-
tion. While large-scale digital collections origi-
nate in page scans of the books, the most com-
mon form of access by researchers is through the
output of OCR; raw image files are prohibitively
expensive both in terms of disk space (15.1 mil-
lion books from the HathiTrust consumes 677 ter-

1For example, a section whose function is to outline the
structural regions of a book and list the pages on which they
begin may be known at different points in history as a “table
of contents,” “index,” or several other terms.

737



(a) Title page. (b) Preface. (c) Index.

Figure 1: An Account of the War in India, Between the English and French (1761). From the HathiTrust.

abytes of space2) and in the resources required for
computational processing. While people are able
to distinguish the different sections of a book with
ease, the degraded nature of the OCR output (es-
pecially for historical books) blurs the clear mark-
ers that signal the category to human readers—
both in terms of the lexical signals like “Pref-
ace” or “Index” that head a page, and its visual
structure as well. Figure 1 illustrates an exam-
ple of three pages from a single book drawn from
the HathiTrust; figure 2 displays the correspond-
ing OCR output; the degradation introduced by
OCR affects not only the accuracy of character and
word identification, but also the structural layout
as well.

To address these limitations and enable research
that depends on reasoning over fine-grained docu-
ment structure within books, we introduce the task
of labeled segmentation, and make the following
contributions:

• We create an human-annotated gold standard of
294,816 pages in 1,055 printed books drawn
from the HathiTrust Digital Library.

• We approach this problem in the most common
resource-deficient scenario researchers most
frequently encounter: with access only to the
pre-existing output of OCR.

• We compare several different classes of mod-
els, including a fast independent predictor
(a random forest), a simple linear sequence

2https://www.hathitrust.org/
statistics_visualizations

labeling model (CRF), and a sequence la-
beling bidirectional LSTM that can capture
non-linearities in the feature space. All data
and pre-trained models are openly available
to the public at https://github.com/
dbamman/book-segmentation.

2 Data

In order to support the analysis and prediction of
labeled document structure, we present a manu-
ally annotated dataset of 1,055 books, where each
page has been labeled according to one of 10 cat-
egories described in §2.1 below. All books orig-
inate in the HathiTrust Digital Library. In order
to capture historically representative phenomena,
we use the decade-stratified sample of 1,075 books
from Bamman et al. (2017), in which each decade
from 1750-1922 is roughly equally represented.
From this sample of 1,075 apparent books, we
exclude all non-book records (including digitized
newspaper clippings, unbound pamphlets and re-
ports, opera programs, etc.) to yield a total labeled
dataset of 294,816 pages in 1,055 books.

2.1 Categories
While there is no codified form of the standard
categories that are present in print books, modern
book designers generally adhere to a tradition in-
volving a typical sequence of parts (Wilson, 1993;
Lee, 2009). We draw on this tradition to inform
our set of the following ten categories; to contex-
tualize its prevalence, each category is listed with
its description and the fraction of the 1,055 books
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(a) Title page. (b) Preface. (c) Index.

Figure 2: OCR output for the page scans illustrated in fig. 1.

in our dataset in which it appears (for example,
47.8% of books have an annotated preface).

• TITLE PAGE (93.0%), which lists the title of
the work and (optionally) other information
including the names of the author, translator,
and others involved in its creation. In this cat-
egory we group the primary title page along
with the HALF-TITLE (a page that generally
only presents the title of the work, often pre-
ceding the main title page or first chapter).

• AD CARD (18.1%), which lists other works by
the author or publisher; or, more generally,
any other object that is advertised for sale.

• PUBLISHER (39.9%), which includes the mod-
ern COPYRIGHT page (typically on the
verso side of the title page) and also the
COLOPHON (an imprint often appearing at
the end of a work).

• DEDICATION (17.5%), an inscription by the au-
thor dedicating the work to another.

• PREFACE (47.8%), which includes a FORE-
WORD, PREFACE, and INTRODUCTION.
While modern designers articulate prescrip-
tive distinctions among these categories pri-
marily in their subject matter and authorial
voice,3 we do not find a strong distinction
among these sub-categories evident when la-
beling the text. We therefore follow Genette
(1987) in grouping all together as prefatory

3“A preface is written by the author and is generally about
the writing of the book. A foreword is a comment on the book
and/or the author by another person. An introduction, which
may by the author or another, may contain such matter, but
it’s primarily a preparation for, or explanation of, the content”
(Lee, 2009)

material.

• TABLE OF CONTENTS (46.8%), which includes
“an accurate listing of all textual matter
which follows it and the page on which the
parts of the book commence” (Wilson, 1993).

• TEXT (99.3%), which includes the main con-
tents of the book. TEXT is naturally the
most frequent category, but only accounts for
89.4% of pages in all books in our dataset.
We also see wide variability from book to
book; the average TEXT ratio in books is
0.82, with a standard deviation of 0.18.

• APPENDIX (14.4%) includes a heterogeneous
mix of other minor categories that appear in-
frequently in different books. These include:
NOTES (1.1%) (which “have the character
of footnotes which, because of their extent,
are placed at the back of the book” (Wilson,
1993)); BIBLIOGRAPHY (1.7%), “a listing of
the books and periodicals, etc., which the au-
thor has used as source material or which he
recommends as supplementary reading mat-
ter” (Wilson, 1993); GLOSSARY (0.6%), “a
list of definitions of terms used in the text”
(Wilson, 1993), ERRATA (4.1%), mistakes
corrected in the printing of the book, and
SUBSCRIBERS (1.7%), a list of individuals
who have committed to purchasing the work
in advance (a historical category not fre-
quently seen in modern texts). We annotate
each of these subcategories individually for
future work, but collapse them into the single
category of APPENDIX for the work below.

• INDEX (19.2%), which “serves to catalogue,
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with page indications, all the references
which an author wishes to identify” (Wilson,
1993).

• N/A. For each of the nine categories above, we
annotate the beginning and end pages present
in a book; any page not contained within a
labeled section receives the label N/A.

As Genette (1987) articulates, each of these
structural categories mediates the relationship be-
tween the text and its audience, and each serves a
different illocutionary purpose. The TITLE is ad-
dressed to the general public (not necessarily the
readers) and is not only informational (informing
of the name of the work), but also serves as im-
portant marketing material as well; PREFACES are
addressed to readers, and may be written either by
the author of the core content (authorial) or by
another (allographic) and communicate the inten-
tion or interpretation of the work; the illocutionary
force of a DEDICATION, in contrast, is performa-
tive: its very presence is a speech act that serves to
dedicate the work to another.

Figure 3: Table of contents page listed as “Index.”

For all categories, we label based on the tenor
of the category’s meaning, and not on the title of
the section that may appear on the page. Figure 3
illustrates one such example of this distinction—
a page whose function is to serve as a table of
contents but is headed as an “Index” (and also ap-
pears at the back of the book, like contemporary
indices); rather than functioning as an index in
providing references to concepts within the text,
it outlines the organizational structure of the sec-
tions (as a table of contents does).

Human judgments of these ten categories are
relatively uncontroversial; to calculate the coher-
ence of the task, we calculated the inter-annotator
agreement rate for two annotators on 25 books,
and find a chance-corrected Cohen’s κ = 0.83,
suggesting a very high level of agreement.4 All
books then receive a single judgment of page-level
annotations by a single annotator.

3 Methods

To explore our ability to label book structure auto-
matically, we test three different feature-rich clas-
sifiers. All make use of the same set of features.

3.1 Features

Keywords. Most words on a page are not pre-
dictive of the category to which it belongs; a word
like Britain in a biography of Churchill may dis-
tinguish that book from other books, but will also
equally be found on the title page, table of con-
tents, preface, content, index, or any other cate-
gory. Some words, however, are discriminative,
such as the titles of the categories (“index,” “pref-
ace,” “dedication,” etc.). To identify these terms,
we train a unigram logistic regression classifier on
the training-only partition of the data (described
in section 4 below) and manually select keywords
with high face validity. We create two sets of fea-
tures from these keywords: presence of a keyword
in the header of the page (the first four lines) and
the presence of a keyword anywhere on the page.

Longest increasing subsequence. As figure 3
shows, tables of contents are distinguished from
indices in that the page numbers generally increase
from the top of the page to the bottom, correspond-
ing to the linear order of the book. To capture this,
we create a feature for the longest increasing sub-
sequence (LIS) of numbers on the page. The LIS
for any set of n randomly permuted numbers con-
verges to a Tracy-Widom distribution (Baik et al.,
1999); to enable feature value comparisons across
pages with different total numbers, we conduct a
permutation test by shuffling the numbers on the
page and recalculating the LIS for that resample;
we set the feature value to be 1 only when the ob-
served LIS is greater than 5% of the LIS scores for
the permutations (i.e., p < 0.05).

4Using the non-parametric bootstrap to account for the
size of the sample in our confidence of the agreement rate,
we find a 95% confidence interval for κ to be within the in-
terval [0.65, 0.94].
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Alphabetical sort. Indices, in contrast, are dis-
tinguished from tables of contents in that their
lines are sorted alphabetically (from the top to the
bottom of the page). To capture this, we create
a feature measuring the degree to which the lines
on a page are sorted, operationalized as the Spear-
man rank correlation coefficient (ρ) between the
set of lines in their original order and the lines in
sorted order. Perfectly sorted lines have a ρ = 1;
inversely sorted lines have ρ = −1 and randomly
ordered lines have an expected ρ = 0. To account
for random sorting that take place by chance, we
set this feature value to be ρ only when its p value
(rejecting H0 ≡ ρ = 0) < 0.01.

Letter distribution. In addition to measuring
the degree which the full page is alphabetized, we
can also capture important structural qualities of
indices by measuring the degree to which initial
letters in words are overrepresented on the page.
We calculate this by measuring the empirical dis-
tribution of initial downcased letters [a-z] for
all words in the book, and measure the degree to
which the empirical distribution on the page over-
represents any individual letter. Rather than com-
parison the full distributions (using e.g., Jensen-
Shannon divergence), we calculate the number of
letters whose frequency on the page deviates from
the book frequency for that letter by a z-score (ac-
counting for the number of times we observe the
letter) corresponding to a critical value α ≤ 0.05.

Roman numerals. Frontmatter preceding the
main content is often paginated with roman nu-
merals, rather than the arabic numerals found in
the content. To capture this, we create a binary
feature identifying the presence of roman numer-
als in the first four lines (header) or last four lines
(footer) of the page, using the resources of Under-
wood (2017).

Page density. Content pages are relatively dense
with characters (both letters and numbers); title
pages and tables of contents are defined by greater
volume of whitespace. To capture this differential,
we introduce features for the ratio of words and
numbers among all (whitespace-delimited) tokens
and for the overall number of tokens observed.

Position. We create a set of binary features
marking the position of the page within the book
(appearance in the first ten pages, last ten pages,
and in which quintile it appears), and its real-

valued positional ratio within the book (page num-
ber divided by the total pages).

Page Sequence. Not all books distinguish front-
matter from the main content with roman numer-
als; to address this, we identify the page with the
first marked page number and create a feature that
captures whether a page appears before or after
that first marked page.

TextTiling While all words are not indicative of
the categories on their own, they can provide a
natural segmentation of the book into discrete dis-
course chunks, in that the language that character-
izes a given main content section may differ from
that within an introduction (and certainly from
more structured sections like indices or tables of
contents). To capture this, we create a feature
for each page derived from TextTiling (Hearst,
1997): for a given page at position i, we calculate
the cosine similarity between the intervals [page1,
pagei−1] and [pagei, pagen].

The feature classes above total 172 features for
each individual page. When representing a page as
input to the models below, we also conjoin infor-
mation about all pages within a window of three
pages around the target page; each page is thus
represented by a total of 7 × 172 distinct fea-
tures. All non-binary features are standardized to
standard normals, whose means and variances are
estimated using the distribution observed in the
training-only partition of the data.

3.2 Models
We compare three different model classes: a ran-
dom forest (Breiman, 2001), which can capture
complex nonlinearities in the feature space but
is constrained to make independent predictions;
an `2-regularized conditional random field (Laf-
ferty et al., 2001), which can account for tem-
poral dependencies in the predictions but is lim-
ited to linear relationships; and a bidirectional se-
quence labeling LSTM (Graves, 2012; Ma and
Hovy, 2016), which can reason over sequential
information while also capturing more complex
non-linearities. The observed input to all meth-
ods for each page xi is the same feature represen-
tation f(xi); the CRF also includes information
about label transition features, decoding the entire
sequence using Viterbi decoding; and the bidirec-
tional LSTM captures persistent state information
for each page as two H-dimensional hidden lay-
ers, one for the forward direction hf and one for
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Method Accuracy Macro precision Macro recall Macro F
Majority class 0.888 0.089 0.100 0.094
Random Forest 0.959 [0.947, 0.969] 0.866 [0.831, 0.894] 0.593 [0.555, 0.632] 0.677 [0.641, 0.715]

CRF 0.940 [0.915, 0.959] 0.654 [0.615, 0.695] 0.744 [0.683, 0.835] 0.686 [0.644, 0.740]
BiLSTM 0.958 [0.947, 0.968] 0.776 [0.741, 0.807] 0.670 [0.630, 0.709] 0.714 [0.679, 0.747]

Table 1: Full segment labeling, along with 95% bootstrap confidence intervals.

the backward direction hb (we setH = 25 in these
experiments). Predictions for each time step i are
made using the vector concatenation of [hi

f ;hi
b].

4 Evaluation

We compare the performance of the three mod-
els described above at the task of page-level la-
beling: both the multiclass classification problem
of predicting which of the 10 labels applies to
each page, and the binary task of {TEXT, NON-
TEXT} prediction, in which the nine front- and
backmatter labels are collapsed into the single la-
bel NON-TEXT; while the former allows access to
fine-grained categories of (e.g.) indices and tables
of contents, the latter covers the common scenario
where researchers are interested only in isolating
where the core text begins and ends.

Experimentally, we divide the full training data
into two partitions: a training-only partition of 400
books, on which we experiment with feature and
model development, and a test partition of the re-
maining 655 books. All results presented below
are the result of tenfold cross-validation on the test
partition. Each fold trains on 8

10 of the test data,
uses 1

10 of the 655 books as development for model
selection (e.g., to optimize the `2 regularization
parameter for the CRF, terminate training for the
BiLSTM, and optimize the depth of the random
forest), and uses 1

10 of the 655 for test. We supple-
ment each training fold with the 400 books from
the training-only partition, but this data is never
used for evaluation below.

In total, we evaluate the performance on 655
books and calculate 95% confidence intervals for
each metric using the non-parametric bootstrap,
drawing B = 10, 000 resamples of books (not in-
dividual pages) in order to account for the statisti-
cal dependence between page-level predictions.

4.1 Full segment labeling

Table 1 presents the results for full multiclass seg-
ment labeling. To contextualize these results, we
also provide a simple baseline of predicting the
majority class (TEXT) for all pages; since most

pages in a book are core content, this yields a high
absolute accuracy against which to compare, but a
low macro precision/recall/F score (which evenly
weights the importance of each class).

All three methods achieve relatively similar per-
formance when measured by absolute accuracy
(though the room for improvement over the base-
line is small). When treating all classes as equally
important and measuring by the macro F score,
both sequence labeling methods (CRF and bidi-
rectional LSTM) show slight improvements over
the independent predictions of a random forest,
but not significantly so, suggesting that the feature
representation of the book (which they all share as
identical input) is perhaps a strong enough signal
that mitigates the label dependencies.

Category Precision Recall F True n
Title 0.782 0.751 0.766 887

Dedication 0.630 0.489 0.551 188
Pubinfo 0.697 0.590 0.639 261
Ad card 0.642 0.516 0.572 717

TOC 0.844 0.842 0.843 1,139
Preface 0.736 0.643 0.686 2,253

Text 0.971 0.991 0.981 160,721
Index 0.894 0.628 0.737 2,586

Appendix 0.688 0.412 0.515 2,460
N/A 0.894 0.801 0.845 9,791

Table 2: Individual category results, BiLSTM.

Table 2 lists the precision, recall and F-
score results by category for the best-performing
model (bidirectional LSTM). Several categories
are worth calling out: the precision and recall for
recognizing table of contents is high (≥ 0.84 for
both metrics), suggesting that this method may
provide a solid foundation for work in book struc-
ture extraction that relies on an identified table
of contents in order to recognize the idiosyncratic
structure of books. Title page and index recogni-
tion are also relatively high (0.89 precision/0.63
recall); what these three categories have in com-
mon are strong structural features (the distribution
of ink and whitespace on the page; regularities in
the numbers and the degree of alphabetization).

While dedications and publication information
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Method Accuracy Macro P Macro R Macro F
Majority class 0.888 0.444 0.500 0.470

Chop 0.857 0.804 0.692 0.725
Random Forest 0.966 [0.953, 0.976] 0.947 [0.937, 0.956] 0.877 [0.836, 0.911] 0.908 [0.877, 0.931]

CRF 0.963 [0.949, 0.973] 0.887 [0.843, 0.921] 0.920 [0.896, 0.941] 0.902 [0.872, 0.926]
BiLSTM 0.965 [0.953, 0.974] 0.938 [0.924, 0.951] 0.881 [0.843, 0.913] 0.907 [0.880, 0.928]

Table 3: Content/non-content labeling, along with 95% bootstrap confidence intervals.

are both relatively infrequent (often occupying a
single page in a book), the greatest point of con-
fusion is in separating the main content from the
structurally similar pages that typically precede it
(in the preface) and follow it (in the appendix).
While confusion between PREFACE/TEXT and
APPENDIX/TEXT account for most of the errors,
figure 4 illustrates several difficult cases and ex-
emplary mistakes in the other categories: fig. 4a
is a page that blurs the line between an index and
table of contents; fig. 4b is an advertisement for a
book “in the press and speedily will be published”;
and fig. 4c is a dedication that, without strong lex-
ical indicators, is mistaken for a title page.

In order to understand the contribution that indi-
vidual features make on the predictions, we carry
out an ablation test for each feature class, in which
we remove a feature class from the model and per-
form exactly the same training and test procedure
as described in section 4: we train a model on the
training fold supplemented with the 400 books in
the training partition, perform hyperparameter op-
timization on development data, and report accu-
racy on the held-out test fold, repeating ten times,
once for each fold in cross-validation.

Feature ∆ Macro F-score
–Keywords -0.15
–Position -0.03
–Density -0.02
–Window -0.01
–Roman -0.01
–Letter -0.01
–LIS 0.00
–TextTiling 0.00
–Page sequence 0.00
–Alphabetical 0.01

Table 4: Feature ablation results for the BiLSTM
model, illustrating the change in macro F-score
that results by removing a given feature class from
the full model.

The simplest features are the most informative:
the small set of keywords learned from the training
partition (which include common section labels
like preface, content, index, advertisement, other

informative markers such as dedicated, copyright,
and currency markers like $, £), the position of the
page in the book, and the density of characters (in-
cluding words and numbers) on the page.

4.2 Content/non-content segment labeling

In order to assess the ability of these different fea-
tures and models to demarcate the core text of a
work, we binarize the multiclass label, assigning
TEXT to all pages labeled TEXT in the multiclass
setting, and NON-TEXT to all other pages. We
train all three classifiers again on these binarized
labels and repeat the training procedure for each
model outlined in section 4.

Table 3 shows the results for the binary task of
{TEXT, NOT-TEXT} prediction. Here again we
contextualize these results with two simpler base-
lines: a simple majority class predictor (always
predict TEXT), and a model that identifies the av-
erage start and end positions in a book for the first
and last text page (respectively) within the train-
ing data, and predicts TEXT for pages within that
range (roughly within the [0.10, 0.94] interval),
and NON-TEXT for all pages outside of it. This
corresponds to a heuristic that chops off the first
10% of a book and the last 6% as NON-TEXT.

The chop heuristic performs worse than the ma-
jority class predictor in terms of absolute accu-
racy, but improves over the class-balanced macro
scores. All three feature-rich models show sub-
stantial improvements over all metrics, but are in-
distinguishable from each other, each achieving
nearly identical performance. For this reduced
purpose, any of the three classifiers are sufficient
for segmenting TEXT from NON-TEXT, even a
random forest making independent predictions for
each page.

5 Related work

The work described here has points of intersec-
tion with several other threads of research. The
most direct originates in work that grows out of the
INEX and ICDAR book structure extraction com-

743



(a) Index/TOC. (b) Ad predicted as text. (c) Dedication predicted as title.

Figure 4: Exemplary mistakes in prediction.

petitions (Kazai et al., 2009, 2010; Doucet et al.,
2011, 2013), in which participants are challenged
to recognize the fine-grained structure present in
documents (recognizing, for example, that the cur-
rent article has sections entitled “Abstract,” “In-
troduction,” “Data, “References,” etc.). The most
successful systems recognize structure by parsing
the table of contents (Déjean and Meunier, 2005,
2009; Wu et al., 2013; Gao et al., 2009) rather than
relying on the content of the book itself. Our work
primarily differs in the fundamental design choice
of prescribing a fix set of categories into which
we classify pages (in order to enable comparison
across documents) rather than prioritizing the id-
iosynractic structure of a book (which is useful for
generating new tables of contents).

Given the relatively constant page-level cate-
gories that printers use to describe book design,
we formulate our problem as a classification task
into a set of pre-established categories. An alterna-
tive is to take an unsupervised approach, and learn
the set of categories empirically from the data;
this general problem of book segmentation in its
unlabeled form shares functional similarity with
other work in general unsupervised topic or dis-
course segmentation (Hearst, 1997; Utiyama and
Isahara, 2001; Chen et al., 2009)—most notably,
the work of Eisenstein and Barzilay (2008) (for
whom the section labels may be considered a form
of “cue words” akin to discourse markers). Given
the amount of data in large-scale book collections,
we see this as an interesting path forward (either in
a fully unsupervised or semi-supervised setting);

an unsupervised approach that includes aspects of
metadata such as country of publication or pub-
lisher may also be fruitful in accommodating vari-
ation in printer’s rules as a function of time and
geographical location (books by French publish-
ers, for example, often place the table of contents
at the back of the book).

As figure 2 illustrates, one of the primary chal-
lenges that we face with the labeled segmenta-
tion of books is the degraded nature of the in-
put; unlike contemporary business documents for
which OCR is largely a solved problem, histori-
cal books present several challenges due to their
binding, age, and significant variation in font and
printing. Much work has focused on overcom-
ing these limitations from several perspectives, in-
cluding creating ground truth for historical books
(Papadopoulos et al., 2013), bootstrapping their
alignment with existing resources (Feng and Man-
matha, 2006; Yalniz and Manmatha, 2011), ex-
ploiting the fact that books often have multiple
scans or printings that could be leveraged (Smith
et al., 2011; Wemhoener et al., 2013) or develop-
ing methods that account for variation in the print-
ing process (Berg-Kirkpatrick et al., 2013; Berg-
Kirkpatrick and Klein, 2014).

Large-scale book corpora are increasingly be-
ing used as the raw material for linguistic anal-
ysis, especially those focused on measuring his-
torical change (Hamilton et al., 2016a,b; Kulka-
rni et al., 2015; Mitra et al., 2014; Mihalcea and
Nastase, 2012; Kim et al., 2014). These studies
use not only the observed word frequencies pro-
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vided by the Google Ngram dataset, but also in-
creasingly structured representations of language
as well (Lin et al., 2012; Goldberg and Orwant,
2013). The task of labeled book segmentation may
be helpful in reducing the noise inherent in the use
of statistics aggregated from these large datasets—
both in terms of filtering out the 11% of all pages
that are not the core content (e.g., such as indices),
and also in grounding the text at the appropriate
date for historical analysis (such as deriving statis-
tics only from the core content, and not from an
introduction written years afterward).

6 Conclusion

We introduce in this work the task of book struc-
ture labeling, the problem of assigning to each
page in a printed book its membership in one of
a set of predetermined categories. In annotating a
large dataset of books, we are able to empirically
assess the ability to accurately segment and label
books from a range of historical time periods.

The ten categories that form our typology are
drawn from printers’ guides and informed by con-
temporary criticism, but still reflect our historical
present; while we have in part let our categories be
shaped by our experience labeling texts (so that we
have preserved in our annotations historical cat-
egories not in contemporary use, such as SUB-
SCRIBERS), we recognize that the act of catego-
rization glosses over meaningful distinctions—for
example, while we have grouped sections marked
ADVERTISEMENT, TO THE READER, PREFACE,
INTRODUCTION, FOREWORD and others into the
single category of PREFACE, such labels may
have historically significant differences that may
be worth preserving for some analyses. Never-
theless, we expect the coarse distinctions we out-
line here to occasion research that requires access
to those broad categories. Potential uses of this
work include using the categories directly to an-
swer questions in book history (e.g., charting the
historical prevalence of advertisements and their
variation across time), improving the task of id-
iosyncratic structure detection by identifying ta-
bles of contents, and identifying the fine-grained
topics of books by parsing recognized indices.

In this work, we deliberately focus on the
resource-deficient scenario most commonly en-
countered by researchers working with large book
corpora, in which books are represented as the out-
put of errorful OCR. In providing a labeled dataset

for others to use, we hope to encourage other work
that reasons about the structure present in alterna-
tive representations (such as images) as well.

Acknowledgments

Many thanks to the anonymous reviewers and
Hannah Alpert-Abrams and for their valuable
feedback, and to the HathiTrust Research Center
for their assistance in enabling this work. The re-
search reported in this article was supported by a
grant from the Digital Humanities at Berkeley ini-
tiative and resources provided by NVIDIA.

References
Jinho Baik, Percy Deift, and Kurt Johansson. 1999. On

the distribution of the length of the longest increas-
ing subsequence of random permutations. J. Amer.
Math. Soc., 4.

David Bamman, Michelle Carney, Jon Gillick, Cody
Hennesy, and Vijitha Sridhar. 2017. Estimating the
date of first publication in a large-scale digital li-
brary. In Proceedings of the ACM/IEEE Annual
Joint Conference on Digital Libraries.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A Bayesian mixed effects model of literary
character. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 370–379, Bal-
timore, Maryland. Association for Computational
Linguistics.

Taylor Berg-Kirkpatrick, Greg Durrett, and Dan Klein.
2013. Unsupervised transcription of historical docu-
ments. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 207–217, Sofia, Bul-
garia. Association for Computational Linguistics.

Taylor Berg-Kirkpatrick and Dan Klein. 2014. Im-
proved typesetting models for historical OCR. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 118–123, Baltimore, Mary-
land. Association for Computational Linguistics.

Leo Breiman. 2001. Random forests. Mach. Learn.,
45(1):5–32.

Harr Chen, S. R. K. Branavan, Regina Barzilay, and
David R. Karger. 2009. Global models of document
structure using latent permutations. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics, NAACL ’09, pages 371–379, Stroudsburg, PA,
USA. Association for Computational Linguistics.

745
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