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Abstract

Argument mining is a core technology for au-
tomating argument search in large document
collections. Despite its usefulness for this task,
most current approaches are designed for use
onlywith specific text types and fall short when
applied to heterogeneous texts. In this pa-
per, we propose a new sentential annotation
scheme that is reliably applicable by crowd
workers to arbitrary Web texts. We source an-
notations for over 25,000 instances covering
eight controversial topics. We show that in-
tegrating topic information into bidirectional
long short-termmemory networks outperforms
vanilla BiLSTMs by more than 3 percentage
points in F1 in two- and three-label cross-topic
settings. We also show that these results can be
further improved by leveraging additional data
for topic relevance using multi-task learning.

1 Introduction

Information retrieval and question answering are
by now mature technologies that excel at answering
factual queries on noncontroversial topics. How-
ever, they provide no specialized support for queries
where there is no single canonical answer, as with
topics that are controversial or opinion-based. For
such queries, the user may need to carefully assess
the stance, source, and supportability for each of
the answers. These processes can be supported by
argument mining (AM), a nascent area of natural
language processing concerned with the automatic
recognition and interpretation of arguments.
In this paper, we apply AM to the task of argu-

ment search—that is, searching a large document
collection for arguments relevant to a given topic.
Searching for and classifying relevant arguments
plays an important role in decision making (Sven-
son, 1979), legal reasoning (Wyner et al., 2010), and

the critical reading, writing, and summarization of
persuasive texts (Kobayashi, 2009; Wingate, 2012).
Automating the argument search process could ease
much of the manual effort involved in these tasks,
particularly if it can be made to robustly handle
arguments from different text types and topics.
But despite its obvious usefulness, this sort of

argument search has attracted little attention in the
research community. This may be due in part to the
limitations of the underlying models and training
resources, particularly as they relate to heteroge-
neous sources. That is, most current approaches
to AM are designed for use with particular text
types, faring poorly when applied to new data (Dax-
enberger et al., 2017). Indeed, as Habernal et al.
(2014) observe, while there is a great diversity of
perspectives on how arguments can be best charac-
terized and modelled, there is no “one-size-fits-all”
argumentation theory that applies to the variety of
text sources found on the Web.
To approach these challenges, we propose the

novel task of topic-based sentential argument min-
ing. Our contributions are as follows: (1) We
propose a new argument annotation scheme ap-
plicable to the information-seeking perspective of
argument search. We show it to be general enough
for use on heterogeneous data sources, and simple
enough to be applied manually by untrained annota-
tors at a reasonable cost. (2) We introduce a novel
corpus of heterogeneous text types annotated with
topic-based arguments.1 The corpus includes over
25,000 instances covering eight controversial topics.
This is the first known resource that can be used
to evaluate the performance of argument mining
methods across topics in heterogeneous sources.
(3) We investigate different approaches for incorpo-
rating topic information into neural networks and

1https://www.ukp.tu-darmstadt.de/sent_am

https://www.ukp.tu-darmstadt.de/
https://www.aiphes.tu-darmstadt.de/
https://www.ukp.tu-darmstadt.de/sent_am
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show that including the topic vector into the iii- and
ccc-gates of the LSTM cell outperforms common
attention-based approaches in two- and three-label
cross-topic experiments. (4) We further improve
the performance of the modified LSTM cell by
leveraging additional data for topic relevance in a
multi-task learning setup. (5) In the more challeng-
ing setup of cross-topic experiments, we show that
our models yield considerably better performance
than common BiLSTM models when little data of
the target topic is available.

2 Related work

Most existing approaches treat argument mining
at the discourse level, focusing on tasks such as
segmenting argumentative discourse units (Ajjour
et al., 2017; Goudas et al., 2014), classifying the
function of argumentative discourse units (for ex-
ample, as claims or premises) (Mochales-Palau and
Moens, 2009; Stab and Gurevych, 2014), and rec-
ognizing argumentative discourse relations (Eger
et al., 2017; Stab and Gurevych, 2017; Nguyen and
Litman, 2016). These discourse-level approaches
address the identification of argumentative struc-
tures within a single document but do not consider
relevance to externally defined topics.

To date, there has been little research on the iden-
tification of topic-relevant arguments for argument
search. Wachsmuth et al. (2017) present a generic
argument search framework. However, it relies
on already-structured arguments from debate por-
tals and is not yet able to retrieve arguments from
arbitrary texts. Levy et al. (2014) investigate the
identification of topic-relevant claims, an approach
that was later extended with evidence extraction
to mine supporting statements for claims (Rinott
et al., 2015). However, both approaches are de-
signed to mine arguments from Wikipedia articles;
it is unclear whether their annotation scheme is
applicable to other text types. It is also uncertain
that it can be easily and accurately applied by un-
trained annotators, since it requires unitizing (i.e.,
finding the boundaries of argument components at
the token level). Hua and Wang (2017) identify
sentences in cited documents that have been used
by an editor to formulate an argument. By contrast,
we do not limit our approach to the identification
of sentences related to a given argument, but rather
focus on the retrieval of any argument relevant to a
given topic. The fact that we are concerned with
retrieval of arguments also sets our work apart from

the discourse-agnostic stance detection task of Mo-
hammad et al. (2016), which is concerned with the
identification of sentences expressing support or
opposition to a given topic, irrespective of whether
those sentences contain supporting evidence (as
opposed to mere statements of opinion).

Cross-domain AM experiments have so far been
conducted only for discourse-level tasks such as
claim identification (Daxenberger et al., 2017), argu-
mentative segment identification (Al-Khatib et al.,
2016), and argumentative unit segmentation (Ajjour
et al., 2017). However, the discourse-level argu-
mentation models these studies employ seem to be
highly dependent on the text types for which they
were designed; they do not work well when applied
to other text types (Daxenberger et al., 2017). The
crucial difference between our own work and prior
cross-domain experiments is that we investigate
AM from heterogeneous texts across different top-
ics instead of studying specific discourse-level AM
tasks across restricted text types of existing corpora.

3 Corpus creation

There exists a great diversity in models of argumen-
tation, which differ in their perspective, complexity,
terminology, and intended applications (Bentahar
et al., 2010). For the present study, we propose
a model which, though simplistic, is nonetheless
well-suited to the argument search scenario. We
define an argument as a span of text expressing
evidence or reasoning that can be used to either
support or oppose a given topic. An argument
need not be “direct” or self-contained—it may pre-
suppose some common or domain knowledge, or
the application of commonsense reasoning—but it
must be unambiguous in its orientation to the topic.
A topic, in turn, is some matter of controversy for
which there is an obvious polarity to the possible
outcomes—that is, a question of being either for
or against the use or adoption of something, the
commitment to some course of action, etc. In some
graph-based models of argumentation (Stab, 2017,
Ch. 2), what we refer to as a topic would be part
of a (major) claim expressing a positive or nega-
tive stance, and our arguments would be premises
with supporting/attacking consequence relations to
the claim. However, unlike these models, which
are typically used to represent (potentially deep or
complex) argument structures at the discourse level,
ours is a flat model that considers arguments in
isolation from their surrounding context. A great
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topic sentence label

nuclear energy Nuclear fission is the process that is used in nuclear reactors to produce high
amount of energy using element called uranium.

non-argument

nuclear energy It has been determined that the amount of greenhouse gases have decreased by
almost half because of the prevalence in the utilization of nuclear power.

supporting argument

minimum wage A 2014 study [. . . ] found that minimum wage workers are more likely to report
poor health, suffer from chronic diseases, and be unable to afford balanced meals.

opposing argument

minimum wage We should abolish all Federal wage standards and allow states and localities to
set their own minimums.

non-argument

Table 1: Example annotations illustrating our annotation scheme.

advantage of this approach is that it allows annota-
tors to classify text spans without having to read
large amounts of context and without having to
consider relations to other topics or arguments.
In this work, we consider only those topics that

can be concisely and implicitly expressed through
keywords, and those arguments that consist of indi-
vidual sentences. Some examples, drawn from our
dataset, are shown in Table 1. Note that while the
fourth example expresses opposition to the topic,
under our definition it is properly classified as a
non-argument because it is a mere statement of
stance that provides no evidence or reasoning.

Data. For our experiments we gathered a large
collection of manually annotated arguments that
cover a variety of topics and that come from a
variety of text types. We started by randomly se-
lecting eight topics (see Table 2) from online lists
of controversial topics.2 For each topic, we made
a Google query for the topic name, removed re-
sults not archived by the Wayback Machine,3 and
truncated the list to the top 50 results. This re-
sulted in a set of persistent, topic-relevant, largely
polemical Web documents representing a range
of genres and text types, including news reports,
editorials, blogs, debate forums, and encyclopedia
articles. We preprocessed each document with
Apache Tika (Mattmann and Zitting, 2011) to re-
move boilerplate text. We then used the Stanford
CoreNLP tools (Manning et al., 2014) to perform
tokenization, sentence segmentation, and part-of-
speech tagging on the remaining text, and removed
all sentences without verbs or with less than three
tokens. This left us with a raw dataset of 27,520
sentences (about 2,700 to 4,400 per topic).
Annotators classified the sentences using a

browser-based interface that presents a set of in-
2https://www.questia.com/library/

controversial-topics, https://www.procon.org/
3https://web.archive.org/

structions, a topic, a list of sentences, and amultiple-
choice form for specifying whether each sentence
is a supporting argument, an opposing argument, or
not an argument with respect to the topic. (In pre-
liminary experiments, we presented annotators with
a fourth option for sentences that are ambiguous or
incomprehensible. However, we found that these
constituted less than 1% of the distribution and
so mapped all such answers to the “no argument”
class.)

Annotation experiments. We tested the applica-
bility of our annotation scheme by untrained anno-
tators by performing an experiment where we had
a group of “expert” annotators and a group of un-
trained annotators classify the same set of sentences,
and then compared the two groups’ classifications.
The data for this experiment consisted of 200 sen-
tences randomly selected from each of our eight
topics. Our expert annotators were two graduate-
level language technology researchers who were
fully briefed on the nature and purpose of the ar-
gument model. Our untrained annotators were
anonymous American workers from the Amazon
Mechanical Turk (AMT) crowdsourcing platform.
Each sentence was independently annotated by the
two expert annotators and ten crowd workers.

Inter-annotator agreement for our two experts, as
measured by Cohen’s κ, was 0.721; this exceeds the
commonly used threshold of 0.7 for assuming the
results are reliable (Carletta, 1996). We proceeded
by having the two experts resolve their disagree-
ments, resulting in a set of “expert” gold-standard
annotations. Similar gold standards were produced
for the crowd annotations by applying the MACE
denoising tool (Hovy et al., 2013); we tested various
thresholds (1.0, 0.9, and 0.8) to discard instances
that could be confidently assigned a gold label. We
then calculated κ between the remaining instances
in the expert and crowd gold standards. In order to

https://www.questia.com/library/controversial-topics
https://www.questia.com/library/controversial-topics
https://www.procon.org/
https://web.archive.org/
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topic docs sentences no argument support argument oppose argument

abortion 50 3,929 2,427 680 822
cloning 50 3,039 1,494 706 839
death penalty 50 3,651 2,083 457 1,111
gun control 50 3,341 1,889 787 665
marijuana legalization 50 2,475 1,262 587 626
minimum wage 50 2,473 1,346 576 551
nuclear energy 50 3,576 2,118 606 852
school uniforms 50 3,008 1,734 545 729

total 400 25,492 14,353 4,944 6,195

Table 2: Corpus size and class distribution.

Figure 1: Influence of the number of crowd annotators
and different MACE thresholds on κ.

determine the relationship between inter-annotator
agreement and the number of crowd workers, we
performed this procedure with successively lower
numbers of crowd workers, going from the original
ten annotators per instance down to two. The re-
sults are visualized in Fig. 1. We found that using
seven annotators and a MACE threshold of 0.9
results in κ = 0.723; this gives us similar reliability
as with the expert annotators without sacrificing
much coverage. Table 3 shows the κ and percentage
agreement for this setup, as well as the agreement
between our expert annotators, broken down by
topic.
We proceeded with annotating the remaining

instances in our dataset using seven crowd work-
ers each, paying a rate corresponding to the US
federal minimum wage of $7.25/hour. Our total
expenditure, including AMT processing fees, was
$2,774.02. After MACE denoising, we were left
with 25,492 gold-standard annotations. Table 2 pro-
vides statistics on the size and class distribution of
the final corpus. We are releasing the gold-standard
annotations for this dataset, and code for retrieving

expert–expert crowd–expert

% κ % κ

abortion .884 .651 .834 .660
cloning .845 .712 .821 .704
death penalty .851 .657 .770 .576
gun control .907 .783 .796 .638
marijuana legalizat. .850 .729 .854 .749
minimum wage .885 .779 .858 .745
nuclear energy .809 .686 .889 .825
school uniforms .864 .767 .931 .889

average .862 .721 .844 .723

Table 3: Agreement between experts, and between the
expert and crowd gold standards.

the original sentences from the Wayback Machine,
under a Creative Commons licence.

4 Approaches for identifying arguments

We model the identification of arguments as a
sentence-level classification task. In particular,
given a sentence ςςς with words u1, . . . ,unς and a
topic τττ of words v1, . . . , vnτ (e.g., “gun control”
or “school uniforms”), we aim to classify ςςς as a
“supporting argument” or “opposing argument” if
it includes a relevant reason for supporting or op-
posing the τττ, or as a “non-argument” if it does
not include a reason or is not relevant to τττ. We
also investigate a two-label classification where we
combine supporting and opposing arguments into a
single category; this allows us to evaluate argument
classification independent of stance. We focus on
the challenging task of cross-topic experiments,
where one topic is withheld from the training data
and used for testing. Here, we denote scalars by
italic lowercase letters (e.g., t), vector representa-
tions by italic bold lowercase letters (e.g., ccc), and
matrices as italic bold uppercase letters (e.g.,WWW).
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4.1 Integrating topic information
Since arguments need to be relevant to the given
topic, we posit that providing topic information
to the learner results in a more robust prediction
capability in cross-topic setups. Below, we present
two models that integrate the topic, one that uses
an attention mechanism and another that includes
the topic vector directly in the LSTM cell.

Outer-attention BiLSTM (outer-att). To let the
model learn which parts of the sentence are relevant
(or irrelevant) to the given topic, we use an attention-
based neural network (Bahdanau et al., 2014) that
learns an importance weighting of the input words
depending on the given topic. In particular, we
adopt an outer-attention mechanism similar to the
one proposed by Hermann et al. (2015), which
has achieved state-of-the-art results in related tasks
such as natural language inference and recognizing
textual entailment (Rocktäschel et al., 2015; Wang
and Jiang, 2016). We combine the attention mech-
anism with a common BiLSTM model and, at time
step t, determine the importance weighting for each
hidden state hhh(t) as

mmm(t) = tanh(WWWhhhh(t) +WWW pppp) (1)

fattention(hhh(t),ppp) =
exp(wwwT

mmmm(t))∑
t exp(wwwT

mmmm(t))
(2)

whereWWWh,WWW p, andwwwm are trainable parameters of
the attention mechanism and ppp is the average of all
word embeddings of topic words v1, . . . , vnτ . Using
the importance weighting, we determine the final,
weighted hidden output state sss as

αt ∝ fattention(hhh(t),ppp) (3)

sss =
n∑
t=1

hhh(t)αt . (4)

Finally, we feed sss into a dense layer with a softmax
activation function to get predictions for our two-
or three-label setups.

Contextual BiLSTM (biclstm). A more direct
approach to integrating an argument’s topic is the
contextual LSTM (CLSTM) architecture (Ghosh
et al., 2016), where topic information is added as
another term to all four gates of an LSTM cell. We,
however, hypothesize that topic information is more
relevant at the iii- and ccc-gates, the former because
it has the biggest impact on how a new token is
processed and the latter because it is closely linked
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Figure 2: Architecture of a CLSTM cell.

to how the sequence seen so far is to be interpreted
and stored. To this end, we experimented with
severalmodifications to the original CLSTMsuch as
removing peepholes—i.e., removing gates’ access
to the cell state ccc (Gers and Schmidhuber, 2000)—
and removing topic information from one or more
gates. Empirical results on the validation set show
that topic integration at the iii- and ccc-gates only, and
removal of all peephole connections, does indeed
outperform the original CLSTM on our task by 1
percentage point. Our modified CLSTM (Fig. 2) is
defined as

iiit = σ(WWW xi xxxt +WWWhihhht−1 + bbbi + Wpi pWpi pWpi p ) (5)

fff t = σ(WWW x f xxxt +WWWh f hhht−1 + bbbf ) (6)
ccct = fff tccct−1 + iiitσc(WWW xc xxxt +WWWhchhht−1

+bbbc + Wpc pWpc pWpc p )
(7)

ooot = σ(WWW xoxxxt +WWWhohhht−1 + bbbo) (8)
hhht = oootσc(ccct ). (9)

Here iii, fff , and ooo represent the input, forget, and
output gates; ccc the cell memory; xxxt the embedded
token of a sentence at timestep t; hhht−1 the previ-
ous hidden state; and bbb the bias. σ and σc are
the activation and recurrent activation functions,
respectively. The novel terms for topic integration
are outlined. We use this model bidirectionally, as
we did with our BiLSTM network, and hence refer
to it as biclstm.

4.2 Leveraging additional data
As we want to classify arguments related to spe-
cific topics, leveraging information that supports
the classifier in the decision of topic-relation is
crucial. The multi-task learning (mtl) and transfer
learning (trl) models are able to make use of aux-
iliary data that can potentially improve the results
on the main task. Thus, we extend our previously
described models by integrating them into mtl and
trl setups. We also choose to integrate two corpora
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Figure 3: Multi-task learning architecture. The } sym-
bol denotes the concatenation operator.

from which we expect to learn (a) topic-relevance
and (b) the capability to distinguish between sup-
porting and attacking arguments. The first corpus,
DIP2016 (Habernal et al., 2016), consists of 49
queries from the educational domain and 100 doc-
uments for each query. Each document has its
sentences annotated for relevance (true/false) to the
query.4 The second corpus, from SemEval-2016
Task 6 (Mohammad et al., 2016), consists of around
5000 multi-sentence tweets, a corresponding topic
(e.g., “atheism”), and the author’s stance on the
topic (for/against/neither).

For our mtl and trl approaches, we consider every
possible pairing of a model (biclstm, outer-att, and
the bilstm baseline we introduce in §5) with an aux-
iliary corpus (DIP2016, SemEval). We formalize
our datasets as Sk = {(xxxki ,ppp

k
i , y

k
i )|i = 0, . . . , |Sk |},

where k can be either our main dataset or an aux-
iliary dataset, xxxki denotes a single sentence as a
sequence of word embeddings and yki its corre-
sponding label in k, and pppki represents the corre-
sponding averaged topic vector.

Transfer learning (trl). For trl, we use the ap-
proach of parameter transfer (Pan andYang, 2010)—
i.e., we do not modify the model used. Instead,
we train the model twice: the first time, we train
the model on the chosen auxiliary corpus, and the
second time, we keep the trained model’s weights
and train it with our own corpus. For the three-
label setting, we have to modify the transfer model
slightly for the DIP2016 corpus, since it provides
only two labels for each training sample. In this
case, we simply add a layer with two neurons on
top of the layer with three neurons for training with
the DIP2016 corpus and remove it afterwards for
training with our corpus.

4We only use 300K of the corpus’s 600K samples to ease
hyperparameter tuning for our computation-heavy models.

Multi-task learning (mtl). For mtl, we use a
shared–private model (Liu et al., 2017), which
showed promising results for text classification and
word segmentation (Chen et al., 2017). (We also
experimented with their adversarial approach to
learn topic-invariant features, but abandoned this
due to low scores.) The mtl base model consists
of a private recurrent neural network (RNN) for
both the auxiliary dataset and our dataset, plus a
shared RNN that both datasets use (Fig. 3). The
last hidden states of the RNNs are concatenated and
fed through a dense layer and a softmax activation
function. The model is trained in an alternating
fashion—i.e., after each epoch the loss for the other
dataset is minimized until each dataset has run for
the set number of epochs, where the last epoch is
always executed on our dataset. At prediction time,
only the private RNN trained on our dataset and
the shared RNN are used. The core idea is that the
shared RNN learns what is relevant for both tasks,
while the private ones learn only the task-specific
knowledge.

For the cases of mtl+bilstm+corpus, mtl+biclstm+
corpus, and mtl+outer-att+corpus, we simply switch
the RNN with our bilstm, biclstm, and outer-att,
respectively. For mtl+outer-att+corpus, we add the
outer attention mechanism (see §4.1), modified for
use with the mtl model, after each of the private
RNNs, while additionally feeding it a second topic
vector—the last hidden state of the shared RNN:

mmm(t) = tanh(WWWrhhhr (t) +WWW shhhs +WWW pppp) (10)

fattention(hhhr (t),hhhs,ppp) =
exp(wwwT

mmmm(t))∑
t exp(wwwT

mmmm(t))
(11)

αt ∝ fattention(hhhr (t),hhhs,ppp) (12)

sss =
n∑
t=1

hhhr (t)αt (13)

whereWWWr ,WWW s, andWWW p are trainable weight matri-
ces, hhhr (t) is the hidden state of the private bilstm at
timestep t, hhhs is the last hidden state of the shared
model, and ppp is the average of all word embeddings
of topic words v1, . . . , vnτ .

5 Evaluation

To evaluate the robustness of the models, we con-
duct cross-topic experiments to evaluate how well
the models generalize to an unknown topic. To
this end, we combine training (70%) and validation
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two labels three labels

model F1 Parg Rarg F1 Parg+ Parg− Rarg+ Rarg−

bilstm (baseline) .6069 ± .0074 .7339 ± .0110 .3844 ± .0122 .3796 ± .0079 .3484 ± .0479 .4710 ± .0210 .0963 ± .0148 .2181 ± .0181
lr-uni (baseline) .5854 ± .0131 .6519 ± .0093 .3587 ± .0264 .3821 ± .0056 .2782 ± .0293 .4217 ± .0171 .1176 ± .0165 .2119 ± .0203
outer-att .6213 ± .0106 .7309 ± .0108 .4138 ± .0237 .3873 ± .0081 .3651 ± .0244 .4696 ± .0169 .1042 ± .0173 .2381 ± .0117
biclstm .6414 ± .0129 .6244 ± .0132 .7035 ± .0261 .4242 ± .0122 .2675 ± .0148 .3887 ± .0141 .2817 ± .0369 .4028 ± .0496
tr+bilstm+semeval .6297 ± .0073 .7500 ± .0047 .4233 ± .0125 .3698 ± .0142 .3128 ± .0422 .4075 ± .0640 .0897 ± .0256 .2089 ± .0133
tr+outer-att+semeval .6293 ± .0057 .7297 ± .0122 .4336 ± .0156 .3871 ± .0089 .3160 ± .0397 .4469 ± .0369 .1245 ± .0160 .2264 ± .0147
tr+biclstm+semeval .6433 ± .0182 .6625 ± .0128 .6181 ± .0259 .3953 ± .0122 .2606 ± .0356 .4226 ± .0203 .1743 ± .0385 .3643 ± .0574
tr+bilstm+dip2016 .6254 ± .0133 .7073 ± .0114 .4200 ± .0253 .3628 ± .0136 .2396 ± .0605 .4470 ± .0319 .0517 ± .0284 .2298 ± .0245
tr+outer-att+dip2016 .6074 ± .0115 .7112 ± .0245 .4031 ± .0238 .3438 ± .0233 .2060 ± .1012 .4171 ± .0521 .1105 ± .0821 .2096 ± .0793
tr+biclstm+dip2016 .6110 ± .0206 .6954 ± .0491 .4904 ± .0502 .3595 ± .0226 .2272 ± .0516 .3474 ± .0539 .1191 ± .0856 .2886 ± .0714
mtl+bilstm+semeval .6126 ± .0093 .7270 ± .0087 .3906 ± .0177 .3765 ± .0081 .3248 ± .0304 .4812 ± .0340 .0888 ± .0137 .2153 ± .0162
mtl+outer-att+semeval .6221 ± .0100 .7186 ± .0123 .4219 ± .0187 .3764 ± .0071 .3185 ± .0393 .4763 ± .0213 .0878 ± .0173 .2149 ± .0295
mtl+biclstm+semeval .6519 ± .0079 .6495 ± .0143 .6690 ± .0333 .4147 ± .0105 .2769 ± .0332 .3819 ± .0141 .2465 ± .0497 .4069 ± .0501
mtl+bilstm+dip2016 .6145 ± .0097 .7312 ± .0100 .3979 ± .0208 .3757 ± .0057 .3255 ± .0382 .4647 ± .0255 .0841 ± .0144 .2261 ± .0192
mtl+outer-att+dip2016 .6263 ± .0079 .7176 ± .0100 .4327 ± .0178 .3842 ± .0070 .3427 ± .0365 .4502 ± .0240 .1007 ± .0147 .2327 ± .0146
mtl+biclstm+dip2016 .6662 ± .0148 .6463 ± .0105 .6719 ± .0489 .4285 ± .0139 .2947 ± .0383 .3815 ± .0221 .2722 ± .0582 .3483 ± .0528

Table 4: Results for each model on the test sets. Bold numbers indicate the highest score in the column.

data (10%) of seven topics for training and parame-
ter tuning, and use the test data (20%) of the eighth
topic for testing. For encoding the words of sen-
tence ςςς and topic τττ, we use 300-dimensional word
embeddings trained on the Google News dataset by
Mikolov et al. (2013). To handle out-of-vocabulary
words, we create separate random word vectors for
each.5
Since reporting single performance scores is

insufficient to compare non-deterministic learn-
ing approaches like neural networks (Reimers and
Gurevych, 2017), we report all results as averages
over ten runs with different random seeds. As eval-
uation measures, we report the average macro F1, as
well as the precision and the recall for the argument
class (Parg, Rarg). For the three-label approach, we
split the precision and recall for predicting support-
ing (Parg+, Rarg+) and attacking arguments (Parg−,
Rarg−). As baselines, we use a simple bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), as
well as a logistic regression model with lowercased
unigram features, which has been shown to be a
strong baseline for various other AM tasks (Dax-
enberger et al., 2017; Stab and Gurevych, 2017).
We refer to these models as bilstm and lr-uni, re-
spectively. All neural networks are trained using
the Adam optimizer (Kingma and Ba, 2015) and
cross-entropy loss function. For finding the best
model, we run each for ten epochs and take the
best model based on the lowest validation loss. In
addition to that, we tune the hyperparameters of all

5Each dimension is set to a random number between −0.01
and 0.01. Digits are mapped to the same random word vector.

neural networks (see Appendix A). To accelerate
training, we truncate sentences at 60 words.6

5.1 Results
Two-label setup. The results in Table 4 show
that all our models outperform the baselines for
two-label prediction.7 F1 for biclstm improves
by 3.5 percentage points over the bilstm baseline
and by 5.6 over lr-uni. A main reason for this
proves to be the substantial increase in recall for our
topic-integrating models—outer-att and especially
biclstm—in comparison to our baselines. These
results show that knowledge of the argument’s topic
has a strong impact on argument prediction capa-
bility. Further, we observe that integrating biclstm
in a multi-task learning setup in order to draw
knowledge about topic relevance from the DIP2016
corpus (mtl+biclstm+dip2016) improves F1 by an
additional 2.5 percentage points. It achieves an F1
of 0.6662, which is 19.48 percentage points less
than the human upper bound of 0.861. When using
the SemEval corpus, which holds less task-relevant
knowledge for our two-label approach, we are able
to gain only 1 percentage point when integrating it
into mtl+biclstm+corpus.

For the transfer learning models that integrate the
topic (tr+biclstm+corpus and tr+outer-att+corpus),
the parameter transfer is mostly ineffective. If no
topic is provided (tr+bilstm+corpus), the transfer
learning models are able to improve over the base-
line bilstm. This shows that the parameter transfer

6Only 244 of our sentences (<1%) exceed this length.
7Detailed results per topic are given in Appendix B.
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itself can be of use, but confuses the model when
combined with topic integration.

In general, we observe an overall lower score for
trl models that use the DIP2016 corpus compared
to those using the SemEval corpus. In contrast
to the mtl model, for trl models all parameters are
transferred to the main task, not just parameters
that represent shared knowledge. Thus, we suspect
the lower scores of the trl models with DIP2016 are
due to overfitting on the vast number of samples
which shape the parameters much more than the
comparatively small SemEval corpus could.

Three-label setup. For the three-label approach,
we observe overall lower scores due to the addi-
tional difficulty in distinguishing supporting from
opposing arguments. As already observed in the
two-label setup, biclstm outperforms both the bilstm
and lr-uni baselines; here, the former by 4.5 and the
latter by 4.2 percentage points in F1. Again, this is
caused by a substantial increase in recall and shows
the impact that the available topic information has
on the classifier’s predictive power.
For transfer learning, we see similar results as

for the two-label approach; both the DIP2016 and
SemEval corpora have a generally negative impact
when compared to the respective base models. The
SemEval corpus does not provide the knowledge
required to distinguish supporting from attacking
arguments. We conclude that the original purpose
of the SemEval task, stance recognition, is too
different from our own. But in multi-task learning,
where only the shared parameters are taken, we
observe slight improvements when using biclstm
with DIP2016; this correlates with the same model
in the two-label setup.

5.2 Error analysis
To understand the errors of our best model, mtl-
biclstm-dip, and the nature of this task, we manually
analyzed 100 sentences randomly sampled from the
false positive and false negative arguments of the
three-label experiments (combining supporting and
attacking arguments). Among the false positives,
we found 48 off-topic sentences that were wrongly
classified as arguments. The 52 on-topic false
positives consist of non-argumentative background
information or mere opinions without evidence
(as with the first and fourth examples of Table 1)
and questions about the topic. Among the false
negatives, we found 65 arguments that did not
explicitly refer to the topic but to related aspects that

depend on background knowledge. For instance,
the model fails to establish an argumentative link
between the topic “gun control” and the Second
Amendment to the US Constitution. Lastly, we
inspected arguments that are incorrectly classified
as supporting and/or opposing a topic. We found
several samples in which the term “against” is not
correctly interpreted and the argument is classified
as supporting a topic. Similarly, for arguments
incorrectly classified as attacking, we find various
samples where the word “oppose” is used not to
oppose the topic but to strengthen a supporting
argument, as in “There is reason even for people
who oppose the use of marijuana to support its
legalization. . . ”

5.3 Adapting to new topics
To evaluate the performance of the models in data-
scarce scenarios, we gradually add target topic
data to the training data and analyze the model
performance on the target test set. Figure 4 shows
model performance (F1, Parg, and Rarg) on the
“marijuana legalization” topicwhen adding different
amounts of randomly sampled topic-specific data
to the training data (x-axes).8 As the results show,
the models that integrate the topic achieve higher
recall when adding target topic data to the training
data. For bilstm, we observe a drastic difference
when compared to the other models; the recall for
arguments stays at around 30% and rises only when
integrating more than 60% target topic data. In
strong contrast, topic-integrating models retrieve a
much higher number of actual arguments at target
topic augmentation levels as low as 20%. Further,
and equally important, this does not come at the
cost of precision; on the contrary, the precision is
mostly steady and slowly rising after around 20%
of target topic integration, leading to an overall
higher F1 for these models. Finally, in comparing
F1 between topic-integrating models and bilstm, we
conclude that the former need much less target topic
data to substantially improve their score, making
them more robust in situations of data scarcity.

6 Conclusion

We have presented a new approach for searching
a document collection for arguments relevant to
a given topic. First, we introduced an annotation
scheme suited to the information-seeking perspec-

8Each data point in the plot is the average score of ten runs
with different random samples of target topic data.
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Figure 4: Model performance (y-axes) according to the amount of target topic data in the train sets (x-axes) for the
“marijuana legalization” topic in the three-label setup.

tive of argument search and showed that it is cheaply
but reliably applicable by untrained annotators to
arbitrary Web texts. Second, we presented a new
corpus, including over 25,000 instances over eight
topics, that allows for cross-topic experiments us-
ing heterogeneous text types. Third, we conducted
cross-topic experiments and showed that integrating
topic information of arguments with our contextual
BiLSTM leads to better generalization to unknown
topics. Fourth, by leveraging knowledge from simi-
lar datasets and integrating our contextual BiLSTM
into a multi-task learning setup, we were able to
gain an improvement over our strongest baseline of
5.9 percentage points in F1 in the two-label setup
and 4.6 in the three-label setup. Finally, by gradu-
ally adding target topic data to our training set, we
showed that, when available, even small amounts
of target topic data (20%) have a strong positive
influence on the recall of arguments.

In a separate, simultaneously written paper (Stab
et al., 2018) we evaluate our models in real-world
application scenarios by applying them to a large
document collection and comparing the results
to a manually produced gold standard. An on-
line argument search engine implementing our ap-
proach is now available for noncommercial use
at https://www.argumentsearch.com/. Fur-
thermore, we are experimenting with language
adaptation and plan to extend the tool to the Ger-
man language. Preliminary results are presented
in Stahlhut (2018). We also intend to investigate
methods for grouping similar arguments.
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