
A R o b u s t Parser Based on Syntac t i c In format ion

Kong Joo Lee Cheol Jung Kweon Jungyun Seo Gil Chang Kim
Department of Computer Scinence and CAIR

Korea Advanced Institute of Science and Technology
Taejon, Korea 305-701

{kjlee,cjkwn}@csone.kaist.ac.kr

Abstract
An extragrammatical sentence is what
a normal parser fails to analyze. It is
important to recover it using only syn-
tactic information although results of
recovery are better if semantic factors
are considered. A general algorithm .for
least-errors recognition, which is based
only on syntactic information, was pro-
posed by G. Lyon to deal with the ex-
tragrammaticality. We extended this
algorithm to recover extragrammatical
sentence into grammatical one in run-
ning text. Our robust parser with re-
covery mechanism - extended general
algorithm for least-errors recognition -
can be easily scaled up and modified be-
cause it utilize only syntactic informa-
tion. To upgrade this robust parser we
proposed heuristics through the analy-
sis on the Penn treebank corpus. The
experimental result shows 68% ,~ 77%
accuracy in error recovery.

1 I n t r o d u c t i o n

ExtragrammaticM sentences include patently un-
grammatical constructions as well as utterances
that may be grammaticMly acceptable but are be-
yond the syntactic coverage of a parser, and any
other difficult ones that are encountered in parsing
(Carbonell and Hayes, 1983).

I am sure th is is wha t he means.
Th is is, I am sure, wha t he means.

The progress of machine does not stop even a day.
Not even a day does the progress of machine stop.

Above examples show that people are used to
write same meaningful sentences differently. In
addition, people are prone to mistakes in writing
sentences. So, the bulk of written sentences are
open to the extragrammaticality.

In the Penn treebank tree-tagged cor-
pus(Marcus, 1991), for instance, about 80 per-
cents of the rules are concerned with peculiar

sentences which include inversive, elliptic, paren-
thetic, or emphatic phrases. For example, we can
drive a rule VP ---, vb N P comma rb comma P P
from the following sentence.

(
(S

The same jealousy can breed confusion,
however, in the absence of any authoriza-
tion bill this year.

(NP The/dr
(ADJP ea~e / j j) jealousy/nn) can/md

(VP breed/vb
(NP confusion/nn) , / , however/rb , / ,
(PP i n / i n
(NP

(NP the /d r absence/nn)
(PP orlon
(NP anyldt auZhorization/nnbi11/nn))

(NP th i s /d t yearlnn)))))
./.)

A robust parser is one that can analyze these
extragrammaticalsentences without failure. How-
ever, if we try to preserve robustness by adding
such rules whenever we encounter an extra-
grammatical sentence, the rulebase will grow up
rapidly, and thus processing and maintaining the
excessive number of rules will become inefficient
and impractical. Therefore, extragrammatical
sentences should be handled by some recovery
mechanism(s) rather than by a set of additional
rules.

Many researchers have attempted several tech-
niques to deal with extragrammatical sentences
such as Augmented Transition Network(ATN)
(Kwasny and Sondheimer, 1981), network-based
semantic grammar (Hendrix, 1977), partial pat-
tern matching (Hayes and Mouradian, 1981), con-
ceptual case frame (Schank et al., 1980), and mul-
tiple cooperating methods (Hayes and Carbonell,
1981). Above mentioned techniques take into ac-
count various semantic factors depending on spe-
cific domains on question in recovering extragram-
matical sentences. W]lereas they can provide even
better solutions intrinsically, they are usually ad-
hoc and are lack of extensibility. Therefore, it is

223

important to recover extragrammatical sentences
using syntactic factors only, which are indepen-
dent of any particular system and any particular
domain.

Mellish (Mellish, 1989) introduced some chart-
based techniques using only syntactic information
for extragrammatical sentences. This technique
has an advantage that there is no repeating work
for the chart to prevent the parser from generat-
ing the same edge as the previously existed edge.
Also, because the recovery process runs when a
normal parser terminates unsuccessfully, the per-
formance of the normal parser does not decrease in
case of handling grammatical sentences. However,
his experiment was not based on the errors in run-
ning texts but on artificial ones which were ran-
domly generated by human. Moreover, only one
word error was considered though several word er-
rors can occur simultaneously in the running text.

A general algorithm for least-errors recognition
(Lyon, 1974), proposed by G. Lyon, is to find out
the least number of errors necessary to success-
ful parsing and recover them. Because this algo-
r i thm is also syntactically oriented and baaed on
a chart, it has the same advantzrge as that of Mel-
lish's parser. When the original parsing algorithm
terminates unsuccessfully, the algorithm begins to
assume errors of insertion, deletion and mutat ion
of a word. For any input, including grammat-
ical and extragrammatical sentences, this algo-
r i thm can generate the resultant parse tree. At
the cost of the complete robustness, however, this
algorithm degrades the efficiency of parsing, and
generates many intermediate edges.

In this paper, we present a robust parser with
a recovery mechanism. We extend the general al-
gorithm for least-errors recognition to adopt it as
the recovery mechanism in our robust parser. Be-
cause our robust parser handle extragrammatical
sentences with this syntactic information oriented
recovery mechanism, it can be independent of a
particular system or particular domain. Also, we
present the heuristics to reduce the number of
edges so that we can upgrade the performance of
our parser.

This paper is organized as follows : We first
review a general algorithm for least-errors recog-
nition. Then we present the extension of this al-
gorithm, and the heuristics adopted by the robust
parser. Next, we describe the implementation of
the system and the result of the experiment of
parsing real sentences. Finally, we make conclu-
sion with future direction.

2 Algorithm and Heuristics
2.1 G e n e r a l a l g o r i t h m fo r l e a s t - e r r o r s

r e c o g n i t i o n

The general algorithm for least-errors recognition
(Lyon, 1974), which is based on Earley's algo-
ri thm, assumes that sentences may have insertion,

RULE : T ~ a
INPUT : t (i)

l n u t a t i o n - e r r o r °," ".,
';" ". hypothesis .:' ".

• perfec~ match :
deletion-error ~ " ' ' ' , " T --* u . O !
hypothe,is i : '

:~T --* a . , 1 } insertion-error .'~T --*. a , 1 i
,, ..' h y p o t h e s i s ", :

"" S(i) "" t (i) ~ ' (i+1) - ' " "

Figure 1: SCAN processing

deletion, and mutat ion errors of terminal symbols.
The objective of this algorithm is to parse input
string with the least number of errors.

A state used in this algorithm is quadruple (p,
j, f, e J, where p is a production number in gram-
mar, j marks a position in RHS(p), f i s a start po-
sition of the state in input string, and e is an error
value. 1 A final state (p, p_-I-1, f, e) denotes recog-
nition of a phrase RHS(p) with e errors where _p is
a number of components in rule p. A stateset S(i),
where i is the position of the input, is an ordered
set of states. States within a stateset are ordered
by ascending value of 3", within a p within a f ; f
takes descending value.

When adding to statesets, ff state (p, j, f, e)
is a candidate for admission to a stateset which
already has a similar member (p, j, f,, e') and e'
_~ e, then (p, j, f, e) is rejected. However, if e ' >
e, then (p, j, f, e') is replaced by (p, j, f, e).

The algorithm works as follows : A procedure
SCAN is carried out for each state in S(i). SCAN
checks various correspondences of input token t(i)
against terminal symbols in RHS of rules. Once
SCAN is done, C O M P L E T E R substitutes all final
states of S(i) into all other analyses which can use
them as components.
S C A N
SCAN handles states of S(i), checking each in-
put terminal against requirements of states in S(i)
and various error hypotheses. Figure 1 shows how
SCAN processes.

Let c(p,j) be j-th component of RHS(p) and t(i)
be i-th word of input string.

• perfect match :
i f c(p,j) = t(i) then add (p, j+l , f, e) to
S(i+l) if possible.

• insertion-error hypothesis :
Add (p, j, f , ¢ - / ' ce i , . , .e r .on) to S(i-t-1) if pos-
sible.
a~n,er~ion is the cost of an insertion-error for
a terminal symbol.

• d e l e t i o n - e r r o r h y p o t h e s i s :

1 L y o n s a i d thzLt e is a n ezzor c o u n t

2 2 4

I f c(p,j) is terminal, then add (p, j-l-l, .f,
e+OtdeZe.~) to S(i) if possible.
od~z~.., is the cost of a deletion-error for a
terminal symbol.

• mutation-error hypothesis :
I f c(p,j) is terminal but not equal to t(i), then
add (p, j+ l, f, e+~,,,to,on) to S(i+ l) if pos-
sible.
~muta,on is the cost of a mutat ion-error for

S", [VP-> vb. NP PPI

S' " [,.NP I [PP|

• They ~ ~ t h e r e p o ~

s.[VP->vb NP PP]

< Phrase Perfect Ma~:h >

s"= IS-> NP. md VPI

a terminal symbol.2 ~ ~ ! _

C O M P L E T E R ~ . . - c ~ rles " IneludlngW(mt G@rmany ~mlq "havell hltrd lime,.. ~ .
C O M P L E T E R handles substi tution of final states " k . / ,
in S(i) like that of original Earley 's algorithm. ,-[s->,P , , vP|
Each final s tate means the recognition of a non-
terminal. • Ph.~ ,..=r~,~-,.r~ . yp~-= , .

2.2 E x t e n s i o n o f l e a s t - e r r o r s r e c o g n i t i o n
a l g o r i t h m

The algorithm in section 2.1 can analyze any in-
put string with the least number of errors. But
this algorithm can handle only the errors of termi-
nal symbols because it doesn' t consider the errors
of nonterminal nodes. In the real text, however,
the insertion, deletion, or inversion of a phrase
- namely, nonterminal node - occurs more fre-
quently. So, we extend the original algorithm in"
order to handle the errors of nonterminal symbols
as well.

In our extended algorithm, the same SCAN as
that of the original algorithm is used, while COM-
P L E T E R is modified and extended. Figure 2
shows the processing of ex tended-COMPLETER.
In figure 2, [NP] denotes the final s tate whose rule
has NP as its LHS. In other words, it means the
recognition of a noun phrase.
e x t e n d e d - C O M P L E T E R
If there is a final s tate s ' = (p',p~ + 1, k, e ') in
S(i),

• phrase perfect match
I f there exists a state s" = (p, j , x, e) in S(k)
, t < i a n d j) = L /S(f) t h e n a d d s =
(p, j + 1, z, e + e ') into S(i).

• phrase insertion-error hypothesis a
I f there exists a state s" = (p, j , z, e) in S(k)
then add s = (p , j , z , e+/~ , , , r ,o ,) into S(i)
if possible.
/Yinaertion is the cost of a insertion-error for a
nonterminal symbol.

2ain.ertion, Otdeletion , Ofmutation lEES st|] strictly 1 in
Lyon ' s o r i ~ - ~ l p ~ p e r

~In fact, there axe cases that an inserted phrase
cannot be constructed to form a nonterminal node. In
phrase insertion-error hypothesis of figure 2, the orig-
inal sentence is ~Other countries, including West Ger-
many, m~y hgve . . . ' , where the inserted phrase VP
is surrounded by commas. So, the substring(c o m m a

V~ comma) should be dealt with as a constituent
in extended-COMPLETER. In fact, we implemented
the algorithm to allow substring insertions ~, well as
insertions of nontermlnal nodes.

S"- IS-> NP. VP PP]
~ s e e m , r n s d ~ [VP' [PP] / ~ S' - ,PP]

.and

s= [S-> NP VP.PP|

< Phrm¢ I~eaon-error Ilypoe,cds >

Figure 2: Examples of ex tended-COMPLETER
processing

• phrase deletion-error hypothesis
I f there exists a s tate s" = (p, j , z, e) in S(k)
and e(p,j) is a nonterminal then add s :
(p , j "~- 1, Z, e "]'t~dele|ion) into S(k) if possible.
~dele ,~ is the cost of a deletion-error for a
nonterminal symbol.

• phrase mutation-error hypothesis 4
I f there ~ t s a s tate 8" = (V, J, x, e) in S(k)
and c(p, j) is a nonterminal but not equal to
L(p ') then add s = (p, j + 1, z, e + ~me*a.o.)
into S(i) if possible.
~m.ta.o. is the cost of a mutat ion-error for
a nonterminM symbol.

The extended least-errors recognition algori thm
can handle not only terminal errors but also non-
terminal errors.

2.3 H e u r i s t i c s

The robust pa~ser using the extended least-errors
recognition algorithm overgenerates m a n y error-
hypothesis edges during parsing process. To cope
with this problem, we adjust error values accord-
ing to the following heuristics. Edges with more
error values are regarded as less impor tan t ones,
so that those edges are processed later than those
of less error values.

tWe know that the phrase mutation-error hypothe-
sis is not meaningful in the red text because we cannot
find out any example of phrase mutation-error in the
corpus. So we didn't implement the phrase mutation-
error hypothesis.

225

• H e u r i s t i c s 1: e r r o r t y p e s
The analysis on 3,538 sentences of the Penn
treebank corpus WS:I shows tha t there are
498 sentences with phrase deletions and 224
sentences with phrase insertions. So, we
assign less error value to the deletion-error
hypothesis edge than to the insertion- and
mutation-errors.

a < ~

~deletion <= Oeinsertion ~ ~muta t ion
~deletion ~ ~insergiort

where ~ is the error cost of a terminal sym-
bol,/~ is the error cost of a nonterminal sym-
bol.

• H e u r i s t i c s 2: f i duc i a l n o n t e r m i n a l
People often make mistakes in writing En-
glish. These mistakes usually take place
rather between small constituents such as
a verbal phrase, an adverbial phrase and
noun phrase than within small constituents
themselves. The possibility of error occur-
rence within noun phrases are lower than be-
tween a noun phrase and a verbal phrase,
a preposition phrase, an adverbial phrase.
So, we assume some phrases, for example
noun phrases, as fiducial nonterminals, which
means error-free nonterminals. When han-
dling sentences, the robust parser assings
more error values(61) to the error hypothesis
edge occurring within a fiducial nonterminal.

• H e u r i s t i c s 3: k i n d s o f t e r m i n a l s y m b o l s
Some terminal symbols like punctuat ion
symbols, conjunctions and particles are of-
ten misused. So, the robust parser assigns
less error values(-52) to the error hypothesis
edges with these symbols than to the other
terminal symbols.

• H e u r i s t i c s 4 : i n s e r t e d p h r a s e s b e t w e e n
c o m m a s o r p a r e n t h e s e s
Most of inserted phrases are surrounded by
commas or parentheses. For example,

a. They're active , g e n e r a l l y , at night or on
damp, cloudy days.

b. All refrigerators , whether they are defrosted
manually or n o t , need to be cleaned.

c . I was a last-minute (read in tedop in9) at-
tendee at a French journalism convention .-.

We will assign less error values(-6a) to the
insertion-error hypothesis edges of nontermi-
nals which are embraced by comma or paren-
thesis.

61 and 62 are weights for the error of terminal
nodes, and 68 is a weight for the error of nonter-
minal nodes.

The error value e of an edge is calculated as
follows. All error values are additive.
The error value e for a rule X ~ a l A l a 2 . . , a~Aj,
where a is a terminal node and A is a nonterminal
node, is

1. e = eT +

e + 61 - 62 if terminal error
2. eT : 0 otherwise

{ /~ - 6s -t- ech,d if nonterminal
3. e N T - - " error

echild otherwise

where a E {ain..r:ion, adele.on, amutation}, fl E
{/~in.er.o.,/~&/etion} and ech.d is an error value
of a child edge.

By these heuristics, our robust parser can pro-
cess only plausible edges first, ins te~i of process-
ing all generated edges at the same time, so tha t
we can enhance the performance of the robust
parser and result in the great reduction in the
number of resultant trees.

3 I m p l e m e n t a t i o n a n d E v a l u a t i o n

3.1 T h e r o b u s t p a r s e r

Our robust parsing system is composed of two
modules. One module is a normal parser which
is the bo t tom-up chart parser. The other is a
robust parser with the error recovery mechanism
proposed herein. At first, an input sentence is
processed by the normal parser. I f the sentence
is within the g rammat ica l coverage of the system,
the normal parser succeed to analyze it. Other-
wise, the normal parser fails, and then the robust
parser s tarts to execute with edges generated by
the normal parser. The result of the robust parser
is the parse trees which are within the g rammat -
ical coverage of the system. The overview of the
system is shown in figure 3.

. , t ! , , . . o , ,

Figure 3: The overview of the system

3.2 E x p e r i m e n t a l r e s u l t

To show usefulness of the robust parser proposed
in this paper, we made some experiments.

• Rule
We can derive 4,958 rules and their frequen-
cies out of 14,137 sentences in the Penn

2 2 6

Table 1: The results of the robust parser on WSJ
Experiment 1 : WSJ 410 sentences

with Heuristics without Heuristics

Average sentence length
Average processing time
Average number of edges
Accuracy (%)
no-crossing sentences
% of < 1-crossing sentences
% of < 2-crossing sentences

16.27 words (2-25 words)
6.52 sec
7726.03
77.1
23.28%
40.52%
55.17%

16.27 words (2-25 words)
22.47 sec
10346.6
72.8
20.28%
37.14%
48.57%

treebank tree-tagged corpus, the Wall Street
Journal. The average frequency of each rule
is 48 times in the corpus. Of these rules, we
remove rules which occurs fewer times than
the average frequency in the corpus, and then
only 192 rules are left. These removed rules
are almost for peculiar sentences and the left
rules are very general rules. We can show
that our robust parser can compensate for
lack of rules using only 192 rules with the
recovery mechanism and heuristics.

• Test set
First, 1,000 sentences are selected randomly
from the WSJ corpus, which we have referred
to in proposing the robust parser. Of these
sentences, 410 are failed in normal parsing,
and are processed again by the robust parser.
To show the validity of these heuristics, we
compare the result of the robust parser us-
ing heuristics with one not using heuristics.
Second, to show the adaptability of our ro-
bust parser, same experiments are carried
out on 1,000 sentences from the ATIS cor-
pus in Penn treebank, which we haven't re-
ferred to when we propose the robust parser.
Among 1,000 sentences from the ATIS, 465
sentences are processed by the robust parser
after the failure of the normal parsing.

• Parame te r ad jus tment
We chose the best parameters of heuristics
by executing several experiments.

c~ in0er t i~ : 1 0 . 2 fii,~,e~t~on : 15 .0
Ctd~:~,io, : 10.4 ~a ,~ , t~ : 20.0
otmuto.~ : 10.8
61 : 0.01 62 : 5.0
~3 : 1.0

Accuracy is measured as the percentage of con-
stituents in the test sentences which do not cross
any Penn treebank constituents (Black, 1991).
Table 1 shows the results of the robust parser
on WSJ. In table 1, 5th, 6th and 7th raw mean
that the percentage of sentences which have no
crossing constituents, less than one crossing and
less than two crossing respectively. With heuris-

tics, our robust parser can enhance the processing
time and reduce the number of edges. Also, the
accuracy is improved from 72.8% to 77.1% even if
the heuristics differentiate edges and prefer some
edges. It shows that the proposed heuristics is
valid in parsing the real sentences. The experi-
ment says that our robust parser with heuristics
can recover perfectly about 23 sentences out of 100
sentences which axe just failed in normal parsing,
as the percentage of no-crossing sentences is about
23.28%.

Table 2 is the results of the robust parser on
ATIS which we did not refer to before. The accu-
racy of the result on ATIS is lower than WSJ be-
cause the parameters of the heuristics are a~justed
not by ATIS itself but by WSJ. However, the
percentage of sentences with constituents crossing
less than 2 is higher than the WSJ, as sentences
of ATIS are more or less simple.

The experimental results of our robust parser
show high accuracy in recovery even though 96%
of total rules are removed. It is impossible to con-
struct complete grammar rules in the real parsing
system to succeed in analyzing every real sentence.
So, parsing systems are likely to have extragram-
matical sentences which cannot be analyzed by
the systems. Our robust parser can recover these
extragrammatical sentences with 68 ~ 77% accu-
racy.

It is very interesting that parameters of heuris-
tics reflect the characteristics of the test corpus.
For example, if people tend to write sentences with
inserted phrases, then the parameter fli,~sert~on
must increase. Therefore we can get better results
if the parameter are fitted to the characteristics of
the corpus.

4 Conclusion

In this paper, we have presented the robust parser
with the extended least-errors recognition algo-
r i thm as the recovery mechanism. This robust
parser can easily be scaled up and applied to var-
ious domains because this parser depends only on
syntactic factors. To enhance the performance of
the robust parser for extragrainmatical sentences,

227

Table 2: The results of the robust parser on ATIS
Experiment 2 : ATIS 465 sentences

Average sentence length
Average processing time
Average number of edges
Accuracy (%)
no-crossing sentences
% of _< 1-crossing sentences
% of <_ 2-crossing sentences

with Heuristics without Heuristics

10.55 words (2-25 words)
8.68 sec
12974.2
68.5
26.02%
47.10%
66.24%

10.55 words (2-25 words)
71.98 sec
25652.5
59.4
13.28%
36.06%
52.46%

we proposed several heuristics. The heuristics as-
sign the error values to each error-hypothesis edge,
and edges which has less error values axe processed
first. So, not all the generated edges are processed
by the robust parser, but the most plausible parse
trees can be generated first. The accuracy of the
recovery in our robust parser is about 68% ,,~ 77~.
Hence, this parser is suitable for systems in real
application areas.

Our short term goal is to propose an automatic
method that can learn parameter values of heuris-
tics by analyzing the corpus. We expect that au-
tomatically leaxned values of parameters can up-
grade the performance of the parser.

Acknowledgement
This work was supported(in part) by Korea
Science and Engineering Foundation(KOSEF)
through Center for Artificial Intelligence Ke-
search(CAIR), the Engineering Research Cen-
ter(EKC) of Excellence Program.

References
[Black, 1991] E. Black e t a l . A Procedure for

quantitatively comparing the syntactic cover-
age of English grammars. Proceedings of Fourth
DARPA Speech and Natural Language Work-
shop, pp. 306-311, 1991.

[Carbonell and Hayes, 1983] J. G. Carbonell and
P. :I. Hayes. Recovery Strategies for Parsing
Extragrsmmatical Language. American Jour-
nal of Computational Linguistics, vol. 9, no. 3-
4, pp. 123-146, 1983.

[Hayes and C~rbonell, 1981] P. Hayes and J. Car-
bonell. Multi-strategy Construction-Specific
Parsing for Flexible Data Base Query Update.
Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence, pp. 432-439,
1981.

[Hayes and Mouradian, 1981] P. J. Hayes and
G. V. Mouradian. Flexible Parsing. American
Journal of Computational Linguistics, vol. 7,
no. 4, pp. 232-242, 1981.

[Hendrix, 1977] G. Hendrix. Human Engineer-
ing for Applied Natural Language Processing.
Proceedings of the 5th International Joint Con-
ference on Artificial Intelligence, pp. 183-191,
1977.

[Kwasny and Sondheimer, 1981] S. Kwasny
and N. Sondheimer. Relaxation Techniques
for Parsing Grammatically Ill-Formed Input
in Natural Language Understanding Systems.
American Journal of Computational Linguis-
tics, vol. 7, no. 2, pp. 99-108, 1981.

[Lyon, 1974] G. Lyon. Syntax-Directed Least-
Errors Analysis for Context-Free Languages.
Communications of the ACM, vol. 17, no. 1,
pp. 3-14, 1974.

[Marcus, 1991] M. P. Marcus. Building very Large
natural language corpora : the Penn Treebank,
1991.

[Mellish, 1989] C. S. Mellish. Some Chart-Based
Techniques for Parsing Ill-Formed Input. Asso-
ciation for Computational Linguistics, pp. 102-
109, 1989.

[Schank etal . , 1980] R. C. Schank, M. Lebowitz
and L. Brinbaum. An Intergrated Under-
stander. American ?ournal of Computational
Linguistics, vol. 6, no. 1, pp. 13-30, 1980.

228

