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Abstract 

We report grammar inference experiments on 
partially parsed sentences taken from the Wall 
Street Journal corpus using the inside-outside 
algorithm for stochastic context-free grammars. 
The initial grammar for the inference process 
makes no ,assumption of the kinds of structures 
and their distributions. The inferred grammar is 
evaluated by its predicting power and by com- 
paring the bracketing of held out sentences 
imposed by the inferred grammar with the par- 
tial bracketings of these sentences given in the 
corpus. Using part-of-speech tags as the only 
source of lexical information, high bracketing 
accuracy is achieved even with a small subset 
of the available training material (1045 sen- 
tences): 94.4% for test sentences shorter than 
10 words and 90.2% for sentences shorter than 
15 words. 

1 Introduction 

Most broad coverage natural language parsers have 
been designed by incorporating hand-crafted rules. 
These rules are also very often further refined by statisti- 
cal training. Furthermore, it is widely believed that high 
performance can only be achieved by disambiguating 
lexically sensitive phenomena such as prepositional 
attachment ambiguity, coordination or subcategoriza- 
don. 

So far, grammar inference has not been shown to be 
effective for designing wide coverage parsers. 

Baker (1979) describes a training algorithm for sto- 
chastic context-free grammars (SCFG) which can be 
used for grammar reestimation (Fujisaki et al. 1989, 
Sharrnan et al. 1990, Black et al. 1992, Briscoe and Wae- 
gner 1992) or grammar inference from scratch (Lari and 
Young 1990). However, the application of SCFGs and 
the original inside-outside algorithm for grammar infer- 
ence has been inconclusive for two reasons. First, each 
iteration of the algorithm on a gr,-unmar with n nontermi- 
nals requires O(n31wl 3) time per t~n ing  sentence w. Sec- 
ond, the inferred grammar imposes bracketings which do 
not agree with linguistic judgments of sentence struc- 
ture. 

Pereira and Schabes (1992) extended the inside-out- 
side algorithm for inferring the parameters of a stochas- 
tic context-free grammar to take advantage of 
constituent bracketing information in the training text. 
Although they report encouraging experiments (90% 
bracketing accuracy) on h'mguage transcriptions in the 
Texas Instrument subset of the Air Travel Information 
System (ATIS), the small size of the corpus (770 brack- 
eted sentences containing a total of 7812 words), its lin- 
guistic simplicity, and the computation time required to 
vain the grammar were reasons to believe that these 
results may not scale up to a larger and more diverse cor- 
pus. 

We report grammar inference experiments with this 
algorithm from the parsed Wall Street Journal corpus. 
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The experiments prove the feasibility and effectiveness 
of the inside-outside algorithm on a htrge corpus. 

Such experiments are made possible by assumi'ng a 
right br~mching structure whenever the parsed corpus 
leaves portions of the parsed tree unspecified. This pre- 
processing of the corpus makes it fully bracketed. By 
taking adv~mtage of this fact in the implementation of the 
inside-outside ~dgorithm, its complexity becomes line~tr 
with respect to the input length (as noted by Pereira and 
Schabes, 1992) ,and therefore tractable for large corpora. 

We report experiments using several kinds of initial 
gr~unmars ~md a variety of subsets of the corpus as train- 
ing data. When the entire Wall Street Journal corpus was 
used as training material, the time required for training 
has been further reduced by using a par~dlel implementa- 
tion of the inside-outside ~dgorithm. 

The inferred grammar is evaluated by measuring the 
percentage of compatible brackets of the bracketing 
imposed by the inferred grammar with the partial brack- 
eting of held out sentences. Surprisingly high bracketing 
accuracy is achieved with only 1042 sentences as train- 

• ing materi,'d: 94.4% for test sentences shorter th,-m 10 
words ~md 90.2% for sentences shorter than 15 words. 
Furthermore, the bracketing accuracy does not drop 
drastic~dly as longer sentences ,are considered. These 
results ,are surprising since the training uses part-of- 
speech tags as the only source of lexical information. 
This raises questions about the statistical distribution of 
sentence structures observed in naturally occurring text. 

After having described the training material used, we 
report experiments using several subsets of the available 
training material ,and evaluate the effect of the training 
size on the bracketing perform,'mce. Then, we describe a 
method for reducing the number of parameters in the 
inferred gr~unmars. Finally, we suggest a stochastic 
model for inferring labels on the produced binary 
br~mching trees. 

2 Training Corpus 

The experiments use texts from the Wall Street Journ~d 
Corpus ,and its partially bracketed version provided by 
the Penn Treebank (Brill et al., 1990). Out of 38 600 
bracketed sentences (914 000 words), we extracted 
34500 sentences (817 000 words) as possible source of 
training material ,and 4100 sentences (97 000 words) as 
source for testing. We experimented with several subsets 
(350, 1095, 8000 ,and 34500 sentences) of the available 
training materi~d. 

For practiced purposes, the part of the tree bank used 
for training is preprocessed before being used. First, fiat 
portions of parse trees found in the tree b,'mk are turned 
into a right linear binary br~mching structure. This 
enables us to take full adv~mtage of the fact that the 
extended inside-outside ~dgorithm (as described in 
Pereira and Schabes, 1992) behaves in linear time when 
the text is fully bracketed. Then, the syntactic labels are 
ignored. This allows the reestimation algorithm to dis- 
tribute its own set of labels based on their actual distri- 
bution. We later suggest a method for recovering these 
labels. 

The following is ,an ex~unple of a partially parsed sen- 
tence found in the Penn Treeb~mk: 

S 

NP VBZ VP 

has VBN VP 
I I 

been VBN 
I 

se l  

DT NN PP 
I I 

No price IN NP 

f°r D~T JIJ NI~IS 

t e new shares 

The above parse corresponds to the fully bracketed 
unlabeled parse 

DT 

No NN 
I 

price IN 
I 

for DT 

t~e JJ NNS 
I I 

f l ew  s h a r e s  

VBZ 

has VBN • 
I I 

been VBN 
I 

se l  

found in the tr,'fining corpus. The experiments reported 
in this paper use only the p,'trt-of-speech sequences of 
this corpus ,and the resulting fully bracketed parses. For 
the above example, the following bracketing is used in 
the training material: 

(DT (NN (IN (DT (JJ NNS)))) (VBZ (VBN VBN))) 

3 Inferring Bracketings 

For the set of experiments described in this section, 
the initial gr,'unmar consists of,all 4095 possible Chore- 
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sky Normal Form rules over 15 nonterminals 
(X i, 1 < i < 15) and 48 termin,'d symbols (t,,, 1 < m < 48) 
for part-of-speech tags (the same set as the one used in 
the Penn Treebank): 

X i =:~ X]X  k 

X i =~ t m 

The parameters of the initial stochastic context-free 
grammar are set randomly while maintaining the proper 
conditions for stochastic context-free grammars. 1 

Using the algorithm described in Pereira and Schabes 
(1992), the current rule probabilities and the parsed 
training set C are used to estimate the expected frequen- 
cies of each rule. Once these frequencies are computed 
over each bracketed sentence c in the training set, new 
rule probabilities ,are assigned in a way that increases the 
estimated probability of the bracketed training set. This 
process is iterated until the increase in the estimated 
probability of the bracketed training text becomes negli- 
gible, or equivalently, until the decrease in cross entropy 
(negative log probability) 

Z logP (c) 
~t (c ,G)  = cEc 

Z Icl 
c e C  

becomes negligible. In the above formula, the probabil- 
ity P(c) of the partially bracketed sentence c is computed 
as the sum of the probabilities of all derivations compat- 
ible with the bracketing of the sentence. This notion of 
compatible bracketing is defined in details in Pereim and 
Schabes (1992). Informally speaking, a derivation is 
compatible with the bracketing of the input given in the 
tree bank, if no bracket imposed by the derivation 
crosses a bracket in the input. 

Compatible bracket 
Input bracketing 

Incompatible bracket 
Input bracketing 

( ) 

A 
( ) 

As refining material, we selected randomly out of the 
available training material 1042 sentences of length 
shorter than 15 words. For evaluation purposes, we also 

1. The sum of the probabilities of the rules with same left hand 
side must be one. 

nmdomly selected 84 sentences of length shorter than 15 
words among the test sentences. 

Figure 1 shows the cross entropy of the training after 
each iteration. It also shows for each iteration the cross 
entropies f / o f  84 sentences randomly selected ,among 
the test sentences of length shorter than 15 words. The 
cross entropy decreases ,as more iterations ,are performed 
and no over training is observed.. 
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Figure 1. Training and Test Set -log prob 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

f 3 ~ t a c  e. Ac.cu l:a cy 

.1 

:J 

N 
I I I I 

20 40 60 80 
i t . e r a t  i o n  

100 

Figure 2. Bracketing and sentence accuracy of 84 
test sentences shorter than 15 words. 

To evaluate the quality of the analyses yielded by the 
inferred grammars obtained ,after each iteration, we used 
a Viterbi-style parser to find the most likely analyses of 
sentences in several test samples, and compared them 
with the Treebank partial bmcketings of the sentences of 
those samples. For each sample, we counted the percent- 
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age of brackets of the most likely ~malysis that are not 
"crossing" the partiid bracketing of the same sentences 
found in the Treebank. This percentage is called the 
bracketing accuracy (see Pereira and Schabes, 1992 tor 
the precise definition of this measure). We also com- 
puted the percentage of sentences in each smnple in 
which no crossing bracket wits found. This percentage is 
called the sentence accuracy. 

Figure 2 shows the bracketing and sentence accuracy 
for the s,'une 84 test sentences. 

Table 1 shows the bracketing and sentence accuracy 
for test sentences within various length ranges. High 
bracketing accuracy is obtained even on relatively long 
sentences. However, as expected, the sentence accuracy 
decreases rapidly as the sentences get longer. 

Length 
Bracketing 
Accuracy 
Sentence 
Accuracy 

TABLE 1. 

0-10 0-15 10-19 20-30 
94.4% 90.2% 82.5% 71.5% 

82% 57.1% 30% 6.8% 

Bracketing Accuracy on test sentences o 
different lengths (using 1042 sentences of 
lengths shorter than 15 words as training 
material). 

Table 2 compares our results with the bracketing accu- 
racy of analyses obtained by a systematic right linear 
branching structure for all words except for the final 
punctuation mark (which we att~tched high). 2 We also 
evaluated the stochastic context-free gr, unmar obtained 
by collecting each level of the trees found in the training 
tree bimk (see Table 2). 

Length 0-10 0-15 10-19 20-30 

Inferred grammar 94.4% 90.2% 82.5% 71.5% 
Right linear trees 76% 70% 63% 50% 
Treebank Grmmnar 46% 31% 25% 

TABLE 2. Bracketing accuracy of the inferred 
grammar, of right linear structures and of 
the Treebank grammar. 

Right linear structures perform surprisingly well. Our 
results improve by 20 percentage points upon this base 
line performance. These results suggest that the distribu- 
tion of sentence structure in naturally occurring text is 
simpler than one may have thought, especially since 
only part-of-speech tags were used. This may suggest 

2. We thank Eric Brill and David Yarowsky for suggesting 
these experiments. 

the existence of clusters of trees in the training material. 
However, using the number of crossing brackets ils a dis- 
tance between trees, we have been unable to reveal the 
existence of clusters. 

The grammar obtained by collecting rules from the 
tree bank performs very poorly. One can conclude that 
the labels used in the tree bank do not have ,'my statisti- 
cal property. The task of inferring a stochastic grammar 
from a tree bank is not trivial and therefore requires sta- 
tistical training. 

In the appendix we give examples of the most likely 
analyses output by the inferred grammar on severld test 
sentences 

In Table 3, different subsets of the available trltining 
sentences of lengths up to 15 words long and the gram- 
mars were evaluated on the same set of test sentences of 
lengths shorter than 15 words. The size of the training 
set does not seem to ,affect the performimce of the parser. 

Training Size 350 1095 8000 
(sentences) 
Bracketing 89.37% 90.22% 89.86% 
Accuracy 
Sentence 52.38% 57.14% 55.95% 
Accuracy 

TABLE 3. Effect of the size of the training set on the 
bracketing and sentence accuracy. 

However if one includes all available sentences 
(34700 sentences), for the stone test set, the bracketing 
accuracy drops to 84% ,and the sentence accuracy to 
40%. 

We have also experimented with the following initial 
grmnmar which defines a large number of rules 
(I 10640): 

X i ~ X j X  k 

X i ~ t i 

In this grammar, each non-terminal symbol is uniquely 
,associated with a terminal symbol. We observed over- 
Ix,fining with this grmnmar ,and better statistic~d conver- 
gence was obtained, however the performance of the 
parser did not improve. 
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4 Reducing the Grammar Size and 
Smoothing Issues 

As grammars are being inferred at each iteration, the 
training algorithm was designed to guarantee that no 
parameter was set below some small threshold. This 
constraint is important for smoothing. It implies that no 
rule ever disappears at a reestimation step. 

However, once the final grammar is found, for practi- 
cal purposes, one can reduce the number of parameters 
being used. For example, the size of the grammar can be 
reduced by eliminating the rules whose probabilities are 
below some threshold or by keeping for each non-termi- 
nal only the top rules rewriting it. 

However, one runs into the risk of not being able to 
parse sentences given as input. We used the following 
smoothing heuristics. 

Lexieal rule smoothing. In the case no rule in the 
gnunmar introduces a terminal symbol found in the input 
string, we assigned a lexical rule (X i ~ tin) with very low 

• probability for all non-terminal symbols. This case will 
not happen if the training is representative of the lexical 
items. 

Syntactic rule smoothing. When the sentence is not 
recognized from the starting symbol, we considered ,all 
possible non-terminal symbols as starting symbols ,and 
considered as starting symbol the one that yields the 
most likely ,'malysis. Although this procedure may not 
guarantee that ,all sentences will be recognized, we found 
it is very useful in practice. 

When none of the above procedures enable parsing of 
the sentence, we used the entire set of parameters of the 
inferred gr ,~mar (this was never the case on the test 
sentences we considered). 

For example, the grammar whose performance is 
depicted in Table 2 defines 4095 parameters. However, 
the same performance is achieved on these test sets by 
using only 450 rules (the top 20 binary branching rules 
X i ~ XjXk for each non-terminal symbol ,and the top 10 
lexical rules X i ~ I m for each non-terminal symbol), 

5. Implementation 

Pereira and Schabes (1992) note that the training ,algo- 
rithm behaves in linear time (with respect to the sentence 
length) when the training material consists of fully 

bracketed sentences. By taking advantage of this fact, 
the experiments using a small number of initial rules and 
a small subset of the available training materials do not 
require a lot of computation time and can be performed 
on a single workstation. However, the experiments using 
larger initial grammars or using more material require 
more computation. 

The training algorithm can be parallelized by dividing 
the training corpus into fixed size blocks of sentences 
,and by having multiple workstations processing each 
one of them independently. When ,all blocks have been 
computed, the counts are merged and the parameters are 
reestimated. For this purpose, we used PVM (Beguelin 
et al., 1991) as a mechanism for message passing across 
workstations. 

. Stochastic Model of Labeling for 
Binary Branching Trees 

The stochastic grmnmars inferred by the training pro- 
cedures produce unlabeled parse trees. We are currently 
evaluating the following stochastic model for labeling a 
binary branching tree. In this approach, we make the 
simplifying assumption that the label of a node only 
depends on the labels of its children. Under this assump- 
tion, the probability of labeling a tree is the product of 
the probability of labeling each level in the tree. For 
example, the probability of the following labeling: 

S 

NP VP 

A m 
DT NN VBZ NNS 

is P(S ~ N P  VP) P(NP ~ D T N N )  P(VP ~ VBZ 
NNS) 

These probabilities can be estimated in a simple man- 
her given a tree bank. For example, the probability of 
labeling a level as NP ~ D T N N  is estimated as the num- 
ber of occurrences (in the tree bank) o f N P  ~ D T N N  
divided by the number of occurrences ofX =~ D T N N  
where X ranges over every label. 

Then the probability of a labeling can be computed 
bottom-up from leaves to root. Using dyn,'unic program- 
ruing on increasingly large subtrees, the labeling with 
the highest probability can be computed. 
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We are currently evzduating the effectiveness of this 
vnethod. 

7. Conclusion 

The experiments described in this paper prove the 
effectiveness of the inside-outside ~dgorithm on a htrge 
corpus, ,and also shed some light on the distribution of 
sentence structures found in natural languages. 

We reported gr~unmar inference experiments using the 
inside-outside algorithm on the parsed Wall Street Jour- 
md corpus. The experiments were made possible by 
turning the partially parsed training corpus into a fully 
bracketed corpus. 

Considering the fact that part-of-speech tags were the 
only source of lexical information actually used, surpris- 
ingly high bracketing accuracy is achieved (90.2% on 
sentences of length up to 15). We believe that even 
higher results can be achieved by using a richer set of 
part-of-speech tags. These results show that the use of 
simple distributions of constituency structures c~m pro- 
vide high accuracy perfonnance for broad coverage nat- 
und hmguage parsers. 
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Appendix Examples of parses 

The following parsed sentences are the most likely analyses output by the grammar inferred from 1042 training sen- 
tences (at iteration 68) for some randomly selected sentences of length not exceeding 10 words. Each parse is pre- 
ceded by the bracketing given in the Treebank. SeritenceS output by the parser are printed in bold face and crossing 
brackets are marked with an asterisk (*). 

(((The/DT Celtona/NP operations/NNS) would/MD (become/VB (part/NN (of/IN (those/DT ventures/NNS))))) .L) 
(((The/DT (Celtona/NP operations/NNS)) (would/MD (become/VB (part/NN (of/IN (those/DT ventures/ 
NNS))))))) i.) 

((But/CC then/RB they/PP (wake/VBP up/IN (tofI'O (a/I)T nightmare/NN)))) ./.) 
((But/CC (then/RB (they/PP (wake/VBP (up/IN (to/TO (a/DT nightmare/NN))))))) J.) 

(((Mr./NP Strieber/NP) (knows/VBZ (a/DT lot/NN (about/IN aliens/NNS)))) ./.) 
(((Mr./NP Strieber/NP) (knows/VBZ ((a/DT lot/NN) (about/IN aliens/NNS)))) ./.) 

(((The/DT companies/NNS) (are/VBP (automotive-emissions-testing/JJ concems/NNS))) ./.) 
(((The/DT companies/NNS) (are/VBP (automotive-emissions-testing/JJ concerns/NNS))) ./.) 

(((Chief/JJ executives/NNS and/CC presidents/NNS) had/VBD (come/VBN and/CC gone/VBN) ./.)) 
(((Chief/JJ (executives/NNS (and/CC presidents/NNS))) (had/VBD (come/VBN (and/CC gone/VBN)))) ./.) 

(((HowAVRB quickly/RB) (things/NNS ch,'mge/VBP) ./.)) 
((How/WRB (* quickly/RB (things/NNS change/VBP) *)) ,/.) 

((This/DT (means/VBZ ((the/DT returns/NNS) can/MD (vary/VB (a/DT great/JJ deal/NN))))) ./.) 
((This/DT (means/VBZ ((the/DT returns/NNS) (can/MD (vary/VB (a/DT (great/JJ deal/NN))))))) ./.) 

(((Flight/NN Attendants/NNS) (Lag/NN (Before/IN (Jets/NNS Even/RB Land/VBP))))) 
((* Flight/NN (* Attendants/NNS (* Lag/NN (* Before/IN Jets/NNS *) *) *) *) (Even/RB LantUVBP)) 

((They/PP (talked/VBD (of/IN (the/DT home/NN run/NN)))) ./.) 
((They/PP (talked/VBD (of/IN (the/DT (home/NN run/NN))))) J.) 

(((The/DT entire/JJ division/NN) (employs/VBZ (about/IN 850/CD workers/NNS))) ./.) 
(((The/DT (entire/JJ division/NN)) (employs/VBZ (about/IN (850/CD workers/NNS)))) ./.) 

(((At/IN least/JJS) (before/IN (8/CD p.m/RB)) ./.)) 
(((At/IN leasl/JJS) (before/IN (8/CD p.m/RB))) ./.) 

((Pretend/VB (Nothing/NN Happened/VBD))) 
((* Pretend/VB Nothing/NN *) Happened/VBD) 

(((The/DT highlight/N'N) :/: (a/DT "'/'" fragrance/NN control/NN system/NN ./. "/"))) 
((* (The/DT highlight/NN) (* :/: (a/DT (("/'" fragrance/NN) (control/NN system/NN))) *) *) (./. "/")) 

(((Stock/NP prices/NNS) (slipped/VBD lower/DR (in/IN (moderate/JJ trading/NN))) ./.)) 
(((Stock/NP prices/NNS) (slipped/VBD (lower/J JR (in/IN (moderate/JJ trading/NN))))) ./.) 

(((Some/DT jewelers/NNS) (have/VBP (Geiger/NP counters/NNS) (to/TO (measure/VB (top~tz/NN radiation/NN)))) 
./3) 
(((Some/DT jewelers/NNS) (have/VBP ((Geiger/NP counters/NNS) (to/TO (measure/VB (topaz/NN radiation/ 
NN)))))) ./.) 

((That/DT ('s/VBZ ( (the/DT only/JJ question/NN ) (we/PP (need/VBP (to/TO address/VB)))))) ./.) 
((That/DT ('s/VBZ ((the/DT (only/JJ question/NN)) (we/PP (need/VBP (to/TO address/VB)))))) ./.) 

((She/PP (was/VBD (as/RB (cool/JJ (as/IN (a/DT cucumber/NN)))))) ./.) 
((She/PP (was/VBD (as/RB (cool/JJ (as/IN (a/DT cucumber/NN)))))) ./.) 

(((The/DT index/NN) (gained/VBD (99.14/CD points/NNS) Monday/NP)) ./.) 
(((The/DT index/NN) (gained/VBD ((99.14/CD points/NNS) Monday/NP))) J.) 
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