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Abstract

The cataloging of product listings through
taxonomy categorization is a fundamental
problem for any e-commerce marketplace,
with applications ranging from personal-
ized search recommendations to query un-
derstanding. However, manual and rule
based approaches to categorization are not
scalable. In this paper, we compare sev-
eral classifiers for categorizing listings in
both English and Japanese product cata-
logs. We show empirically that a combina-
tion of words from product titles, naviga-
tional breadcrumbs, and list prices, when
available, improves results significantly.
We outline a novel method using corre-
spondence topic models and a lightweight
manual process to reduce noise from mis-
labeled data in the training set. We con-
trast linear models, gradient boosted trees
(GBTs) and convolutional neural networks
(CNNs), and show that GBTs and CNNs
yield the highest gains in error reduc-
tion. Finally, we show GBTs applied
in a language-agnostic way on a large-
scale Japanese e-commerce dataset have
improved taxonomy categorization perfor-
mance over current state-of-the-art based
on deep belief network models.

1 Introduction

Web-scale e-commerce catalogs are typically ex-
posed to potential buyers using a taxonomy cat-
egorization approach where each product is cate-
gorized by a label from the taxonomy tree. Most
e-commerce search engines use taxonomy labels
to optimize query results and match relevant list-
ings to users’ preferences (Ganti et al., 2010). To
illustrate the general concept, consider Fig. 1. A
merchant pushes new men’s clothing listings to

an online catalog infrastructure, which then orga-
nizes the listings into a taxonomy tree. When a
user searches for a denim brand, “DSquared2”,
the search engine first has to understand that the
user is searching for items in the “Jeans” category.
Then, if the specific items cannot be found in the
inventory, other relevant items in the “Jeans” cat-
egory are returned in the search results to encour-
age the user to browse further. However, achiev-
ing good product categorization for e-commerce
market-places is challenging.

Commercial product taxonomies are organized
in tree structures three to ten levels deep, with
thousands of leaf nodes (Sun et al., 2014; Shen et
al., 2012b; Pyo et al., 2016; McAuley et al., 2015).
Unavoidable human errors creep in while upload-
ing data using such large taxonomies, contributing
to mis-labeled listing noise in the data set. Even
EBay, where merchants have a unified taxonomy,
reported a 15% error rate in categorization (Shen
et al., 2012b). Furthermore, most e-commerce
companies receive millions of new listings per
month from hundreds of merchants composed of
wildly different formats, descriptions, prices and
meta-data for the same products. For instance,
the two listings, “University of Alabama all-cotton
non iron dress shirt” and “U of Alabama 100%
cotton no-iron regular fit shirt” by two merchants
refer to the same product.

E-commerce systems trade-off between classi-
fying a listing directly into one of thousands of
leaf node categories (Sun et al., 2014; ?) and
splitting the taxonomy at predefined depths (Shen
et al., 2011; ?) with smaller subtree models. In
the latter case, there is another trade-off between
the number of hierarchical subtrees and the prop-
agation of error in the prediction cascade. Simi-
lar to (Shen et al., 2012b; Cevahir and Murakami,
2016), we classify product listings in two or three
steps, depending on the taxonomy size. First,
we predict the top-level category and then clas-
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Figure 1: E-commerce platform using taxonomy categorization to understand query intent, match mer-
chant listings to potential buyers as well as to prevent buyers from navigating away on search misses.

sify the listings using another one or two levels
of subtree models selected by the previous predic-
tions. For our large-scale taxonomy categoriza-
tion experiments on product listings, we use two
in-house datasets,1 a publicly available Amazon
product dataset (McAuley et al., 2015), and a pub-
licly available Japanese product dataset.2

Our paper makes several contributions: 1) We
perform large-scale comparisons with several ro-
bust classification methods and show that Gradi-
ent Boosted Trees (GBTs) (Friedman, 2000; ?)
and Convolutional Neural Networks (CNNs) (Le-
Cun and Bengio, 1995; ?) perform substantially
better than state-of-the-art linear models (Section
5). We further provide analysis of their perfor-
mance with regards to imbalance in our datasets.
2) We demonstrate that using both listing price
and navigational breadcrumbs – the branches that
merchants assign to the listings in web pages for
navigational purposes – boost categorization per-
formance (Section 5.3). 3) We effectively apply
correspondence topic models to detect and remove
mis-labeled instances in training data with mini-
mal human intervention (Section 5.4). 4) We em-
pirically demonstrate the effectiveness of GBTs on
a large-scale Japanese product dataset over a re-
cently published state-of-the-art method (Cevahir
and Murakami, 2016), and in turn the otherwise
language-agnostic capabilities of our system given
a language-dependent word tokenization method.

2 Related Work
The nature of our problem is similar to those re-
ported in (Bekkerman and Gavish, 2011; Shen et
al., 2011; Shen et al., 2012b; Yu et al., 2013b;
Sun et al., 2014; Kozareva, 2015; ?), but with

1The in-house datasets are from Rakuten USA, managed
by Rakuten Ichiba, Japan’s largest e-commerce company.

2This dataset is from Rakuten Ichiba and is released under
Rakuten Data Release program.

more pronounced data quality issues. However,
the existing methods for noisy product classifica-
tion have only been applied to English. Their effi-
cacy for moraic and agglutinative languages such
as Japanese remains unknown.

The work in Sun et al. (2014) emphasizes the
use of simple classifiers in combination with large-
scale manual efforts to reduce noise and imperfec-
tions from categorization outputs. While human
intervention is important, we show how unsuper-
vised topic models can substantially reduce such
expensive efforts for product listings crawled in
the wild. Further, unlike Sun et al. (2014), we
adopt stronger baseline systems based on regu-
larized linear models (Hastie et al., 2003; Zhang,
2004; Zou and Hastie, 2005).

A recent work from Pyo et al. (2016) empha-
sizes the use of recurrent neural networks for tax-
onomy categorization purposes. Although, they
mention that RNNs render unlabeled pre-training
of word vectors (Mikolov et al., 2013) unneces-
sary, in contrast, we show that training word em-
beddings on the whole set of three product title
corpora improves performance for CNN models
and opens up the possibility of leveraging other
product corpora when available.

Shen et al. (2012b) advocate the use of algorith-
mic splitting of the taxonomy using graph theo-
retic latent group discovery to mitigate data imbal-
ance problems at the leaf nodes. They use a com-
bination of k-NN classifiers at the coarser level
and SVMs (Cortes and Vapnik, 1995) classifiers
at the leaf levels. Their SVMs solve much easier
k-way multi-class categorization problems where
k ∈ {3, 4, 5} with much less data imbalance. We,
however, have found that SVMs do not work well
in scenarios where k is large and the data is im-
balanced. Due to our high-dimensional feature
spaces, we avoided k-NN classifiers that can cause
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prohibitively long prediction times under arbitrary
feature transformations (Manning et al., 2008; Ce-
vahir and Murakami, 2016).

The use of a bi-level classification using k-NN
and hierarchical clustering is incorporated in Ce-
vahir and Murakami (2016)’s work, where they
use nearest neighbor methods in addition to Deep
Belief Networks (DBN) and Deep Auto Encoders
(DAE) over both titles and descriptions of the
Japanese product listing dataset. We show in Sec-
tion 5.6, that using a tri-level cascade of GBT clas-
sifiers over titles, we significantly outperform the
k-NN+DBN classifier on average.

3 Dataset Characteristics
We use two in-house datasets, named BU1 and
BU2, one publicly available Amazon dataset
(AMZ) (McAuley et al., 2015), and a Japanese
product listing dataset named RAI (Cevahir and
Murakami, 2016) (short for Rakuten Ichiba) for
the experiments in this paper.

BU1 is categorized using human annotation ef-
forts and rule-based automated systems. This
leads to a high precision training set at the expense
of coverage. On the other hand, for BU2, noisy
taxonomy labels from external data vendors have
been automatically mapped to an in-house taxon-
omy without any human error correction, resulting
in a larger dataset at the cost of precision. BU2
also suffers from inconsistencies in regards to in-
complete or malformed product titles and meta-
data arising out of errors in the web crawlers that
vendors use to aggregate new listings. However,
for BU2, the noise is distributed identically in the
training and test sets, thus evaluation of the classi-
fiers is not impeded by it.

The Japanese RAI dataset consists of
172, 480, 000 records split across 26, 223
leaf nodes. The distribution of product listings in
the leaf nodes is based on the popularity of certain
product categories and is thus highly imbalanced.
For instance, the top level “Sports & Outdoor”
category has 2, 565 leaf nodes, while the “Travel
/ Tours / Tickets” category has only 38. The RAI
dataset has 35 categories at depth one (level-one
categories) and 400 categories at depth two of the
full taxonomy tree. The total depth of the tree
varies from three to five levels.

The severity of data imbalance for BU2 is
shown in Figure 2. The top-level “Home, Furni-
ture and Patio” subtree that accounts for almost
half of the BU2 dataset. Table 1 shows dataset
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Figure 2: Top-level category distribution of 40
million deduplicated listings from an earlier Dec
2015 snapshot of BU2. Each category subtree is
also imbalanced, as seen in exploded view of the
“Home, Furniture, and Patio” category.

characteristics for the four different kinds of prod-
uct datasets we use in our analyses. It lists the
number of branches for the top-level taxonomy
subtrees, the total number of branches ending at
leaf nodes for which there are a non-zero num-
ber of listings and two important summary statis-
tics that helps quantify the nature of imbalance.
We first calculate the Pearson correlation coeffi-
cient (PCC) between the number of listings and
branches in each of the top-level subtrees for each
of the four datasets.

A perfectly balanced tree will have a PCC of
1.0. BU1 shows the most benign kind of imbal-
ance with a PCC of 0.643. This confirms that
the number of branches in the subtrees correlate
well with the volume of listings. Both AMZ and
RAI datasets show the highest branching factors in
their taxonomies. For the AMZ dataset, it could be

Datasets Subtrees Branches Listings PCC KL

BU1 16 1,146 12.1M 0.643 0.872
BU2 15 571 60M 0.209 0.715
AMZ 25 18,188 7.46M 0.269 1.654
RAI 35 26,223 172.5M 0.474 7.887

Table 1: Dataset properties on: total number of
top-level category subtrees, branches and listings

due to the fact that the crawled taxonomy is differ-
ent from Amazon’s internal catalog. The Rakuten
Ichiba taxonomy has been incrementally adjusted
to grow in size over several years by creating new
branches to support newer and popular products.
We observe that for RAI, AMZ and BU2 in par-
ticular, the number of branches in the subtrees do
not correlate well with the volume of listings. This
indicates a much higher level of imbalance.

We also compute the average Kullback-Leibler
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(KL) divergence, KL(p(x)|q(x)), (Cover and
Thomas, 1991) between the empirical distribution
over listings in branches for each subtree rooted in
the nodes at depth one, p(x), compared to a uni-
form distribution, q(x). Here, the KL divergence
acts as a measure of imbalance of the listing distri-
bution and is indicative of the categorization per-
formance that one may obtain on a dataset; high
KL divergence leads to poorer categorization and
vice-versa (see Section 5).

4 Gradient Boosted Trees and
Convolutional Neural Networks

GBTs (Friedman, 2000) optimize a loss func-
tional: L = Ey[L(y, F (x)|X)] where F (x) can
be a mathematically difficult to characterize func-
tion, such as a decision tree f(x) over X. The
optimal value of the function is expressed as
F ?(x) =

∑M
m=0 fm(x,a,w), where f0(x,a,w)

is the initial guess and {fm(x,a,w)}Mm=1 are ad-
ditive boosts on x defined by the optimization
method. The parameter am of fm(x,a,w) de-
notes split points of predictor variables and wm

denotes the boosting weights on the leaf nodes of
the decision trees corresponding to the partitioned
training set Xj for region j. To compute F ?(x),
we need to calculate, for each boosting round m,

{am,wm} = arg mina,w

N∑
i=1

L(yi, Fm(xi)) (1)

with Fm(x) = Fm−1(x) + fm(x,am,wm). This
expression is indicative of a gradient descent step:

Fm(x) = Fm−1(x) + ρm (−gm(xi)) (2)

where ρm is the step length and[
∂L(y,F (x))
∂F (x)

]
F (xi)=Fm−1(xi)

= gm(xi) being the

search direction. To solve am and wm, we make
the basis functions fm(xi;a,w) correlate most
to −gm(xi), where the gradients are defined over
the training data distribution. In particular, using
Taylor series expansion, we can get closed form
solutions for am and wm – see Chen and Guestrin
(2016) for details. It can be shown that am =
arg mina

∑N
i=1 (−gm(xi)− ρmfm(xi,a,wm))2

and ρm = arg minρ
∑N

i=1 L(yi, Fm−1(xi) +
ρfm(xi;am,wm)) which yields,

Fm(x) = Fm−1(x) + ρmfm(x,am,wm) (3)

Each boosting round m updates the weights
wm,j on the leaves and helps create a new tree

in the next iteration. The optimal selection of de-
cision tree parameters is based on optimizing the
fm(x,a,w) using a logistic loss. For GBTs, each
decision tree is resistant to imbalance and outliers
(Hastie et al., 2003), and F (x) can approximate
arbitrarily complex decision boundaries.

The convolutional neural network we use is
based on the CNN architecture described in Le-
Cun and Bengio (1995; Kim (2014) using the Ten-
sorFlow framework (Abadi and others, 2015). As
in Kim (2014), we enhance the performance of
“vanilla” CNNs (Fig. 3 right) using word em-
bedding vectors (Mikolov et al., 2013) trained on
the product titles from all datasets, without taxon-
omy labels. Context windows of width n, corre-
sponding to n-grams and embedded in a 300 di-
mensional word embedding space, are convolved
with L filters followed by rectified non-linear unit
activation and a max-pooling operation over the
set of all windows W . This operation results in a
L×1 vector, which is then connected to a softmax
output layer of dimension K × 1, where K is the
number of classes. Section A lists more details on
parameters.

The CNN model tries to allocate as few filters
to the context windows while balancing the con-
straints on the back-propagation of error resid-
uals with regards to cross-entropy loss L =
−∑K

k=1 qk log pk, where pk is the probability of
a product title x belonging to class k predicted by
our model, and q ∈ {0, 1}K is a one-hot vector
that represents the true label of title x. This re-
sults in a higher predictive power for the CNNs,
while still matching complex decision boundaries
in a smoother fashion than GBTs. We note here
that for all models, the predicted probabilities are
not calibrated (Zadrozny and Elkan, 2002).

5 Experimental Setup and Results
We use Naı̈ve Bayes (NB) (Ng and Jordan, 2001)
similar to the approach described in Shen et al.
(2012a) and Sun et al. (2014), and Logistic Re-
gression (LogReg) classifiers with L1 (Fan et al.,
2008) and Elastic Net regularization, as robust
baselines. Parameter setups for the various models
and algorithms are mentioned in Section A.

5.1 Data Preprocessing
Product listing datasets in English – BU1 is ex-
clusively comprised of product titles, hence, our
features are primarily extracted from these titles.
For AMZ and BU2, we additionally extract the list
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Figure 3: Classifier performance on BU1 test set. The CNN classifier has only one configuration and
thus shows constant curves in all plots. Left figure shows prediction on 10% test set using word unigram
count features; middle figure shows prediction on 10% test set using word bigram bi-positional count
features; and the right figure shows mean micro-precision over different feature setups except CNNs. In
all figures, “OvO” means “One vs. One” and “OvA” means “One vs All”.

price whenever available. For BU2, we also use
the leaf node of any available navigational bread-
crumbs. In order to decrease training and cate-
gorization run times, we employ a number of vo-
cabulary filtering methods. Further, English stop-
words and rare tokens that appear in 10 listings
or less are then filtered out. This reduces vocabu-
lary sizes by up to 50%, without a significant re-
duction in categorization performance. For CNNs,
we replace numbers by the nominal form [NUM]
and remove rare tokens. We also remove punctua-
tions and then lowercase the resulting text. Parts of
speech (POS) tagging using a generic tagger from
Manning et al. (2014) trained on English text pro-
duced very noisy features, as is expected for out-
of-domain tagging. Consequently, we do not use
POS features due to the absence of a suitable train-
ing set for listings unlike that in Putthividhya and
Hu (2011). For GBTs, we also experiment with
title word expansion using nearest neighbors from
Word2Vec model (Mikolov et al., 2013), for in-
stance, to group words like “t-shirts”, “tshirt”,
“t-shirt” in their respective equivalence classes,
however, the overall results have not been better.

Product listing datasets in Japanese – CJK
languages like Japanese lack white space between
words. Hence, the first pre-processing step re-
quires a specific Japanese tokenization tool to
properly segment the words in the product titles.

For our experiments, we used the MeCab3 to-
kenizer trained using features that are augmented
with in-house product keyword dictionaries. Ro-
maji words written using Latin characters are sep-

3
https://sourceforge.net/projects/mecab/

arated from Kanji and Kana words. All brack-
ets are normalized to square brackets and punc-
tuations from non-numeric tokens are removed.
We also use canonical normalization to change
the code points of the resulting Japanese text into
an NFKC normalized4 form, then remove any-
thing outside of standard Japanese UTF-8 charac-
ter ranges. Finally, the resulting text is lowercased.

Due to the size of the RAI dataset taxonomy
tree, three groups of models are trained to clas-
sify new listings into one of 35 level-one cate-
gories, then one of 400 level-two categories, and,
finally, the leaf node of the taxonomy tree. We
have found this scheme to be working better for
the RAI dataset than a bi-level scheme that we
adopted for the other English datasets.

Applying GBTs on the Japanese dataset in-
volved a bit more feature engineering. At the to-
kenized word-level, we use counts of word uni-
grams and word bi-grams. For character features,
the product title is first normalized as discussed
above. Consequently, character 2, 3, and 4-grams
are extracted with their counts, where extractions
include single spaces appearing at the end of word
boundaries. Identification of the best set of fea-
ture combinations in this case has been performed
during cross-validation.

5.2 Initial Experiments on BU1 dataset
Our initial experiments use unigram counts and
three other features: word bigram counts, bi-
positional unigram counts, and bi-positional bi-
gram counts. Consider a title text “120 gb hdd
5400rpm sata fdb 2 5 mobile” from the “Data

4
http://unicode.org/reports/tr15/

973



storage” leaf node of the Electronics taxonomy
subtree and another title text “acer aspire v7
582pg 6421 touchscreen ultrabook 15 6 full hd in-
tel i5 4200u 8gb ram 120 gb hdd ssd nvidia geforce
gt 720m” from the “Laptops and notbooks” leaf
node. In such cases, we observe that merchants
tend to place terms pertaining to storage device
specifics in the front of product titles for “Data
storage” and similar terms towards the end of the
titles for “Laptops”. As such, we split the title
length in half and augment word uni/bigrams with
a left/right-half position.

This makes sense from a Naı̈ve Bayes point
of view, since terms like “120 gb”[Left Half],
“gb hdd”[Left Half], “120 gb”[Right Half] and
“gb hdd”[Right Half] de-correlates the feature
space better, which is suitable for the naı̈ve as-
sumption in NB classification. This also helps
in sightly better explanation of the class posteri-
ors. These assumptions for NB are validated in the
three figures: Fig. 3 left, Fig. 3 middle and Fig.
3 right. Word unigram count features perform
strongly for all classifiers except NB, whereas bi-
positional word bigram features helped only NB
significantly.

Additionally, the micro-precision and F1 scores
for CNNs and GBTs are significantly higher com-
pared to other algorithms on word unigrams using
paired t-test with a p-value < 0.0001. The per-
formances of GBTs and LogReg L1 classifiers de-
teriorate over the other feature sets as well. The
bi-positional and bigram feature sets also do not
produce any improvements for the AMZ dataset.
Based on these initial results, we focus on word
unigrams in all of our subsequent experiments.

5.3 Categorization Improvements with
Navigational Breadcrumbs and List
Prices on BU2 Dataset

BU2 is a challenging dataset in terms of class im-
balance and noise and we sought to improve cate-
gorization performance using available meta-data.
To start, we experiment with a smaller dataset con-
sisting of ≈ 500, 000 deduplicated listings under
the “Women’s Clothing” taxonomy subtree, ex-
tracted from our Dec 2015 snapshot of 40 million
records. Then we train and test against ≈ 2.85
million deduplicated “Women’s Clothing” listings
from the Feb 2016 snapshot of BU2. In all exper-
iments, 10% of the data is used as test set. The
womens clothing category had been chosen due
to the importance of the category from a business
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Figure 4: Improvements in micro-precision and
F1 for GBTs on BU2 dataset for “Women’s Cloth-
ing” subtree

standpoint, which provided early access to listings
in this category. Further, data distributions remain
the same in the two snapshots and the Feb 2016
snapshot consists of listings in addition to those
for the Dec 2015 snapshot.

The first noteworthy fact in Fig. 4 is that the
micro-precision and F1 of the GBTs substantially
improve after increasing the size of the dataset.
Further, stop words and rare words filtering de-
crease precision and F1 by less than 1%, despite
halving the feature space. The addition of navi-
gational leaf nodes and list prices prove advanta-
geous, with both features independently boosting
performance and raising micro-precision and F1 to
over 90%. Despite finding similar gains in catego-
rization performance for other top-level subtrees
by using these meta features, we needed a system
to filter mis-categorized listings from our training
data as well.

5.4 Noise Analysis of BU2 Dataset using
Correspondence LDA for Text

The BU2 dataset has the noisiest ground-truth la-
bels, as incorrect labels have been assigned to
product listings. However, since the manual ver-
ification of millions of listings is infeasible, using
some proxy for ground truth is a viable alternative
that has previously produced encouraging results
(Shen et al., 2012b). We next describe how resort-
ing to unsupervised topic models helped to detect
and remove incorrect listings.

As shown in Fig. 8, categorization perfor-
mance for the “Shoes” taxonomy subtree is over
25 points below the “Women’s Clothing” cate-
gory. Such a large difference could be caused by
incorrect assignments of listings to the correct cat-
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Figure 5: Selection of most probable
words under the latent “noise” topics over
listings in “Shoes” subtree. Human anno-
tators inspect whether such sets of words
belong to a Shoes topic or not.
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Ambiguous	
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Figure 6: Interpretation of latent topics us-
ing predictions from a GBT classifier. The
topics here do not include those in Fig. 5, but
are all from Feb 2016 snapshot of the BU2
dataset.

egories. However, unlike Sun et al. (2014), as
there are over 3.4 million “Shoes” listings in the
BU2 dataset, a manual analysis to detect noisy la-
bels is infeasible. To address this problem, we
compute p(x) over latent topics zk, and automati-
cally annotate the most probable words over each
topic.

We choose our CorrMMLDA model (Das et al.,
2011) to discover the latent topical structure of the
listings in the “Shoes” category because of two
reasons. Firstly, the model is a natural choice for
our scenario since it is intuitive to assume that
store and brand names are distributions over words
in titles. This is illustrated in the graphical model
in Fig. 7, where the store “Saks Fifth Avenue” and
the brand “Joie” are represented as words wd,m
in the M plate of listing d and are distributions
over the words in the product title “Joie kidmore
Embossed slipon sneakers” represented as words
wd,n in the N plate of the same listing d. The ti-
tle words are in turn distributions over the latent
topics zd for listing d ∈ {1..D}.

Secondly, the CorrMMLDA model has been
shown to exhibit lower held-out perplexities in-
dicative of improved topic quality. The reason be-
hind the lower perplexity stems from the follow-
ing observations: Using the notation in Das et al.
(2011), we denote the free parameters of the vari-
ational distributions over words in brand and store
names, say λd,m,n, as multinomials over words in
the titles and those over words in the title, say
φd,n,k, as multinomials over latent topics zd. It
is easy to see that the posterior over the topic zd,k
for each wd,m of brand and store names, is depen-
dent on λ and φ through

∑Nd
n=1 λd,m,n × φd,n,k.

This means that if a certain topic zd = j gener-
ates all words in the title, i.e., φd,n,j > 0, then

wnα zn r

β

N

M
ym wm

wdN =

D K

Joie
Kidmore
Embossed
Slipon
sneakers

wdM =
Saks
Fifth
Avenue
Joie

Figure 7: Correspondence MMLDA model.

only that topic also generates the brand and store
names thereby increasing likelihood of fit and re-
ducing perplexity. The other topics zd 6= j do not
contribute towards explaining the topical structure
of the listing d.
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Figure 8: Micro-precision and F1 across fifteen
top-level categories on 10% (4 million listings) of
Dec 2015 BU2 snapshot.

We train the CorrMMLDA model with K=100
latent topics. A sample of nine latent topics and
their most probable words shown in Fig. 5 demon-
strates that topics outside of the “Shoes” domain
can be manually identified, while reducing hu-
man annotation efforts from 3.4 million records
to one hundred. We choose K = 100 since it
is roughly twice the number of branches for the
Shoes subtree. This choice provides modeling
flexibility while respecting the number of ground
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Figure 9: Micro-precision on 10% of
BU2 across categories (see Sect. 5.4)
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Figure 10: Micro-precision on 10% of AMZ across
categories

Dataset NB LogReg ElasticNet LogReg L1 GBT CNN w pretraining Mean KL log(N/B)
BU1 81.45 86.30 86.75 89.03* 89.12* 0.872 9.27
BU2 68.21 84.29 85.01 90.63* 88.67 0.715 11.54
AMZ 49.01 69.39 66.65 67.17 72.66* 1.654 6.02

Table 2: Mean micro-precision on 10% test set from BU1, BU2 and AMZ English datasets

truth classes.
We next run a list of the most probable six

words, the average length of a “Shoes” listing’s ti-
tle, from each latent topic through our GBT classi-
fier trained on the full, noisy data, but without con-
sidering any metadata, due to bag-of-words nature
of the topic descriptions. As shown in the bottom
two rows in Fig. 6, categories mismatching their
topics are manually labeled as ambiguous. As a fi-
nal validation, we uniformly sampled a hundred
listings from each ambiguous topic detected by
the model. Manual inspections revealed numer-
ous listings from merchants not selling shoes are
wrongly cataloged in the “Shoes” subtree due to
vendor’s error. To this end, we remove listings cor-
responding to such “out-of-category” merchants
from all top-level categories.

Thus, by manually inspectingK×6 most prob-
able words from the K=100 topics and J × 100
listings, where J << K, instead of 3.4 million, a
few annotators accomplished in hours what would
have taken hundreds of annotators several months
according to the estimates in Sun et al. (2014).

5.5 Results on BU2 and AMZ Datasets
In section 5.2, we have shown the efficacy of word
unigram features on the BU1 dataset. Figure 8
shows that LogReg with L1 regularization (Yu
et al., 2013b; Yu et al., 2013a) initially achieves
83% mean micro-precision and F1 on the initial
BU2 dataset. This falls short of our expectation
of achieving an overall 90% precision (red line in

Fig. 8), but forms a robust baseline for our subse-
quent experiments with the AMZ and the cleaned
BU2 datasets. We additionally use the list price
and the navigational breadcrumb leaf nodes for the
BU2 dataset and, when available, the list price for
the AMZ dataset.

Overall, Naı̈ve Bayes, being an overly simpli-
fied generative model, generalizes very poorly on
all datasets (see Figs. 3, 9 and 10). A possible
option to improve NB’s performance is to use sub-
sampling techniques as described in Chawla et al.
(2002); however, sub-sampling can have its own
problems for when dealing with product datasets
(Sun et al., 2014).

From Table 2, we observe that most classifiers
tend to perform well when log(N/B) is relatively
high. The N in the previous ratio is the total num-
ber of listings and B is the total number of cate-
gories. Figures with a ∗ are statistically better than
other non-starred ones in the same row except the
last two columns. From Fig. 9 and Table 2, it is
clear that GBTs are better on BU2.

We also experiment with CNNs augmented to
use meta-data while respecting the convolutional
constraints on title text, however, the performance
improved only marginally. It is not immediately
clear why all the classifiers suffer on the “CDs
and Vinyl” category, which has more than 500
branches – see Fig. 10. The AMZ dataset also
suffers from novel cases of data imbalance. For
instance, most of the listings in “Books” and “Gro-
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KNN+DBN GBT Important statistics for the Rakuten 
Ichiba dataset and classifier performance:
- Average PCC at level one – 0.47
- Average KL at level one   – 7.88
- Average KL at level two   – 3.79
- Average of the micro-F1 scores across 

level one categories shown:
- KNN+DBN – 73.85
- GBT            – 76.89*

- GBT performs significantly better than 
KNN+DBN for 28 out of 35 level one 
categories. There is one other category, 
Smartphones and Tablets, where GBT 
performs only slightly better than 
KNN+DBN.

Figure 11: Comparison of GBTs versus the method from Cevahir and Murakami (2016) on a 10% test
set from the Rakuten Ichiba Japanese product listing dataset.

cery” are in one branch, with most other branches
containing less than 10 listings. In summary, from
both Figs. 9 and 10, we observe that GBTs and
CNNs with pre-training perform best even in ex-
treme data imbalance. It is possible that GBTs
need finer parameter tuning per top-level subtree
for datasets resembling AMZ.

5.6 Results on Rakuten Ichiba Dataset
In this section, we report our findings on the ef-
ficacy of GBTs vis-a-vis another hybrid nearest
neighbor and deep learning based method from
Cevahir and Murakami (2016). Our decision to
employ a tri-level classifier cascade, instead of the
bi-level one used for the other datasets, stems from
our observations of the KL divergence values (see
Section 3 and Table 1) at the first and second level
depths of the RAI taxonomy tree. Moving from
the first level down to the second decreases the
KL divergence by more than 50%. We thus expect
GBTs to perform better due to this reduced imbal-
ance. We also cross-validated this assumption on
some popular categories, such as “Clothing”.

From Fig. 11 and the statistics noted therein,
we observe that, on average, GBTs outperform the
KNN+DBN model from Cevahir and Murakami
(2016) by 3 percentage points across all top level
categories, which is statistically significant under
a paired t-test with p < 0.0001. As with previous
experiments, only a common best parameter con-
figuration has been set for GBTs, without resort-
ing to time consuming cross-validation across all
categories. For the 29 categories on which GBTs
do better, the mean of the absolute percentage im-
provement is 11.78, with a standard deviation of
5.07. Also, it has been observed that GBTs sig-
nificantly outperform KNN+DBN in 28 of those
categories.

The comparison in Fig. 11 is more holistic. Un-

like the top level categorization scores obtained
in Figs. 3, 9 and 10, the scores in Fig. 11 have
been obtained by categorizing each test example
through the entire cascade of hierarchical models
for two classifiers. Even with this setting, the per-
formance of GBTs is significantly better.

6 Conclusion
Large-scale taxonomy categorization with noisy
and imbalanced data is a challenging task. We
demonstrate deep learning and gradient tree boost-
ing models with operational robustness in real
industrial settings for e-commence catalogs with
several millions of items. We summarize our
contributions as follows: 1) We conclude that
GBTs and CNNs can be used as new state-of-the-
art baselines for product taxonomy categorization
problems, regardless of the language used; 2)
We quantify the nature of imbalance for differ-
ent product datasets in terms of distributional di-
vergence and correlate that to prediction perfor-
mance; 3) We also show evidence to suggest that
words from product titles, together with leaf nodes
from navigational breadcrumbs and list prices,
when available, can boost categorization perfor-
mance significantly on all the product datasets. Fi-
nally, 4) we showcase a novel use of topic models
with minimal human intervention to clean large
amounts of noise particularly when the source of
noise cannot be controlled. This is unlike any
experiment reported in previous publications on
product categorization. Automatic topic labeling
for a given category with a pre-trained classifier
from another dataset can help create an initial tax-
onomy over listings for which none exist. A major
benefit of this approach is that it reduces manual
efforts on initial taxonomy creation.
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A Supplemental Materials: Model
Parameters

In this paper, the baseline classifiers comprise of
Naı̈ve Bayes (NB) (Ng and Jordan, 2001) similar
to the approach described in Shen et al. (2012a)
and Sun et al. (2014), and Logistic Regression
(LogReg) classifiers with L1 (Fan et al., 2008) and
Elastic Net regularization. The objective functions
of both GBTs and CNNs involve L2 regularizers
over the set of parameters. Our development set
for parameter tuning is generated by randomly se-
lecting 10% of the listings under the “apparel /
clothing” categories. The optimized parameters
obtained from this scaled-down configuration is
then extended to all other classifiers to reduce ex-
perimentation time.

For parameter tuning, we set a linear combina-
tion of 15% L1 regularization and 85% L2 regu-
larization for Elastic Net. For GBTs (Chen and
Guestrin, 2016) on both English and Japanese
data, we limit each decision tree growth to a max-
imum depth of 500 and the number of boosting
rounds is set to 50. Additionally, for leaf node
weights, we use L2 regularization with a regu-
larization constant of 0.5. For GBTs on English
data, the initial learning rate is 0.2. For GBTs on
Japanese data, the initial learning rate is assigned
a value of 0.05 .

For CNNs, we use context window widths of
sizes 1, 3, 4, 5 for four convolution filters, a batch
size of 1024 and an embedding dimension of
300. The parameters for the embeddings are
non-static. The convolutional filters are initial-
ized with Xavier initialization (Glorot and Ben-
gio, 2010). We use mini-batch stochastic gradi-
ent descent with Adam optimizer (Kingma and Ba,
2014) to perform parameter optimization.

LogReg classifiers and CNN need data to be
normalized along each dimension, which is not
needed for NB and GBT.
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