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Abstract 
An extragrammatical sentence is what 
a normal parser fails to analyze. It is 
important to recover it using only syn- 
tactic information although results of 
recovery are better if semantic factors 
are considered. A general algorithm .for 
least-errors recognition, which is based 
only on syntactic information, was pro- 
posed by G. Lyon to deal with the ex- 
tragrammaticality. We extended this 
algorithm to recover extragrammatical 
sentence into grammatical one in run- 
ning text. Our robust parser with re- 
covery mechanism - extended general 
algorithm for least-errors recognition - 
can be easily scaled up and modified be- 
cause it utilize only syntactic informa- 
tion. To upgrade this robust parser we 
proposed heuristics through the analy- 
sis on the Penn treebank corpus. The 
experimental result shows 68% ,~ 77% 
accuracy in error recovery. 

1 I n t r o d u c t i o n  

ExtragrammaticM sentences include patently un- 
grammatical constructions as well as utterances 
that may be grammaticMly acceptable but are be- 
yond the syntactic coverage of a parser, and any 
other difficult ones that are encountered in parsing 
(Carbonell and Hayes, 1983). 

I am sure th is is wha t  he means. 
Th is  is, I am sure, wha t  he means. 

The progress of machine does not stop even a day. 
Not even a day does the progress of machine stop. 

Above examples show that people are used to 
write same meaningful sentences differently. In 
addition, people are prone to mistakes in writing 
sentences. So, the bulk of written sentences are 
open to the extragrammaticality. 

In the Penn treebank tree-tagged cor- 
pus(Marcus, 1991), for instance, about 80 per- 
cents of the rules are concerned with peculiar 

sentences which include inversive, elliptic, paren- 
thetic, or emphatic phrases. For example, we can 
drive a rule VP ---, vb N P  comma rb comma P P  
from the following sentence. 

( 
(S 

The same jealousy can breed confusion, 
however, in the absence of any authoriza- 
tion bill this year. 

(NP The/dr 
(ADJP ea~e / j j )  jealousy/nn)  can/md 

(VP breed/vb 
(NP confusion/nn) , / ,  however/rb , / ,  
(PP i n / i n  
(NP 

(NP the /d r  absence/nn) 
(PP orlon 
(NP anyldt auZhorization/nnbi11/nn)) 

(NP th i s /d t  yearlnn))))) 
./.) 

A robust parser is one that can analyze these 
extragrammaticalsentences without failure. How- 
ever, if we try to preserve robustness by adding 
such rules whenever we encounter an extra- 
grammatical sentence, the rulebase will grow up 
rapidly, and thus processing and maintaining the 
excessive number of rules will become inefficient 
and impractical. Therefore, extragrammatical 
sentences should be handled by some recovery 
mechanism(s) rather than by a set of additional 
rules. 

Many researchers have attempted several tech- 
niques to deal with extragrammatical sentences 
such as Augmented Transition Network(ATN) 
(Kwasny and Sondheimer, 1981), network-based 
semantic grammar (Hendrix, 1977), partial pat- 
tern matching (Hayes and Mouradian, 1981), con- 
ceptual case frame (Schank et al., 1980), and mul- 
tiple cooperating methods (Hayes and Carbonell, 
1981). Above mentioned techniques take into ac- 
count various semantic factors depending on spe- 
cific domains on question in recovering extragram- 
matical sentences. W]lereas they can provide even 
better solutions intrinsically, they are usually ad- 
hoc and are lack of extensibility. Therefore, it is 
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important  to recover extragrammatical  sentences 
using syntactic factors only, which are indepen- 
dent of any particular system and any particular 
domain. 

Mellish (Mellish, 1989) introduced some chart- 
based techniques using only syntactic information 
for extragrammatical  sentences. This technique 
has an advantage that  there is no repeating work 
for the chart to prevent the parser from generat- 
ing the same edge as the previously existed edge. 
Also, because the recovery process runs when a 
normal parser terminates unsuccessfully, the per- 
formance of the normal parser does not decrease in 
case of handling grammatical sentences. However, 
his experiment was not based on the errors in run- 
ning texts but  on artificial ones which were ran- 
domly generated by human. Moreover, only one 
word error was considered though several word er- 
rors can occur simultaneously in the running text.  

A general algorithm for least-errors recognition 
(Lyon, 1974), proposed by G. Lyon, is to find out 
the least number of errors necessary to success- 
ful parsing and recover them. Because this algo- 
r i thm is also syntactically oriented and baaed on 
a chart, it has the same advantzrge as that  of Mel- 
lish's parser. When the original parsing algorithm 
terminates unsuccessfully, the algorithm begins to 
assume errors of insertion, deletion and mutat ion 
of a word. For any input, including grammat-  
ical and extragrammatical  sentences, this algo- 
r i thm can generate the resultant parse tree. At 
the cost of the complete robustness, however, this 
algorithm degrades the efficiency of parsing, and 
generates many intermediate edges. 

In  this paper, we present a robust parser with 
a recovery mechanism. We extend the general al- 
gorithm for least-errors recognition to adopt it as 
the recovery mechanism in our robust parser. Be- 
cause our robust parser handle extragrammatical  
sentences with this syntactic information oriented 
recovery mechanism, it can be independent of a 
particular system or particular domain. Also, we 
present the heuristics to reduce the number of 
edges so that  we can upgrade the performance of 
our parser. 

This paper is organized as follows : We first 
review a general algorithm for least-errors recog- 
nition. Then we present the extension of this al- 
gorithm, and the heuristics adopted by the robust 
parser. Next, we describe the implementation of 
the system and the result of the experiment of 
parsing real sentences. Finally, we make conclu- 
sion with future direction. 

2 Algorithm and Heuristics 
2.1 G e n e r a l  a l g o r i t h m  fo r  l e a s t - e r r o r s  

r e c o g n i t i o n  

The general algorithm for least-errors recognition 
(Lyon, 1974), which is based on Earley's algo- 
ri thm, assumes that  sentences may have insertion, 

RULE : T ~ a 
INPUT : t ( i )  

l n u t a t i o n - e r r o r  °," . . . . . . . . . . . . .  "., 
';" ................ ". hypothesis .:' ". 

• perfec~ match : 
deletion-error ~ " ' ' ' , "  T --* u . O ! 
hypothe,is i : ' 

:~T --* a .  , 1 } insertion-error .'~T --*. a ,  1 i 
,, ..' h y p o t h e s i s  ", : 

"" . . . .  S( i )  . . . . . .  "" t ( i  ) ..... ~ ' ( i+1 )  - ' " "  

Figure 1: SCAN processing 

deletion, and mutat ion errors of terminal symbols. 
The objective of this algorithm is to parse input 
string with the least number of errors. 

A state used in this algorithm is quadruple (p, 
j, f, e J, where p is a production number in gram- 
mar, j marks a position in RHS(p), f i s  a start  po- 
sition of the state in input string, and e is an error 
value. 1 A final state (p, p_-I-1, f, e) denotes recog- 
nition of a phrase RHS(p) with e errors where _p is 
a number of components in rule p. A stateset S(i), 
where i is the position of the input, is an ordered 
set of states. States within a stateset are ordered 
by ascending value of 3", within a p within a f ; f 
takes descending value. 

When adding to statesets, ff state (p, j, f, e) 
is a candidate for admission to a stateset which 
already has a similar member (p, j, f,, e') and e' 
_~ e, then (p, j, f, e) is rejected. However, if e '  > 
e, then (p, j, f, e') is replaced by (p, j, f, e). 

The algorithm works as follows : A procedure 
SCAN is carried out for each state in S(i). SCAN 
checks various correspondences of input token t(i) 
against terminal symbols in RHS of rules. Once 
SCAN is done, C O M P L E T E R  substitutes all final 
states of S(i) into all other analyses which can use 
them as components. 
S C A N  
SCAN handles states of S(i), checking each in- 
put  terminal against requirements of states in S(i) 
and various error hypotheses. Figure 1 shows how 
SCAN processes. 

Let c(p,j) be j-th component of RHS(p) and t(i) 
be i-th word of input string. 

• perfect match : 
i f  c(p,j) = t(i) then add (p, j+l ,  f, e) to 
S(i+l)  if possible. 

• insertion-error hypothesis : 
Add (p, j, f ,  ¢ - / ' ce i , . , .e r .on)  to S(i-t-1) if  pos- 
sible. 
a~n,er~ion is the cost of an insertion-error for 
a terminal symbol. 

• d e l e t i o n - e r r o r  h y p o t h e s i s  : 

1 L y o n  s a i d  thzLt e is  a n  ezzor  c o u n t  
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I f  c(p,j) is terminal,  then add (p, j-l-l, .f, 
e+OtdeZe.~) to S(i) if possible. 
od~z~.., is the cost of  a deletion-error for a 
terminal  symbol.  

• mutation-error hypothesis : 
I f  c(p,j) is terminal  but  not equal to t(i), then 
add (p, j+ l, f, e+~,,,to,on) to S(i+ l)  if pos- 
sible. 
~muta,on is the cost of  a mutat ion-error  for 

S", [VP-> vb. NP PPI 

S' " [,.NP I [PP| 

• They ~ ~ t h e  r e p o ~  

s.[VP->vb NP PP] 

< Phrase Perfect Ma~:h > 

s"= IS-> NP. md VPI 

a terminal  symbol.2 ~ ~ !  _ 

C O M P L E T E R  ~ . . -  c ~  rles " IneludlngW(mt G@rmany ~mlq "havell hltrd lime,.. ~ .  
C O M P L E T E R  handles substi tution of final states " k . /  , 
in S(i) like that  of original Earley 's  algorithm. ,-[s->,P , ,  vP| 
Each final s tate means the recognition of a non- 
terminal.  • Ph.~ ,..=r~,~-,.r~ . yp~-= , .  

2.2 E x t e n s i o n  o f  l e a s t - e r r o r s  r e c o g n i t i o n  
a l g o r i t h m  

The algorithm in section 2.1 can analyze any in- 
put  string with the least number  of errors. But 
this algorithm can handle only the errors of  termi- 
nal symbols because it doesn' t  consider the errors 
of nonterminal  nodes. In the real text, however, 
the insertion, deletion, or inversion of a phrase 
- namely, nonterminal  node - occurs more fre- 
quently. So, we extend the original algorithm in" 
order to handle the errors of nonterminal symbols 
as well. 

In our extended algorithm, the same SCAN as 
that  of  the original algorithm is used, while COM- 
P L E T E R  is modified and extended. Figure 2 
shows the processing of ex tended-COMPLETER.  
In figure 2, [NP] denotes the final s tate whose rule 
has NP  as its LHS. In other words, it means the 
recognition of a noun phrase. 
e x t e n d e d - C O M P L E T E R  
If  there is a final s tate  s '  = (p',p~ + 1, k, e ')  in 
S(i),  

• phrase perfect match 
I f  there exists a state s" = (p, j ,  x, e) in S(k) 
, t < i a n d  j )  = L /S(f) t h e n  a d d  s = 
(p, j + 1, z, e + e ')  into S(i). 

• phrase insertion-error hypothesis a 
I f  there exists a state s" = (p, j ,  z, e) in S(k) 
then add s = (p , j , z , e+/~ , , , r ,o , )  into S(i) 
if  possible. 
/Yinaertion is the cost of  a insertion-error for a 
nonterminal  symbol.  

2ain.ertion, Otdeletion , Ofmutation lEES st|] strictly 1 in  
Lyon ' s  o r i ~ - ~ l  p ~ p e r  

~In fact, there axe cases that an inserted phrase 
cannot be constructed to form a nonterminal node. In 
phrase insertion-error hypothesis of figure 2, the orig- 
inal sentence is ~Other countries, including West Ger- 
many, m~y hgve . . . ' ,  where the inserted phrase VP 
is surrounded by commas. So, the substring( c o m m a  

V~ comma ) should be dealt with as a constituent 
in extended-COMPLETER. In fact, we implemented 
the algorithm to allow substring insertions ~, well as 
insertions of nontermlnal nodes. 

S"- IS-> NP. VP PP] 
~ s e e m ,  r n s d ~  [VP' [PP] / ~  S' - ,PP ] 

.and 

s= [S-> NP VP.PP| 

< Phrm¢ I~eaon-error Ilypoe,cds > 

Figure 2: Examples  of ex tended-COMPLETER 
processing 

• phrase deletion-error hypothesis 
I f  there exists a s tate  s" = (p, j ,  z, e) in S(k) 
and e(p,j) is a nonterminal  then add s : 
(p ,  j "~- 1, Z,  e "]'t~dele|ion) into S(k) if possible. 
~dele ,~  is the cost of a deletion-error for a 
nonterminal  symbol.  

• phrase mutation-error hypothesis 4 
I f  there ~ t s  a s tate  8" = (V, J, x, e) in S(k) 
and c(p, j) is a nonterminal  but  not equal to 
L(p ' )  then add s = (p, j + 1, z,  e + ~me*a.o.)  
into S(i) if possible. 
~m.ta.o. is the cost of  a mutat ion-error  for 
a nonterminM symbol.  

The  extended least-errors recognition algori thm 
can handle not only terminal  errors but  also non- 
terminal errors. 

2.3 H e u r i s t i c s  

The robust pa~ser using the extended least-errors 
recognition algorithm overgenerates m a n y  error- 
hypothesis edges during parsing process. To cope 
with this problem, we adjust error values accord- 
ing to the following heuristics. Edges with more 
error values are regarded as less impor tan t  ones, 
so that  those edges are processed later than  those 
of less error values. 

tWe know that the phrase mutation-error hypothe- 
sis is not meaningful in the red text because we cannot 
find out any example of phrase mutation-error in the 
corpus. So we didn't implement the phrase mutation- 
error hypothesis. 

225 



• H e u r i s t i c s  1: e r r o r  t y p e s  
The analysis on 3,538 sentences of the Penn 
treebank corpus WS:I shows tha t  there are 
498 sentences with phrase deletions and 224 
sentences with phrase insertions. So, we 
assign less error value to the deletion-error 
hypothesis edge than to the insertion- and 
mutation-errors.  

a < ~  

~deletion <= Oeinsertion ~ ~muta t ion  
~deletion ~ ~insergiort 

where ~ is the error cost of a terminal  sym- 
bol,/~ is the error cost of a nonterminal  sym- 
bol. 

• H e u r i s t i c s  2: f i duc i a l  n o n t e r m i n a l  
People often make mistakes in writing En- 
glish. These mistakes usually take place 
rather between small constituents such as 
a verbal phrase, an adverbial phrase and 
noun phrase than within small  constituents 
themselves. The possibility of error occur- 
rence within noun phrases are lower than  be- 
tween a noun phrase and a verbal phrase, 
a preposition phrase, an adverbial phrase. 
So, we assume some phrases, for example 
noun phrases, as fiducial nonterminals,  which 
means error-free nonterminals.  When han- 
dling sentences, the robust parser assings 
more error values(61) to the error hypothesis 
edge occurring within a fiducial nonterminal.  

• H e u r i s t i c s  3: k i n d s  o f  t e r m i n a l  s y m b o l s  
Some terminal  symbols like punctuat ion 
symbols,  conjunctions and particles are of- 
ten misused. So, the robust parser assigns 
less error values(-52)  to the error hypothesis 
edges with these symbols than  to the other 
terminal  symbols. 

• H e u r i s t i c s  4 :  i n s e r t e d  p h r a s e s  b e t w e e n  
c o m m a s  o r  p a r e n t h e s e s  
Most of inserted phrases are surrounded by 
commas  or parentheses. For example,  

a. They're active , g e n e r a l l y  , at night or on 
damp, cloudy days. 

b. All refrigerators , whether they are defrosted 
manually or n o t ,  need to be cleaned. 

c .  I was a last-minute ( read in tedop in9  ) at- 
tendee at a French journalism convention .-. 

We will assign less error values(-6a)  to the 
insertion-error hypothesis edges of nontermi- 
nals which are embraced by comma  or paren- 
thesis. 

61 and 62 are weights for the error of terminal  
nodes, and 68 is a weight for the error of nonter- 
minal  nodes. 

The  error value e of an edge is calculated as 
follows. All error values are additive. 
The  error value e for a rule X ~ a l A l a 2 . . ,  a~Aj, 
where a is a terminal  node and A is a nonterminal  
node, is 

1. e =  eT + 

e + 61 - 62 if terminal  error 
2. eT : 0 otherwise 

{ /~ - 6s -t- ech,d if nonterminal  
3. e N T  - - "  error 

echild otherwise 

where a E {ain..r:ion, adele.on, amutation}, fl E 
{/~in.er.o.,/~&/etion} and ech.d is an error value 
of a child edge. 

By these heuristics, our robust  parser can pro- 
cess only plausible edges first, ins te~i  of process- 
ing all generated edges at the same time, so tha t  
we can enhance the performance of the robust  
parser and result in the great  reduction in the 
number  of resultant trees. 

3 I m p l e m e n t a t i o n  a n d  E v a l u a t i o n  

3.1 T h e  r o b u s t  p a r s e r  

Our robust parsing system is composed of two 
modules. One module is a normal  parser which 
is the bo t tom-up  chart parser. The  other is a 
robust parser with the error recovery mechanism 
proposed herein. At first, an input sentence is 
processed by the normal  parser. I f  the sentence 
is within the g rammat ica l  coverage of the system, 
the normal  parser succeed to analyze it. Other-  
wise, the normal  parser fails, and then the robust  
parser s tarts  to execute with edges generated by 
the normal  parser. The  result of the robust  parser 
is the parse trees which are within the g rammat -  
ical coverage of the system. The  overview of the 
system is shown in figure 3. 

. ,  t ! , , . . o , ,  

Figure 3: The  overview of the system 

3.2 E x p e r i m e n t a l  r e s u l t  

To show usefulness of the robust  parser proposed 
in this paper,  we made  some experiments.  

• Rule  
We can derive 4,958 rules and their frequen- 
cies out of 14,137 sentences in the Penn 
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Table 1: The results of the robust parser on WSJ 
Experiment 1 : WSJ 410 sentences 

with Heuristics without Heuristics 

Average sentence length 
Average processing time 
Average number of edges 
Accuracy (%) 
no-crossing sentences 
% of < 1-crossing sentences 
% of < 2-crossing sentences 

16.27 words (2-25 words) 
6.52 sec 
7726.03 
77.1 
23.28% 
40.52% 
55.17% 

16.27 words (2-25 words) 
22.47 sec 
10346.6 
72.8 
20.28% 
37.14% 
48.57% 

treebank tree-tagged corpus, the Wall Street 
Journal. The average frequency of each rule 
is 48 times in the corpus. Of these rules, we 
remove rules which occurs fewer times than 
the average frequency in the corpus, and then 
only 192 rules are left. These removed rules 
are almost for peculiar sentences and the left 
rules are very general rules. We can show 
that  our robust parser can compensate for 
lack of rules using only 192 rules with the 
recovery mechanism and heuristics. 

• Test  set  
First, 1,000 sentences are selected randomly 
from the WSJ corpus, which we have referred 
to in proposing the robust parser. Of these 
sentences, 410 are failed in normal parsing, 
and are processed again by the robust parser. 
To show the validity of these heuristics, we 
compare the result of the robust parser us- 
ing heuristics with one not using heuristics. 
Second, to show the adaptability of our ro- 
bust parser, same experiments are carried 
out on 1,000 sentences from the ATIS cor- 
pus in Penn treebank, which we haven't  re- 
ferred to when we propose the robust parser. 
Among 1,000 sentences from the ATIS, 465 
sentences are processed by the robust parser 
after the failure of the normal parsing. 

• Parame te r  ad jus tment  
We chose the best parameters of heuristics 
by executing several experiments. 

c~ in0er t i~  : 1 0 . 2  fii,~,e~t~on : 15 .0  
Ctd~:~,io, : 10.4 ~a ,~ , t~  : 20.0 
otmuto.~ : 10.8 
61 : 0.01 62 : 5.0 
~3 : 1.0 

Accuracy is measured as the percentage of con- 
stituents in the test sentences which do not cross 
any Penn treebank constituents (Black, 1991). 
Table 1 shows the results of the robust parser 
on WSJ. In table 1, 5th, 6th and 7th raw mean 
that  the percentage of sentences which have no 
crossing constituents, less than one crossing and 
less than two crossing respectively. With heuris- 

tics, our robust parser can enhance the processing 
time and reduce the number of edges. Also, the 
accuracy is improved from 72.8% to 77.1% even if 
the heuristics differentiate edges and prefer some 
edges. It shows that  the proposed heuristics is 
valid in parsing the real sentences. The experi- 
ment says that  our robust parser with heuristics 
can recover perfectly about 23 sentences out of 100 
sentences which axe just  failed in normal parsing, 
as the percentage of no-crossing sentences is about  
23.28%. 

Table 2 is the results of the robust parser on 
ATIS which we did not refer to before. The accu- 
racy of the result on ATIS is lower than WSJ be- 
cause the parameters of the heuristics are a~justed 
not by ATIS itself but  by WSJ. However, the 
percentage of sentences with constituents crossing 
less than 2 is higher than the WSJ, as sentences 
of ATIS are more or less simple. 

The experimental results of our robust parser 
show high accuracy in recovery even though 96% 
of total rules are removed. It  is impossible to con- 
struct complete grammar rules in the real parsing 
system to succeed in analyzing every real sentence. 
So, parsing systems are likely to have extragram- 
matical sentences which cannot be analyzed by 
the systems. Our robust parser can recover these 
extragrammatical sentences with 68 ~ 77% accu- 
racy. 

It is very interesting that  parameters of heuris- 
tics reflect the characteristics of the test corpus. 
For example, if people tend to write sentences with 
inserted phrases, then the parameter  fli,~sert~on 
must increase. Therefore we can get better  results 
if the parameter are fitted to the characteristics of 
the corpus. 

4 Conclusion 

In this paper, we have presented the robust parser 
with the extended least-errors recognition algo- 
r i thm as the recovery mechanism. This robust 
parser can easily be scaled up and applied to var- 
ious domains because this parser depends only on 
syntactic factors. To enhance the performance of 
the robust parser for extragrainmatical sentences, 
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Table 2: The results of the robust parser on ATIS 
Experiment 2 : ATIS 465 sentences 

Average sentence length 
Average processing time 
Average number of edges 
Accuracy (%) 
no-crossing sentences 
% of _< 1-crossing sentences 
% of <_ 2-crossing sentences 

with Heuristics without Heuristics 

10.55 words (2-25 words) 
8.68 sec 
12974.2 
68.5 
26.02% 
47.10% 
66.24% 

10.55 words (2-25 words) 
71.98 sec 
25652.5 
59.4 
13.28% 
36.06% 
52.46% 

we proposed several heuristics. The heuristics as- 
sign the error values to each error-hypothesis edge, 
and edges which has less error values axe processed 
first. So, not all the generated edges are processed 
by the robust parser, but the most plausible parse 
trees can be generated first. The accuracy of the 
recovery in our robust parser is about 68% ,,~ 77~. 
Hence, this parser is suitable for systems in real 
application areas. 

Our short term goal is to propose an automatic 
method that can learn parameter values of heuris- 
tics by analyzing the corpus. We expect that au- 
tomatically leaxned values of parameters can up- 
grade the performance of the parser. 

Acknowledgement 
This work was supported(in part) by Korea 
Science and Engineering Foundation(KOSEF) 
through Center for Artificial Intelligence Ke- 
search(CAIR), the Engineering Research Cen- 
ter(EKC) of Excellence Program. 

References 
[Black, 1991] E. Black e t a l .  A Procedure for 

quantitatively comparing the syntactic cover- 
age of English grammars. Proceedings of Fourth 
DARPA Speech and Natural Language Work- 
shop, pp. 306-311, 1991. 

[Carbonell and Hayes, 1983] J. G. Carbonell and 
P. :I. Hayes. Recovery Strategies for Parsing 
Extragrsmmatical Language. American Jour- 
nal of Computational Linguistics, vol. 9, no. 3- 
4, pp. 123-146, 1983. 

[Hayes and C~rbonell, 1981] P. Hayes and J. Car- 
bonell. Multi-strategy Construction-Specific 
Parsing for Flexible Data Base Query Update. 
Proceedings of the 7th International Joint Con- 
ference on Artificial Intelligence, pp. 432-439, 
1981. 

[Hayes and Mouradian, 1981] P. J. Hayes and 
G. V. Mouradian. Flexible Parsing. American 
Journal of Computational Linguistics, vol. 7, 
no. 4, pp. 232-242, 1981. 

[Hendrix, 1977] G. Hendrix. Human Engineer- 
ing for Applied Natural Language Processing. 
Proceedings of the 5th International Joint Con- 
ference on Artificial Intelligence, pp. 183-191, 
1977. 

[Kwasny and Sondheimer, 1981] S. Kwasny 
and N. Sondheimer. Relaxation Techniques 
for Parsing Grammatically Ill-Formed Input 
in Natural Language Understanding Systems. 
American Journal of Computational Linguis- 
tics, vol. 7, no. 2, pp. 99-108, 1981. 

[Lyon, 1974] G. Lyon. Syntax-Directed Least- 
Errors Analysis for Context-Free Languages. 
Communications of the ACM, vol. 17, no. 1, 
pp. 3-14, 1974. 

[Marcus, 1991] M. P. Marcus. Building very Large 
natural language corpora : the Penn Treebank, 
1991. 

[Mellish, 1989] C. S. Mellish. Some Chart-Based 
Techniques for Parsing Ill-Formed Input. Asso- 
ciation for Computational Linguistics, pp. 102- 
109, 1989. 

[Schank etal . ,  1980] R. C. Schank, M. Lebowitz 
and L. Brinbaum. An Intergrated Under- 
stander. American ?ournal of Computational 
Linguistics, vol. 6, no. 1, pp. 13-30, 1980. 

228 


