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A B S T R A C T  

As part of the DARPA Spoken Language System program, we recently initiated an effort in spoken 
language understanding. A spoken language system addresses applications in which speech is used for 
interactive problem solving between a person and a computer. In these applications, not only must the 
system convert the speech signal into text, it must also understand the linguistic structure of a sentence in 
order to generate the correct response. This paper describes our early experience with the development of 
the MIT VOYAGER spoken language system. 

I N T R O D U C T I O N  

Recently, we have been directing our research effort towards spoken language understanding as part 
of the DARPA Spoken Language System program. The project is motivated by the belief that many of 
the applications suitable for human/machine interaction using speech typically involve interactive problem 
solving. That is, in addition to converting the speech signal to text, the computer must also understand the 
linguistic structure of a sentence in order to generate the correct response. We have focused our attention 
on three main issues. First, the system must integrate speech recognition with natural language in order to 
achieve speech understanding. Second, the system must have a realistic application domain, and be able to 
translate spoken input into appropriate actions. Finally, the system must begin to deal with spontaneous 
speech, since people do not always utter grammatically well-formed sentences during a spoken dialogue. 

Over the past six months, we have constructed the skeleton of a spoken language system. The purpose 
of this paper is to describe the various components of this system. In related activities, we have collected a 
sizeable spontaneous speech database, and have used the data for analyses, system training and evaluation. 
The collection and analysis of the spontaneous speech database, and the preliminary evaluation of our spoken 
language system are described in two companion papers that appear elsewhere in these proceedings [1,2]. 

T A S K  D E S C R I P T I O N  

In order to explore issues related to a fully-interactive spoken language system, we have selected a task 
in which the system knows about the physical environment of a specific geographical area as well as certain 
objects inside this area, and can provide assistance on how to get from one location to another within this 
area. The system, which we call VOYAGER, currently focuses on the the city of Cambridge, Massachusetts, 
between MIT and Harvard University, as shown in Figure 1. It can answer a number of different types of 
questions about certain hotels, restaurants, hospitals, and other objects within this region. At the moment, 
VOYAGER has a vocabulary of 324 words. Within this limited domain of knowledge, it is our hope that 
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Figure 1: A display showing the geographical region known to the VOYAGER system. 

VOYAGER will eventually be able to handle any reasonable query that a native speaker is likely to initiate. 
As time progresses, VOYAGER'S knowledge base will undoubtedly grow. 

S Y S T E M  D E S C R I P T I O N  

VOYAGER is made up of three components. The speech recognition component converts the speech signal 
into a set of word hypotheses. The natural language component then provides a linguistic interpretation 
of the set of words. The parse generated by the natural language component is subsequently transformed 
into a set of query functions, which are passed to the back-end for response generation. The back-end is an 
enhanced version of a direction assistance program developed by Jim Davis of MIT's Media Laboratory [3]. 
We will describe each component in sequence, paying particular attention to those parts that have not been 
previously reported. 

S P E E C H  R E C O G N I T I O N  C O M P O N E N T  

The first component of VOYAGER uses the SUMMIT speech recognition system developed in our group. 
SUMMIT places heavy emphasis on the extraction of phonetic information from the speech signal. It achieves 
speech recognition by explicitly detecting acoustic landmarks in the signal in order to facilitate acoustic- 
phonetic feature extraction. The system can be trained automatically, since it does not rely on extensive 
knowledge engineering. The design philosophy, implementation, and evaluation of the SUMMIT system have 
been described in detail previously [4]. As a result, we will only report in this paper modifications to the 
system since the last workshop. These include the development of a new module for lexical expansion via 
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phonological rules, and a new corrective training procedure. 

Lexical Expansion 

The original SUMMIT system used a phonological expansion capability provided to us by SRI [6]. Within 
the last year, however, we have decided to rewrite this part of the system in order to establish increased 
flexibility and speed. The new version, named MARBLE, offers several new properties. A canonic set of 
phonemes is represented by a set of default values for distinctive features. Specified allophonic information 
due to context dependencies can be represented in the particular instance of the phoneme generated in a 
word lattice. Thus, for instance, when a word-f inal /s /and a word-initial/s/merge, the resu l t ing /s /can  
be marked as [+geminate]. This information can then be incorporated into the scoring for the particular 
allophone. The allophonic slot can also be used to indicate place of articulation of adjacent consonants, for 
example, to facilitate the decoding of context-dependent models. The rule-writing process is also straight- 
forward, and it is simple to keep track of the rule ordering. Finally, the time it takes to expand a lexicon has 
been reduced. We believe this new rule system will be a powerful tool for effectively representing context 
dependencies. 

Correct ive  Training 

The training of SUMMIT is performed iteratively, after being initialized on the TIMIT database [4,5]. For 
each iteration, the recognizer computes the best alignment between a path in the acoustic phonetic network 
and a path in the lexical network, i.e., the recognized output. The recognizer also computes a forced alignment 
using only the correct string of words. The system then trains the next iteration of phonetic models based on 
the matches between lexical arcs and phonetic segments in the forced alignments. The recognizer also adjusts 
lexical arc weights based on a comparison of the number of times the arc was used incorrectly (present in 
the best alignment but not in the forced alignment) to the number of times the arc was missed (present in 
the forced alignment but not in the best alignment). The goal of this corrective training procedure is to 
equalize the number of times an arc is missed and the number of times the arc is used in the wrong way. 
If sufficient training data is not available for a particular arc, then the weights are derived by collapsing it 
with other phonetically-similar arcs. 

Presently, lexical decoding is accomplished by using the Viterbi algorithm to find the best path that 
matches the acoustic-phonetic network with the lexical network. Since the speech recognition and natural 
language components are not as yet fully integrated, we currently use a word-pair language model with a 
perplexity of 22 to constrain the search space. 

N A T U R A L  L A N G U A G E  C O M P O N E N T  

In the context of a spoken language system, the natural language component should perform two critical 
functions: 1) to provide constraint for the recognizer component, and 2) to provide an interpretation of the 
meaning of the sentence to the back end. Our natural language system, TINA, was specifically designed to 
meet these two needs. The basic design of TINA has been described elsewhere [7], and therefore will only be 
briefly mentioned here. Instead, we would like to focus on the issue of how to incorporate semantics into the 
parses. We have found that an enrichment of the parse tree with semantically loaded categories at the lower 
levels leads to both improved word predictions and a relatively straightforward interface with the back end. 

Genera l  Description 

The grammar is entered as a set of simple context-free rules which are automatically converted to a 
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shared network structure. The nodes in the network are augmented with constraint filters (both syntactic 
and semantic) that  operate only on locally available parameters. Typically, several independent hypotheses 
are simultaneously active, and parameter modifications include protection of shared information, such that  a 
parallel implementation would be possible. Efficient memory use is achieved through a recycling mechanism 
for the node structures, such that  they become available in a resource pool whenever their current assignment 
is completed. These issues will become important  as we move towards a fully integrated system. 

One of the key features of TINA is that  all arcs in the network are associated with probabilities, acquired 
automatically from a set of example sentences. It is important  to note that  the probabilities are established 
not on the rule productions but rather on arcs connecting sibling pairs in a shared structure for a number 
of linked rules. For instance, all occurrences of SUBJECT are pooled together for probability assignments 
on their children, regardless of the structural positions of these occurrences within a clause. The effect of 
such pooling is essentially a hierarchical bigram model. We believe this mechanism offers the capability of 
generating probabilities in a reasonable way by sharing counts on syntactically/semanticaily identical units 
in differing structural environments. 

Semantic Filtering 

For VOYAGER, we were interested in designing a parser that  could handle all reasonable ways a person 
might request information within the domain, but  that  would also reject any ill-formed sentences, on the 
grounds of both semantic and syntactic anomalies. Building such a tight grammar not only leads to a 
very low perplexity for the recognizer, but also virtually eliminates the problem of multiple parses. This is 
because all parses that  are syntactically legitimate but semantically anomalous are weeded out. It has the 
added benefit of improving computation time, if the semantic constraints are integrated early in the parsing 
process, more or less at the first chance of resolution. 

We also wanted to maintain our criterion that  a node should only have access to information locally 
available to it by default. Tha t  is, it should not be allowed to hunt back through the parse tree looking 
for a resolution of, for example, number agreement. By default, all nodes pass along the parameters passed 
to them by near relatives. The hard part  is to come up with a compact representation that  contains 
all information necessary to carry out the constraints. In terms of syntax, there are patterns describing 
properties such as person, number, case, and determiner. Semantics are represented by patterns that  include 
an automatic hierarchical inheritance of broader properties from more specific ones. Thus for example the 
semantic category Restaurant automatically acquires Building and Place as additional semantic features. In 
addition to the syntactic features, nodes also pass along semantic features that  are automatically reset by 
designated nodes, such as terminal vocabulary entries. 

The two slots, Cur ren t -Focus  and F l o a t - 0 b j e c t  that are used for dealing with gaps, turned out to 
also be very useful for providing semantic constraint. In fact, we decided to take the approach of only using 
these two parameters for semantic filtering, to see whether in fact that  would be adequate. Their  use in 
the gap mechanism is described elsewhere [7], but for clarification we will briefly review it here. Generators 
are nodes that  enter their subparse into the Cur ren t -Focus  slot. Activators move the Cur r en t -Focus  into 
the F l o a t - 0 b j e c t  position, for their children. Absorbers can accept the F loa t -Ob j  e c t  as their subparse, in 
place of something from the input stream. The net result of this mechanism, aside from its intended use in 
gap resolution, is that  it provides a second-order memory system for identifying the semantic categories of 
certain key content words in the history. 

As an example, consider the sentence, "(What street)~ is the Hyat t  on (ti)? • The Q-Subject places "what 
street" into the CurzenZ-Focus slot, but this unit is activated to F l o a t - 0 b j e c t  status by the following Be- 
Question. The Subject node refills the now empty Cur ren t -Focus  with "the Hyatt ." The node A-Street, an 
absorber, can accept the F l o a t - 0 b j  e c t  as a solution, but only if there is tight agreement in semantics, i.e., 
it requires the identifier Street. Thus a sentence such as "(What restaurant)~ is the Hyatt  on (t~)" would fail 
on semantic grounds. Furthermore, the node On-Street imposes semantic restrictions on the Cur ren t -Focus .  
Thus the sentence "(What street)~ is Cambridge on (ts)?" would fail because On-Street does not permit 
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Region as the semantic category for the Current-Focus, "Cambridge." 
The Current-Focus always contains the subject whenever a verb is proposed, and therefore it is easy to 

specify filtering constraints for subject-verb relationships. Thus for example, the verb "intersect" demands 
that its subject be Street and the verb "eat" demands person. We have not yet incorporated probabilities 
into the semantic predictions, mainly because our domain is simple enough that they don't seem necessary. 
However, in principle probabilities could be added. Furthermore, these probabilities could be acquired 
automatically by parsing a collection of sentences and counting semantic co-occurrence patterns. 

An indicator of how well our semantic restrictions are doing can be obtained by running the sentence 
generator with the semantic filters in place. Table 1 gives a list of five consecutively generated sentences 
from the Voyager domain. For the most part, generated sentences are now well-formed both semantically 
and syntactically. 

1. Do you know the most direct route to Broadway Avenue from here? 
2. Can I get Chinese cuisine at Legal's? 
3. I would like to wMk to the subway stop from any hospital. 
4. Locate a T-stop in Inman Square. 
5. What kind of restaurant is located around Mount Auburn in Kendall Square of East Cambridge? 

Table 1: Sample sentences generated consecutively by the VOYAGER version of TINA. 

A P P L I C A T I O N  B A C K - E N D  

After an utterance has been processed by TINA, it is passed to an interface component which constructs 
a command function from the natural language parse. This function is subsequently passed to the back-end 
where a response is generated. In this section, we will describe VOYAGER's current command framework, the 
interface between TINA and the back-end, and some of the discourse capabilities of the back-end. 

Command Framework  

We will illustrate the current command framework of VOYAGER by way of the simple example shown 
below: 

Query: Where is the nearest bank to MIT? 
Function: (LOCATE (NEAREST (BANK n i l )  (SCHOOL "HIT"))) 

LOCATE is an example of a major function that determines the primary action to be performed by the 
command. It shows the physical location of an object or set of objects on the map. Table 2 lists some of the 
major functions currently implemented in VOYAGER. 

Functions such as BANK and SCHOOL in the above example access the database to return an object or 
a set of objects. Such functions search for all entries that match the string pattern provided. When null 
arguments are provided, all possible candidates are returned from the database. Thus, for example, (SCHOOL 
"HIT") and (BANK n±l) will return the objects MIT and all known banks, respectively. Table 3 contains 
some examples of current data functions. 

Finally, there are a number of functions in VOYAGER that act as filters, whereby the subset that fulfills 
some requirements are returned. The function (NEAREST X y), for example, returns the object in the set X 
that is closest to the object y. Table 4 contains several examples of filter functions. 

Note that these functions can be nested, so that they can quite easily construct a complicated object. 
For example, "the Chinese restaurant on Main Street nearest to the hotel in Harvard Square that is closest 
to City Hall" would be represented by, 
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(NEAREST 
(ON-STREET 

(SERVE (RESTAURANT n i l )  "Chinese") 
(STREET "Main . . . .  S t r e e t " ) )  

(NEAREST 
(IN-REGION (HOTEL n i l )  (SQUARE "Harvard")) 
(PUBLIC-BUILDING " C i t y  H a l l " ) ) )  

LOCATE 
DESCRIPTION 
PROPERTY 
DISTANCE 
DIRECTIONS 

locate a set of objects 
describe a set of objects 
identify a property of a set of objects 
compute distance between two objects 
compute directions between two objects 

Table 2: Examples of some major  functions in the VOYAGER back-end. 

STREET 
ADDRESS 
INTERSECTION 
SQUARE 

return a set of streets 
return a set of addresses 
return a set of intersections of two streets 
return a set of squares 

Table 3: Some examples of da ta  functions in the VOYAGER back-end. 

AT 
0N-STREET 
SERVE 
NEAREST 

the subset of objects that  are at a location 
the subset of objects that  are on a street 
the subset of objects that  serve a particular kind of food 
the single object of a set tha t  is nearest to a location 

Table 4: Examples of filter functions in the VOYAGER back-end. 

I n t e r f a c e  b e t w e e n  TINA a n d  B a c k - E n d  

Our natural  language component  does not produce a logical form that  is a separate entity from the 
parse itself. Instead, structural  roles such as Subject and Dir-Object are an integral par t  of the parse tree. 
Furthermore,  prepositional phrases are given case-frame-like identities such as From-Loc and In-Region [8]. 
Because of the availability of such semantic labels within the parse tree, the nested command sequence 
required by the back-end can be generated by a recursive procedure operating directly on the parse tree. 

The parses are transformed to a set of commands in a two-stage process. The first stage establishes the 
major  function of the sentence, and the second stage fills in any arguments required by the major  function. 
Each stage uses a list of entries that  contain a parse pat tern,  a back-end function specification, and one 
or more argument  specifications. In the first stage, each parse pa t te rn  corresponds to a sequence of one or 
more nodes in the parse tree and can specify a hierarchical constraint between certain nodes. Each argument  
specification corresponds to one or more entries in the second-stage list. In the second stage, a parse pa t te rn  
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can only be a single node, and each argument specification may be either one or more entries in the second- 
stage list, a terminal node, or a null value. Terminal nodes return a string from the parse tree, such as 
"MIT". In most cases, each function specification corresponds to a single back-end function or a null value. 
When present, a function will be called with its associated arguments, such as (SCHOOL "HIT").  A function 
specification can also designate that  the arguments are wrapped around each other. This mechanism is 
useful for generating nested filtering operations. 

When a parse is passed to the interface component, the patterns in the first-stage list are compared to 
the parse tree. Whenever a match is found, any argument specifications are passed one at a time to the 
second stage for resolution. If the argument specification is a single node, only the portion of the parse tree 
found below this node is processed, thus restricting the domain of the second stage analysis. If there are 
multiple entries in an argument specification, the first one found is processed in the same way as a single 
node. 

In our previous example, the presence of the word "where" in a trace would result in the specification of 
LOChTE as the major function. In this case, the first node found in the associated argument specification is a 
Subject. The portion of the parse tree found below Subject is' thus passed to the second stage. In the second 
stage analysis the Subject node would find an A-Place node in the subparse. Evaluation of this node would 
subsequently generate two arguments (BhNK n i l )  and (NEhREST (SCHOOL "HIT"))  which are wrapped to 
produce the desired result. 

D i s c o u r s e  Capab i l i t i e s  

The discourse capabilities of the current VOYAGER system are simplistic but nonetheless effective in 
handling the majority of the interactions within the designated task. Currently, anaphora resolution is dealt 
with in the back-end as opposed to the natural language component. We will describe briefly here how a 
discourse history is maintained, and how the system keeps track of incomplete requests, querying the user 
for more information as needed to fill in ambiguous material. 

Two slots are reserved for discourse history. The first slot refers to the location of the user, which can 
be set or referred to. The second slot refers to the most recently referenced set of objects. This slot can be 
a single object, a set of objects, or two separate objects in the case where the previous command involved a 
calculation involving both a source and a destination. Because of the location slots, user queries can include 
pronominal reference, such as "What is their address?" or "How far is it from here?" 

VOYAGER can also handle ambiguous queries, in which a function argument has either no value or multiple 
values, when a single value is required. Examples of ambiguous queries would be "How far is a bank?" since 
there are several banks, or "How far is MIT?" when no default location has been specified. VOYAGER 
points out such ambiguity to the user, by asking for specific clarification. The ambiguous command is also 
pushed onto a stack of incompletely specified commands. When the user provides additional information 
that  is evaluated successfully, the top command in the stack is popped for reevaluation. If the additional 
information is not sufficient to resolve the original command, the command is again pushed onto the stack, 
with the new information incorporated. In the case where the clarification is also ambiguous, it is pushed 
onto the stack itself, until it can be clarified. A protection mechanism automatically clears the history stack 
whenever the user decides to abandon that  line of discussion before all ambiguous queries are clarified. An 
example dialogue illustrating clarification capabilities is given in Table 5. 

D I S C U S S I O N  

This paper summarizes the present status of our spoken language system development effort. In particu- 
lar, we focused on those aspects of VOYAGER that  have not been reported previously. The system is clearly 
in its infancy, since it has been in existence for only a few months. In the coming months, however, we hope 
to improve its performance and expand its capabilities. 

Our strategy for system development was to bring up a complete working system as soon as possible, so 
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User: 
Voyager: 
User: 
Voyager: 
User: 
Voyager 

User: 
Voyager: 

Can you tell me how to get to the Chinese restaurant? 
Where are you? 
I am near a bank. 
I know of many banks. Can you specify which one you mean? 
The one on Main Street .  
The only bank on Main Street that I know of is the Baybank at 
226 Main Street in Cambridge. 
The Chinese restaurants that I know of are Hong Kong and Royal East. 
Can you specify which one you mean? 
The one nearest me. 
The nearest Chinese restaurant to the Baybank at 226 Main Street 
that I know of is the Royal East. 
I will try to find the best way to go from the Baybank at 226 Main Street 
to the Royal East. (- Directions -) 

Table 5: Example dialogue illustrating clarification capabilities. 

that we may study component behavior from a system's perspective. As a result, we devoted most of our 
resources to constructing missing components, as opposed to refining existing ones. Nevertheless, we have 
begun to improve phonetic recognition accuracy of SUMMIT by incorporating context-dependent phoneme 
models. Preliminary evaluation indicates that phonetic recognition accuracy is improved by about 5% with 
these models on test utterances drawn from TIMIT.  However, we have not incorporated this refinement into 
VOYAGEa. We view the improvement of phonetic recognition accuracy as one of the most critical areas to 
pursue in the near future. 

In order to provide an early indication of baseline performance, we have recently started to evaluate 
VOYAGER using the spontaneous speech database that we have collected. Performance evaluation for spoken 
language systems is an important issue with which the entire research community is beginning to grapple. 
In a companion paper, we report our own experience with spoken language system evaluation. 

Finally, we should again point out that currently the speech recognition and natural language components 
are connected in a serial manner, in which the recognizer proposes a string of words and passes it along for 
linguistic analysis. Such a loose coupling is again a reflection of our desire to bring up a working system at the 
sacrifice of flexibility and overall performance. In the long run, we firmly believe that speech recognition and 
natural language must be fully integrated. Experiments in a fully integrated system have been under way, 
and encouraging results have been obtained. We hope to be able to report on this and other improvements 
in the near future. 
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