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Abstract

We introduce a family of multitask variational
methods for semi-supervised sequence label-
ing. Our model family consists of a latent-
variable generative model and a discrimina-
tive labeler. The generative models use latent
variables to define the conditional probability
of a word given its context, drawing inspi-
ration from word prediction objectives com-
monly used in learning word embeddings. The
labeler helps inject discriminative information
into the latent space. We explore several la-
tent variable configurations, including ones
with hierarchical structure, which enables the
model to account for both label-specific and
word-specific information. Our models con-
sistently outperform standard sequential base-
lines on 8 sequence labeling datasets, and im-
prove further with unlabeled data.

1 Introduction

Sequence labeling tasks in natural language pro-
cessing (NLP) often have limited annotated data
available for model training. In such cases reg-
ularization can be important, and it can be help-
ful to use additional unlabeled data. One approach
for both regularization and semi-supervised train-
ing is to design latent-variable generative mod-
els and then develop neural variational methods
for learning and inference (Kingma and Welling,
2014; Rezende and Mohamed, 2015).

Neural variational methods have been quite suc-
cessful for both generative modeling and repre-
sentation learning, and have recently been ap-
plied to a variety of NLP tasks (Mnih and Gre-
gor, 2014; Bowman et al., 2016; Miao et al., 2016;
Serban et al., 2017; Zhou and Neubig, 2017; Hu
et al., 2017). They are also very popular for semi-
supervised training; when used in such scenarios,
they typically have an additional task-specific pre-
diction loss (Kingma et al., 2014; Maale et al.,

2016; Zhou and Neubig, 2017; Yang et al., 2017b).
However, it is still unclear how to use such meth-
ods in the context of sequence labeling.

In this paper, we apply neural variational meth-
ods to sequence labeling by combining a latent-
variable generative model and a discriminatively-
trained labeler. We refer to this family of pro-
cedures as variational sequential labelers (VSLs).
Learning maximizes the conditional probability of
each word given its context and minimizes the
classification loss given the latent space. We ex-
plore several models within this family that use
different kinds of conditional independence struc-
ture among the latent variables within each time
step. Intuitively, the multiple latent variables
can disentangle information pertaining to label-
oriented and word-specific properties.

We study VSLs in the context of named en-
tity recognition (NER) and several part-of-speech
(POS) tagging tasks, both on English Twitter data
and on data from six additional languages. With-
out unlabeled data, our models consistently show
0.5-0.8% accuracy improvements across tagging
datasets and 0.8 F1 improvement for NER. Adding
unlabeled data further improves the model perfor-
mance by 0.1-0.3% accuracy or 0.2 F1 score. We
obtain the best results with a hierarchical structure
using two latent variables at each time step.

Our models, like generative latent variable mod-
els in general, have the ability to naturally com-
bine labeled and unlabeled data. We obtain
small but consistent performance improvements
by adding unlabeled data. In the absence of un-
labeled data, the variational loss acts as regu-
larizer on the learned representation of the su-
pervised sequence prediction model. Our results
demonstrate that this regularization improves per-
formance even when only labeled data is used. We
also compare different ways of applying the clas-
sification loss when using a latent variable hierar-
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chy, and find that the most effective structure also
provides the cleanest separation of information in
the latent space.

2 Related Work

There is a growing amount of work applying
neural variational methods to NLP tasks, includ-
ing document modeling (Mnih and Gregor, 2014;
Miao et al., 2016; Serban et al., 2017), ma-
chine translation (Zhang et al., 2016), text genera-
tion (Bowman et al., 2016; Serban et al., 2017; Hu
et al., 2017), language modeling (Bowman et al.,
2016; Yang et al., 2017b), and sequence trans-
duction (Zhou and Neubig, 2017), but we are not
aware of any such work for sequence labeling.
Before the advent of neural variational methods,
there were several efforts in latent variable mod-
eling for sequence labeling (Quattoni et al., 2007;
Sun and Tsujii, 2009).

There has been a great deal of work on using
variational autoencoders in semi-supervised set-
tings (Kingma et al., 2014; Maale et al., 2016;
Zhou and Neubig, 2017; Yang et al., 2017b).
Semi-supervised sequence labeling has a rich his-
tory (Altun et al., 2006; Jiao et al., 2006; Mann
and McCallum, 2008; Subramanya et al., 2010;
Søgaard, 2011). The simplest methods, which are
also popular currently, use representations learned
from large amounts of unlabeled data (Miller et al.,
2004; Owoputi et al., 2013; Peters et al., 2017).
Recently, Zhang et al. (2017) proposed a struc-
tured neural autoencoder that can be jointly trained
on both labeled and unlabeled data.

Our work involves multi-task losses and is
therefore also related to the rich literature on
multi-task learning for sequence labeling (Plank
et al., 2016; Augenstein and Søgaard, 2017; Bin-
gel and Søgaard, 2017; Rei, 2017, inter alia).

Another related thread of work is learning inter-
pretable latent representations. Zhou and Neubig
(2017) factorize an inflected word into lemma and
morphology labels, using continuous and categor-
ical latent variables. Hu et al. (2017) interpret a
sentence as a combination of an unstructured la-
tent code and a structured latent code, which can
represent attributes of the sentence.

There have been several efforts in combin-
ing variational autoencoders and recurrent net-
works (Gregor et al., 2015; Chung et al., 2015;
Fraccaro et al., 2016). While the details vary,
these models typically contain latent variables at

each time step in a sequence. This prior work
mainly focused on ways of parameterizing the
time dependence between the latent variables,
which gives them more power in modeling distri-
butions over observation sequences. In this paper,
we similarly use latent variables at each time step,
but we adopt stronger independence assumptions
which leads to simpler models and inference pro-
cedures. Also, the models cited above were devel-
oped for modeling data distributions, rather than
for supervised or semi-supervised learning, which
is our focus here.

The key novelties in our work compared to the
prior work mentioned above are the proposed se-
quential variational labelers and the investigation
of latent variable hierarchies within these mod-
els. The empirical effectiveness of latent hierar-
chical structure in variational modeling is a key
contribution of this paper and may be applicable
to the other applications discussed above. Re-
cent work, contemporaneous with this submission,
similarly showed the advantages of combining hi-
erarchical latent variables and variational learning
for conversational modeling, in the context of a
non-sequential model (Park et al., 2018).

3 Proposed Methods

We begin by describing variational autoencoders
and the notation we will use in the following sec-
tions. We denote the input word sequence by x1:T ,
the corresponding label sequence by l1:T , the input
words other than the word at position t by x−t, the
generative model by pθ(·), and the posterior infer-
ence model by qφ(·).

3.1 Background: Variational Autoencoders

We review variational autoencoders (VAEs) by de-
scribing a VAE for an input sequence x1:T . When
using a VAE, we assume a generative model that
generates an input using a latent variable z, typ-
ically assumed to follow a multivariate Gaussian
distribution. We seek to maximize the marginal
likelihood of inputs x1:T when marginalizing out
the latent variable z. Since this is typically in-
tractable, especially when using continuous latent
variables, we instead maximize a lower bound on
the marginal log-likelihood (Kingma and Welling,
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Figure 1: Variational sequential labelers. The first row
shows the original graphical models of each variant
where shaded circles are observed variables. The sec-
ond row shows how we perform inference and learn-
ing, showing inference models (in dashed lines), gen-
erative models (in solid lines), and classifier (in dotted
lines). All models are trained to maximize pθ(xt|x−t)
and predict the label lt.

2014):

log pθ(x1:T ) ≥

E
z∼qφ(·|x1:T )

[
log pθ(x1:T |z)− log

qφ(z| x1:T )

pθ(z)

]
=

E
z∼qφ(·|x1:T )

[log pθ(x1:T |z)]︸ ︷︷ ︸
Reconstruction Loss

−KL(qφ(z|x1:T )‖pθ(z))︸ ︷︷ ︸
KL divergence

(1)
where we have introduced the variational poste-
rior q parametrized by new parameters φ. q is re-
ferred to as an “inference model” as it encodes an
input into the latent space. We also have the gen-
erative model probabilities p parametrized by θ.
The parameters are trained in a way that reflects
a classical autoencoder framework: encode the in-
put into a latent space, decode the latent space to
reconstruct the input. These models are therefore
referred to as “variational autoencoders”.

The lower bound consists of two terms: recon-
struction loss and KL divergence. The KL diver-
gence term provides a regularizing effect during
learning by ensuring that the learned posterior re-
mains close to the prior over the latent variables.

3.2 Variational Sequential Labelers

We now introduce variational sequential label-
ers (VSLs) and propose several variants for se-
quence labeling tasks. Although the latent struc-

ture varies, a VSL maximizes the conditional
probability of pθ(xt|x−t) and minimizes a classi-
fication loss using the latent variables as the in-
put to the classifier. Unlike VAEs, VSLs do not
autoencode the input, so they are more similar to
recent conditional variational formulations (Sohn
et al., 2015; Miao et al., 2016; Zhou and Neubig,
2017). Intuitively, the VSL variational objective is
to find the information that is useful for predicting
the word xt from its surrounding context, which
has similarities to objectives for learning word em-
beddings (Collobert et al., 2011; Mikolov et al.,
2013). This objective serves as regularization for
the labeled data and as an unsupervised objective
for the unlabeled data.

All of our models use latent variables for each
position in the sequence. These characteristics are
shown in the visual depictions of our models in
Figure 1. We consider variants with multiple latent
variables per time step and attach the classifier to
only particular variables. This causes the different
latent variables to capture different characteristics.

In the following sections, we will describe var-
ious latent variable configurations that we will
evaluate empirically in subsequent sections.

3.3 Single Latent Variable
We begin by defining a basic VSL and correspond-
ing parametrization, which will also be used in
other variants. This first model (which we call
VSL-G and show in Figure 1a) has a Gaussian la-
tent variable at each time step. VSL-G uses two
training objectives; the first is similar to the lower
bound on log-likelihood used by VAEs:

log pθ(xt|x−t) ≥ E
zt∼qφ(·| x1:T ,t)

[log pθ(xt| zt)−

log
qφ(zt| x1:T , t)
pθ(zt| x−t)

] = E
zt∼qφ(·| x1:T ,t)

[log pθ(xt| zt)]

−KL(qφ(zt| x1:T , t)‖ pθ(zt| x−t)) = U0(x1:T , t)
(2)

VSL-G additionally uses a classifier f on the la-
tent variable zt which is trained with the following
objective:

C0(x1:T , lt) = E
zt∼qφ(·|x1:T ,t)

[− log f(lt|zt)] (3)

The final loss is

L(x1:T , l1:T ) =

T∑
t=1

[C0(x1:T , lt)− αU0(x1:T , t)]
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where α is a trade-off hyperparameter. α is set
to zero during supervised training but it is tuned
based on development set performance during
semi-supervised training. The same procedure is
adopted for the other VSL models below.

For the generative model, we parametrize
pθ(xt|zt) as a feedforward neural network with
two hidden layers and ReLU (Nair and Hinton,
2010) as activation function. As reconstruction
loss, we use cross-entropy over the words in the
vocabulary. We defer the descriptions of the
parametrization of pθ(zt| x−t) to Section 3.6.

We now discuss how we parametrize the in-
ference model qφ(zt|x1:T , t). We use a bidirec-
tional gated recurrent unit (BiGRU; Chung et al.,
2014) network to produce a hidden vector ht at
position t. The BiGRU is run over the input
x1:T , where each xt is the concatenation of a
word embedding and the concatenated final hid-
den states from a character-level BiGRU. The in-
ference model qφ(zt|x1:T , t) is then a single layer
feedforward neural network that uses ht as input.
When parametrizing the posterior over latent vari-
ables in the following models below, we use this
same procedure to produce hidden vectors with a
BiGRU and then use them as input to feedforward
networks. The structure of our inference model
is similar to those used in previous state-of-the-art
models for sequence labeling (Lample et al., 2016;
Yang et al., 2017a).

In order to focus more on the effect of our vari-
ational objective, the classifier we use is always
the same as our baseline model (see Section 4.3),
which is a one layer feedforward neural network
without a hidden layer, and it is also used in test-
time prediction.

3.4 Flat Latent Variables

We next consider ways of factorizing the func-
tionality of the latent variable into label-specific
and other word-specific information. We intro-
duce VSL-GG-Flat (shown in Figure 1b), which
has two conditionally independent Gaussian latent
variables at each time step, denote zt and yt for
time step t. The variational lower bound is derived

as follows:

log pθ(xt|x−t) ≥
E

zt,yt∼qφ(·|x1:T ,t)
[log pθ(xt| zt, yt)

− log
qφ(zt|x1:T , t)
pθ(zt|x−t)

− log
qφ(yt|x1:T , t)
pθ(yt|x−t)

]

= E
zt,yt∼qφ(·|x1:T ,t)

[log pθ(xt|zt, yt)]

−KL(qφ(zt|x1:T , t)‖pθ(zt|x−t))
−KL(qφ(yt|x1:T , t)‖pθ(yt|x−t))
= U1(x1:T , t)

(4)
The classifier f is on the latent variable yt and its
loss is

C1(x1:T , lt) = E
yt∼qφ(·|x1:T ,t)

[− log f(lt|yt)] (5)

The final loss for the model is

L(x1:T , l1:T ) =
T∑
t=1

[C1(x1:T , lt)− αU1(x1:T , t)]

(6)
Where α is a trade-off hyperparameter.

Similarly to the VSL-G model, qφ(zt|x1:T , t)
and qφ(yt|x1:T , t) are parametrized by single layer
feedforward neural networks using the hidden
state ht as input.

3.5 Hierarchical Latent Variables
We also explore hierarchical relationships among
the latent variables. In particular, we introduce
the VSL-GG-Hier model which has two Gaus-
sian latent variables with the hierarchical structure
shown in Figure 1c. This model encodes the in-
tuition that the word-specific latent information zt
may differ depending on the class-specific infor-
mation of yt.

For this model, the derivations are similar to
Equations (4) and (5). The first is:

log pθ(xt|x−t) ≥
E

zt,yt∼qφ(·|x1:T ,t)
[log pθ(xt|zt)

− log
qφ(zt|yt, x1:T , t)
pθ(zt|yt, x−t)

− log
qφ(yt|x1:T , t)
pθ(yt|x−t)

]

= E
zt,yt∼qφ(·|x1:T ,t)

[log pθ(xt|zt)]

−KL(qφ(zt|yt, x1:T , t)‖pθ(zt|yt, x−t))
−KL(qφ(yt|x1:T , t)‖pθ(yt|x−t))
= U2(x1:T , t)

(7)
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The classifier f uses yt as input and is trained with
the following loss:

C2(x1:T , lt) = E
yt∼qφ(·|x1:T ,t)

[− log f(lt|yt)] (8)

Note thatC1 andC2 have the same form. The final
loss is

L(x1:T , l1:T ) =
T∑
t=1

[C2(x1:T , lt)− α U2(x1:T , t)]

(9)
Where α is a trade-off hyperparameter.

The hierarchical posterior qφ(zt|yt, x1:T , t) is
parametrized by concatenating the hidden vector
ht and the random variable yt and then using them
as input to a single layer feedforward network.

3.6 Parametrization of Priors

Traditional variational models assume extremely
simple priors (e.g., multivariate standard Gaus-
sian distributions). Recently there have been ef-
forts to learn the prior and posterior jointly dur-
ing training (Fraccaro et al., 2016; Serban et al.,
2017; Tomczak and Welling, 2018). In this paper,
we follow this same idea but we do not explic-
itly parametrize the prior pθ(zt|x−t). This is par-
tially due to the lack of computationally-efficient
parametrization options for pθ(zt|x−t). In addi-
tion, since we are not seeking to do generation
with our learned models, we can let part of the
generative model be parametrized implicitly.

More specifically, the approach we use is to
learn the priors by updating them iteratively. Dur-
ing training, we first initialize the priors of all ex-
amples as multivariate standard Gaussian distribu-
tions. As training proceeds, we use the last op-
timized posterior as our current prior based on a
particular “update frequency” (see supplementary
material for more details).

Our learned priors are implicitly modeled as

pkθ(zt|x−t) ≈∑
x

qk−1φ (zt|Xt = x, x−t, t)pdata(Xt = x|x−t)

(10)
where pdata is the empirical data distribution, Xt

is a random variable corresponding to the obser-
vation at position t, and k is the prior update time
step. The intuition here is that the prior is obtained
by marginalizing over values for the missing ob-
servation represented by the random variable Xt.

The posterior qk−1φ is as defined in our latent vari-
able models. We assume pdata(Xt = x|x−t) = 0
for x1:T /∈ training set. For context x−t that can
pair with multiple values of Xt, its prior is the
data-dependent weighted average posterior. For
simplicity of implementation and efficient compu-
tation, however, if context x−t can pair with mul-
tiple values in our training data, we ignore this
fact and simply use instance-dependent posteriors.
Another way to view this is as conditioning on the
index of the training examples while parametriz-
ing the above. That is

pk,iθ (zt|x−t)← qk−1,iφ (zt|x1:T , t) (11)

where i is the index of the instance.

3.7 Training
In this subsection, we introduce techniques we
have used to address difficulties during training.

Reparametrization Trick. It is challenging to
use gradient descent for a random variable as
it involves a non-differentiable sampling proce-
dure. Kingma and Welling (2014) introduced a
reparametrization trick to tackle this problem.
They parametrize a Gaussian random variable z
as uϕ(x) + gψ(x) ◦ ε where ε ∼ N (0, I) and
uϕ(x), gψ(x) are deterministic and differentiable
functions, so the gradient can go through uϕ(·)
and gψ(·). In our experiments, we use one sample
for each time step during training. For evaluation
at test time, we use the mean value uϕ(x).

KL Divergence Weight Annealing. Although
the use of prior updating lets us avoid tuning the
weight of the KL divergence, the simple priors
can still hinder learning during the initial stages
of training. To address this, we follow the method
described by Bowman et al. (2016) to add weights
to all KL divergence terms and anneal the weights
from a small value to 1.

4 Experiments

We describe key details of our experimental setup
in the subsections below but defer details about
hyperparameter tuning to the supplementary mate-
rial. Our implementation is available at https:
//github.com/mingdachen/vsl

4.1 Datasets
We evaluate our model on the CoNLL 2003 En-
glish NER dataset (Tjong Kim Sang and De Meul-
der, 2003) and 7 POS tagging datasets: the

https://github.com/mingdachen/vsl
https://github.com/mingdachen/vsl
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Twitter tagging dataset of Gimpel et al. (2011)
and Owoputi et al. (2013), and 6 languages from
the Universal Dependencies (UD) 1.4 dataset (Mc-
Donald et al., 2013).

Twitter POS Dataset. The Twitter dataset has
25 tags. We use OCT27TRAIN and OCT27DEV as
the training set, OCT27TEST as the development
set, and DAILY547 as the test set. We randomly
sample {1k, 2k, 3k, 4k, 5k, 10k, 20k, 30k, 60k}
tweets from 56 million English tweets as our unla-
beled data and tune the amount of unlabeled data
based on development set accuracy.

UD POS Datasets. The UD datasets have 17
tags. We use French, German, Spanish, Russian,
Indonesian and Croatian. We follow the same
setup as Zhang et al. (2017), randomly sampling
20% of the original training set as our labeled data
and 50% as unlabeled data. There is no overlap be-
tween the labeled and unlabeled data. See Zhang
et al. (2017) for more details about the setup.

NER Dataset. We use the BIOES labeling
scheme and report micro-averaged F1. We prepro-
cessed the text by replacing all digits with 0. We
randomly sample 10% of the original training set
as our labeled data and 50% as unlabeled data. We
also ensure there is no overlap between the labeled
and unlabeled data.

4.2 Pretrained Word Embeddings

For all experiments, we use pretrained 100-
dimensional word embeddings. For Twitter, we
trained skip-gram embeddings (Mikolov et al.,
2013) on a dataset of 56 million English tweets.
For the UD datasets, we trained skip-gram em-
beddings on Wikipedia for each of the six lan-
guages. For NER, we use 100-dimensional pre-
trained GloVe (Pennington et al., 2014) embed-
dings. Our models perform better with word em-
beddings kept fixed during training while for the
baselines the word embeddings are fine tuned as
this improves the baseline performance.

4.3 Baselines

Our primary baseline is a BiGRU tagger where the
input consists of the concatenation of a word em-
bedding and the concatenation of the final hidden
states of a character-level BiGRU. This BiGRU
architecture is identical to that used in the infer-
ence networks in our VSL models. Predictions are
made based on a linear transformation given the

dev. test
acc. UL∆ acc. UL∆

BiGRU baseline 90.8 - 90.6 -
VSL-G 91.1 +0.1 - -
VSL-GG-Flat 91.4 +0.1 - -
VSL-GG-Hier 91.6 +0.3 91.6 +0.3

(a) Twitter tagging accuracies (%)
dev. test

F1 UL∆ F1 UL∆

BiGRU baseline 87.6 - 83.7 -
VSL-G 87.8 +0.1 - -
VSL-GG-Flat 88.0 +0.1 - -
VSL-GG-Hier 88.4 +0.2 84.7 +0.0

(b) NER F1 score (%)

Table 1: For dev and test, we show results when only
using labeled data and the change in performances
(“UL∆”) when adding unlabeled data. Bold is highest
in each column. Italic is the best model including un-
labeled data. We only show test results for the baseline
and our best-performing model, which achieves 91.9%
accuracy on the Twitter test set and 84.7% F1 on the
NER test set when using unlabeled data.

current hidden state. The output dimensionality of
the transformation is task-dependent (e.g., 25 for
Twitter tagging). We use the standard per-position
cross entropy loss for training.

We also report results from the best systems
from Zhang et al. (2017), namely the NCRF and
NCRF-AE models. Both use feedforward net-
works as encoders and conditional random field
layers for capturing sequential information. The
NCRF-AE model additionally can benefit from
unlabeled data.

5 Results

Table 1a shows results on the Twitter development
and test sets. All of our VSL models outperform
the baseline and our best VSL models outperform
the BiGRU baseline by 0.8–1% absolute. When
comparing different latent variable configurations,
we find that a hierarchical structure performs best.
Without unlabeled data, our models already out-
perform the BiGRU baseline. Adding unlabeled
data enlarges the gap between the baseline and our
models by up to 0.1–0.3% absolute.

Table 1b shows results on the CoNLL 2003
NER development and test sets. We observe sim-
ilar trends as in the Twitter data, except that the
model does not show improvement on the test set
when adding unlabeled data.
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French German Indonesian Spanish Russian Croatian
acc. UL∆ acc. UL∆ acc. UL∆ acc. UL∆ acc. UL∆ acc. UL∆

NCRF 93.4 - 90.4 - 88.4 - 91.2 - 86.6 - 86.1 -
NCRF-AE 93.7 +0.2 90.8 +0.2 89.1 +0.3 91.7 +0.5 87.8 +1.1 87.9 +1.2
BiGRU baseline 95.9 - 92.6 - 92.2 - 94.7 - 95.2 - 95.6 -
VSL-G 96.1 +0.0 92.8 +0.0 92.3 +0.0 94.8 +0.1 95.3 +0.0 95.6 +0.1
VSL-GG-Flat 96.1 +0.0 93.0 +0.1 92.4 +0.1 95.0 +0.1 95.5 +0.1 95.8 +0.1
VSL-GG-Hier 96.4 +0.1 93.3 +0.1 92.8 +0.1 95.3 +0.2 95.9 +0.1 96.3 +0.2

Table 2: Tagging accuracies (%) on UD test sets. For each language, we show test accuracy (“acc.”) when only
using labeled data and the change in test accuracy (“UL∆”) when adding unlabeled data. Results for NCRF and
NCRF-AE are from Zhang et al. (2017), though results are not strictly comparable because we used pretrained
word embeddings for all languages on Wikipedia. Bold is highest in each column, excluding the NCRF variants.
Italic is the best accuracy including the unlabeled data.

BiGRU

zt yt

xt

xt lt

(a) VSL-GG-Hier with classifi-
cation loss on z

BiGRU

zt yt

xt

xt lt

(b) VSL-GG-Hier

Figure 2: Comparison of attaching classification loss to
different latent variables in VSL-GG-Hier.

Table 2 shows our results on the UD datasets.
The trends are broadly consistent with those of
Table 1a and 1b. The best performing models
use hierarchical structure in the latent variables.
There are some differences across languages. For
French, German, Indonesian and Russian, VSL-
G does not show improvement when using unla-
beled data. This may be resolved with better tun-
ing, since the model actually shows improvement
on the dev set.

Note that results reported by Zhang et al. (2017)
and ours are not strictly comparable as their word
embeddings were only pretrained on the UD train-
ing sets while ours were pretrained on Wikipedia.
Nonetheless, they also mentioned that using em-
beddings pretrained on larger unlabeled data did
not help. We include these results to show that our
baselines are indeed strong compared to prior re-
sults reported in the literature.

Twitter NER UD average
acc. UL∆ F1 UL∆ acc. UL∆

classifier on y 91.6 +0.3 88.4 +0.2 95.0 +0.1
classifier on z 91.1 +0.2 87.8 +0.1 94.4 +0.0

Table 3: Twitter and NER dev results (%), UD aver-
aged test accuracies (%) for two choices of attaching
the classification loss to latent variables in the VSL-
GG-Hier model. All previous results for VSL-GG-Hier
used the classification loss on y.

6 Discussion

6.1 Effect of Position of Classification Loss

We investigate the effect of attaching the classifier
to different latent variables. In particular, for the
VSL-GG-Hier model, we compare the attachment
of the classifier between z and y. See Figure 2.
The results in Table 3 suggest that attaching the
reconstruction and classification losses to the same
latent variable (z) harms accuracy although attach-
ing the classifier to z effectively gives the classifier
an extra layer. We can observe why this occurs
by looking at the latent variable visualizations in
Figure 3d. Compared with Figure 3e, where the
two variables are more clearly disentangled, the
latent variables in Figure 3d appear to be captur-
ing highly similar information.

6.2 Effect of Latent Hierarchy

To verify our assumption of the latent structure,
we visualize the latent space for Gaussian models
using t-SNE (Maaten and Hinton, 2008) in Fig-
ure 3. The BiGRU baseline (Figure 3a) and the
VSL-G (Figure 3b) do not show significant dif-
ferences. However, when using multiple latent
variables, the different latent variables capture dif-
ferent characteristics. In the VSL-GG-Flat model
(Figure 3c), the y variable (the upper plot) reflects
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(a) BiGRU Baseline

(b) VSL-G
(c) VSL-GG-Flat

(d) VSL-GG-Hier, classifica-
tion loss on z

(e) VSL-GG-Hier

Figure 3: t-SNE visualization of Gaussian latent vari-
ables and baseline hidden states for Twitter develop-
ment set. In plot 3c, 3d, and 3e, the upper subplot is
latent variable y and the lower is z. Each point in the
plot is a token and the color represents the true tag of
the token.

the clustering of the tagging space much more
closely than the z variable (the lower plot). Since
both variables are used to reconstruct the word,
but only the y variable is trained to predict the
tag, it appears that z is capturing other informa-
tion useful for reconstructing the word. However,
since they are both used for reconstruction, the two
spaces show signs of alignment; that is, the “tag”
latent variable y does not show as clean a separa-
tion into tag clusters as the y variable in the VSL-
GG-Hier model in Figure 3e.

In Figure 3e (VSL-GG-Hier), the clustering of
words with respect to the tag is clearest. This may
account for the consistently better performance of
this model relative to the others. The z variable
reflects a space that is conditioned on y but that
diverges from it, presumably in order to better re-
construct the word. The closer the latent variable

Twitter NER
acc. no VR F1 no VR

BiGRU baseline 90.8 - 87.6 -
VSL-G 91.1 90.9 87.8 87.7
VSL-GG-Flat 91.4 90.9 88.0 87.8
VSL-GG-Hier 91.6 91.0 88.4 87.9

Table 4: Results on Twitter and NER dev sets. For
each model, we show supervised results for the models
with variational regularization (“acc.” or F1) and re-
sults when replacing variational components with their
deterministic counterparts (“no VR”).

is to the decoder output, the weaker the tagging
information becomes while other word-specific in-
formation becomes more salient.

Figure 3d shows that VSL-GG-Hier with clas-
sification loss on z, which consistently underper-
forms both the VSL-GG-Flat and VSL-GG-Hier
models in our experiments, appears to be captur-
ing the same latent space in both variables. Since
the z variable is used to both predict the tag and
reconstruct the word, it must capture both the tag
and word reconstruction spaces, and may be lim-
ited by capacity in doing so. The y variable does
not seem to be contributing much modeling power,
as its space is closely aligned to that of z.

6.3 Effect of Variational Regularization

We investigate the beneficial effects of variational
frameworks (“variational regularization”) by re-
placing our variational components in VSLs with
their deterministic counterparts, which do not have
randomness in the latent space and do not use the
KL divergence term during optimization. Note
that these BiGRU encoders share the same archi-
tectures as their variational posterior counterparts
and still use both the classification and reconstruc-
tion losses. While other subsets of losses could be
considered in this comparison, our motivation is
to compare two settings that correspond to well-
known frameworks. The “no VR” setting corre-
sponds roughly to the combination of a classifier
and a traditional autoencoder. We note that these
experiments do not use any unlabeled data.

The results in Table 4 demonstrate that com-
pared to the baseline BiGRU, adding the recon-
struction loss (“VSL-G, no VR”) yields only 0.1
improvement for both Twitter and NER. Although
adding hierarchical structure further improves per-
formance, the improvements are small (+0.1 and
+0.2 for Twitter and NER respectively). For VSL-
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Figure 4: Twitter dev accuracies (%) when varying the
amount of unlabeled data.

GG-Hier, variational regularization accounts for
relatively large differences of 0.6 for Twitter and
0.5 for NER. These results show that the improve-
ments do not come solely from adding a recon-
struction objective to the learning procedure. In
limited preliminary experiments, we did not find a
benefit from adding unlabeled data under the “no
VR” setting.

6.4 Effect of Unlabeled Data

In order to examine the effect of unlabeled data,
we report our Twitter dev accuracies when varying
the unlabeled data size. We choose VSL-GG-Hier
as the model for this experiment since it benefits
the most from unlabeled data. As Figure 4 shows,
gradually adding unlabeled data helps a little at the
beginning. Further adding unlabeled data boosts
the accuracy of the model. The improvements that
come from unlabeled data quickly plateau after
the amount of unlabeled data goes beyond 10,000.
This suggests that with little unlabeled data, the
model is incapable of fully utilizing the informa-
tion in the unlabeled data. However if the amount
of unlabeled data is too large, the supervised train-
ing signal becomes too weak to extract something
useful from the unlabeled data.

We also notice that when there is a large amount
of unlabeled data, it is always better to pretrain the
prior first using a small α (e.g., 0.1) and then use it
as a warm start to train a new model using a larger
α (e.g., 1.0). Tuning the weight of the KL diver-
gence could achieve a similar effect, but it may
require tuning the weight for labeled data and un-
labeled data separately. We prefer to pretrain the
prior as it is simpler and involves less hyperparam-
eter tuning.

7 Conclusion

We introduced variational sequential labelers for
semi-supervised sequence labeling. They consist
of latent-variable generative models with flexible
parametrizations for the variational posterior (us-
ing RNNs over the entire input sequence) and a
classifier at each time step. Our best models use
multiple latent variables arranged in a hierarchical
structure. We demonstrate systematic improve-
ments in NER and POS tagging accuracy across 8
datasets over a strong baseline. We also find small,
but consistent, improvements by using unlabeled
data.
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