
Management and Evaluation of Interactive
Dialog in the Air Travel Domain

Lewis M. Norton, Deborah A. Dahl, Donald P. McKay~
Lynette Hirschman~ Marcia C. Linebarger~ David Magerman~

and Catherine N. Ball

Introduction
This paper presents the Unisys Spoken Language Sys-
tem, as applied to the Air Travel Planning (ATIS)
domain. 1 This domain provides a rich source of inter-
active dialog, and has been chosen as a common appli-
cation task for the development and evaluation of spo-
ken language understanding systems. The Unisys ap-
proach to developing a spoken language system combines
SUMMIT (the MIT speech recognition system [6]), PUN-
DIT (the Unisys language understanding system [3]) and
an Ingres database of air travel information for eleven
cities and nine airports (the ATIS database). Access
to the database is mediated via a general knowledge-
base/database interface (the Intelligent Database Server
[4]). To date, we have concentrated on the language un-
derstanding and database interface components.

A Dialog Manager integrates the overall user-system
interaction. The Dialog Manager accepts user requests
in the form of strings of words and calls PUNDIT to in-
terpret the input; it then calls the database indirectly,
via the IDS database interface. An important function
of the Dialog Manager is to maintain a record of the
discourse context, so that the system can successfully
process connected dialog.

We first describe our architecture in more detail, then
give a short discussion of dialog management, a topic we
feel will be crucial to successful systems interacting with
users via natural language. We conclude with the pre-
sentation and analysis of results from the ATIS common
evaluation task and from data gathered at Unisys using
our system.

Unisys DefenSe Systems
Center for Advanced Information Technology

PO Box 517
Paoli, PA 19301

of that input. If no interpretation is forthcoming, the
user is notified; otherwise the interpretation is passed to
a module called QTIP (Query Translation and Interface
Program), which at tempts to create a database query
corresponding to the request. QTIP does not produce
SQL code directly, instead, communication with Ingres
is done via an Intelligent Database Server [4], developed
on another DARPA contract, which we describe in the
next section.

I n t e l l i g e n t D a t a b a s e S e r v e r
The ATIS Intelligent Database Server (see Figure 2) con-
sists of the Intelligent Database Interface (IDI) and a
server supporting the interaction beteen QTIP and a rela-
tional database. The IDI provides a logic-based language
for queries and transparent support for the actual inter-
action with an Ingres DBMS. The server supports the
interaction with a logic-based query generator (for PUN-
DIT, qTIP; for the MIT system, TINA [5]). It provides
input /output conversion between Ingres and Prolog or
Lisp (the languages of choice for language understanding
systems), commands for selecting databases, informative

Dialog ~

PUNDIT

Architecture
S y s t e m L e v e l A r c h i t e c t u r e
Our system architecture (see Figure 1) is based on a Dia-
log Manager, and is taken from a previous application for
navigating around Cambridge, Massachusetts [1]. The
major difference is that the module providing answers
for direction assistance was an expert system, while here
it is a database. The Dialog Manager, upon receiving an
input from the user, calls PUNDIT fo r a n interpretation

ZThis work was suppor t ed by DARPA contract N000014-89-
C0171, administered by the Office of Naval Research.

USER

INGRES

ATI$ DB

Figure 1: Overall System Architecture

141

ID I S e r v e r A r c h i t e c t u r e

P U N D I "

(Q T I P)

I D I L Q u e r y

S O L Query

P r o l o g T u p l e s

Sta¢llstiEcs

ili!ii~i!i i~iiiiiilill i ii i!i!ii!i! ! i ! i i i i i i [i i i i i i i i i ! i i i i i i ! i i i i i i ! ! !:i !:! i i:!:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:i:i:i:i:

o M a n a g e s c o n n e o t l o n to Ingres
O A G d a t a b a s e

o T r a n s l a t e s I D I L q u e r i e s to S O L

o E x e c u t e s SOl_ q u e r y on Ingrem
O A G d a t a b a s e

o C o n v e r t s Ingres tab le o u t p u t
to l ists of l ists

o O p t i o n a l l y ool leots s ta t is t ics

o O p t i o n a l l y c a o h e s resu l ts

S Q L Q u e r y

I n g r e s T u p l e s
, I

Figure 2: Intelligent Database Server Architecture

I N G R E S

O A G

D B

statistics and generation of comparator output.
The Intelligent Database Interface is a portable, cache-

based interface providing transparent, efficient access to
one or more databases on one or more remote database
management systems (DBMS) which support SQL. The
IDI was designed to be compatible with a logic-based
knowledge representation scheme and has been used to
implement a query server supporting the ATIS database
access for PUNDIT. The query language of the IDI is
the Intelligent Database Interface Language (IDIL) and is
based on a restricted subset of function-free Horn clauses
where the head of a clause represents the target list (i.e.,
the form of the result relation) and the body is a con-
junction of literals which denote database relations or
operations on the relations and/or their attributes (e.g.,
negation, aggregation, and arithmetic operations).

The Intelligent Database Server supports QTIP's in-
teraction with the ATIS database, accepting IDIL queries,
using the IDI to translate and execute the queries and
returning results as straightforward lists of lists. The
IDI Server supports QTIP'S interaction with a relational
database in several specific ways; the IDI Server

• accepts an IDIL query as input and returns Prolog
tuples or Lisp tuples, the translated SQL query and
statistics;

• translates IDIL queries to SQL and executes them on
the database;

• manages connections transparently to the Ingres
database;

• converts Ingres tuple output to Prolog or Lisp tu-
ples, and

• produces cAs evaluation output.

The IDI architecture also contains a cache; the IDI
currently caches results of database queries. Our caching

concept also includes the notion of advice provided to the
cache. While we have not used it in this application to
date, we believe that there are many useful heuristics in
the travel planning domain that can lead to optimized
DB retrieval strategies, using the cache for query gen-
eralizations, pre-fetching and replacement. We plan to
collect statistics on ATIS transactions which could then
be used to define an effective advice language and strat-
egy.

Overview of the Dialog Manager
The Dialog Manager oversees the interaction of the sys-
tem with the user. It also oversees the communication
between the language understanding subsystem and the
database, via QTIP. QTIP reports back to the Dialog
Manager, returning both the IDIL query and the zero or
more tuples which it received from the IDS (or a diag-
nostic message containing information explaining why it
didn't make a database call). The Dialog Manager then
does two things: it presents the answer to the user, using
information from the IDIL query to format the tuples in
the answer and to generate column headings for them;
and it retains the answer in a data structure representing
the discourse context. The latter action is what makes it
possible for our system to handle certain types of refer-
ence by the user to material in answers. The basic idea
of having the Dialog Manager store responses was de-
veloped for the direction-assistance application. In that
task, the expert system responded in English sentences,
and the responses were processed by PUNDIT and their
interpretations stored in the discourse context. For ATIS,
the DB answers are kept, and mechanisms for referenc-
ing data in that form have been added to PUNDIT, to
enable it to interpret subsequent inputs in the context
of both previous user queries and previous system re-
sponses. This is illustrated in the next section.

142

Dialog Management
Reference Resolution
PUNDIT has for some time had the ability to resolve
anaphoric references of various kinds, including pronom-
inal reference ("that one") and definite noun anaphors
("the Delta flight", "those flights"). This capability was
used in the direction-assistance application, and it is
present also for ATIS. We have made no major exten-
sions to this capability for ATIS.

Deixis
Presenting tabular responses encourages the user to re-
fer to entries in those responses. This introduces the
need for a different kind of contextual reference. For in-
stance, the code "LH" is used in the ATIS DB both for
a (relatively rare) fare class and for Lufthansa German
Airlines. If a user asks what "LH" means, the coopera-
tive response is not to give both interpretations, but to
give the interpretation corresponding to its use in a pre-
vious response, which will be in an "airline" column or
a "fare class" column, rarely both. A more interesting
example involves expressions like "Delta flight 123". In
the general case, that flight has several legs, say from
Cityl to City2 to City3. If a user has asked for flights
from Cityl to City2, and then asks for fares for one of
them, it is not cooperative to respond with fares not only
from Cityl to City2, but also from City2 to City3 and
from Cityl to City3, just because the fight in question
goes on to City3. It is quite clear from the context that
the user wants only fares from Cityl to City2; specifi-
cally, Delta flight 123 will have been found in a previous
answer tuple for just the Cityl to City2 leg. Both of
the previous examples involve examination of entries in
previous responses. Our system has been extended to
handle the "Delta flight 123" example as a demonstra-
tion of this kind of capability; we plan to add the ability
to handle other such contextual references in the near
future.

The mechanisms involved in handling such contextual
references can be illustrated by how the "Delta flight
123" example proceeds. When the table with flights
from Cityl to City2 is returned, a discourse entity repre-
senting it is added to the discourse context, but without
representing any individual flights as discourse entities.
A semantics for the table is also provided, which cor-
responds to something like "table of Delta flights from
Cityl to City2". When "Delta flight 123" is subsequently
referred to, PUNDIT tries to find a flight in the context
with that flight number and airline (we can also handle
just "flight 123"), by searching the tables in the discourse
context whose semantics are consistent with those of the
flight referred to.

Diagnoses
The Dialog Manager is also responsible for enhancing
the cooperativeness of the system. It has a primitive
generation capability (based on sentence templates and

keywords) to provide English diagnoses of failures. For
instance, if a user asks for flights leaving after "eight
o'clock", QTIP doesn't know if the DB query should spec-
ify 8 a.m. or 8 p.m. The optimum action is to request the
user to resolve the ambiguity. Our system at least tells
the user it couldn't decide between a.m. or p.m. An-
other example involves queries "just outside" or "on the
fringe of ' the database. The DB contains information
on ground transportation between cities and the airports
serving them, but not on ground transportation between
two cities or between two airports. If a query requesting
information of the latter kind is properly understood, it
is preferable for the system to tell the user as specifically
as possible why the query cannot be answered, rather
than to go through the motions of making a call to the
database and returning a LLtable" with no tuples. Our
system issues a message stating that ground transporta-
tion is between an airport and a city, not between two
cities or airports.

Evaluation
Common Evaluation
The first experiment using our system that we report
on is the common evaluation task. Most of the discourse
features we discussed in the previous section do not come
into play for this task, because it involves testing the sys-
tem on requests which are entirely self-contained, within
the bounds of the domain, and unambiguous-so-called
"class A" sentences. Thus there is no need for resolu-
tion of anaphoric expressions, reference to previous an-
swer tables, or diagnoses of out-of-domain requests for
the June 1990 common evaluation. Furthermore, the an-
swers for evaluation of sentences in context were not uni-
formly available for the June evaluation. For these rea-
sons, we will not report on an evaluation of sentences in
context a t this time. In the following section, we present
our results for the common ATIS evaluation task, along
with an analysis of the data.

The common task data consisted of 90 queries, of
which our system obtained correct ("True") answers for
48, or 53%. Of the remainder, 10 resulted in DB calls
which obtained inappropriate ("False") information, and
32 resulted in no DB call at all ("NA"). We consider in-
correct answers to be even worse than no answers, and
the greater than 10% "false alarm" rate experienced on
this task to be beyond the acceptable rate for such errors.

The 42 queries that were not successfully processed
can be further subclassified as follows. 5 contained items
that were not in our lexicon. 9 either did not parse,
or did not obtain a usable parse. 10 either obtained
no semantic/pragmatic analysis, or an incomplete one.
QTIP, though given a complete interpretation of the in-
put, could not create a call to the DB for 12 more, and
created an incorrect call 6 times. Our results are summa-
rized in Table 1; there we show the error source for the
incorrect ("False") answers and the unanswered (LLNA")
questions separately. From this table we note that PUN-

DIT performed quite well. QTIP was directly responsible

Pundit

QTIP

Outcome
lexicon
parsing

semantics
QTIP-no call

True False NA
1 4

9
3 7

12
QTIP-cal l 48 6

Totals [4 s [x0 [~2

Table 1: Common Evaluation Task Results

for nearly half (18 of 42) of the cases where an input
query was not processed correctly.

Even among the queries for which our system obtained
the correct answer, there were 5 cases where the input
was not processed entirely correctly. These cases can
be subdivided into two groups, those where the unpro-
cessed material was irrelevant to the handling of the re-
quest, and those where the unprocessed material could
well have resulted in an error. An example of the former
is the query Under the category ground transportation
what is transport A ? Our system ignored the redundant
"under the category ground transportation". An exam-
ple of the latter type is the query What is ~he fare on
flight eleven forty nine from continental airlines? Our
system failed to process "from continental airlines", but
since no other airline has a flight number 1149 in the
ATIS DB, the correct answer was obtained anyway.

Speaker Success Rate
bd
bf

bm
bp
bw

50%
71%
26%
46%
87%

Table 2: Success Rate by Speaker

It is interesting how much variance there is between
speakers. There were 5 different speakers in the common
task data, and our system's success rate for them ranged
from 26% to 87%, as shown in Table 2.

C o m m o n E v a l u a t i o n A n a l y s i s
Successful handling of only slightly more than half of the
input queries, and class A queries at that, indicates that
this system is a long way from being an operational sys-
tem. However~ these data were gathered with maximal
co-operativeness (and therefore permissiveness). From
our experiences with the direction-assistance applica-
tion, we suspect that that the ATIS method of gathering
the input data decreased the success rate of our (and
anybody else's) system, since the Wizard coped with
nearly all inputs, giving a user no reason to change mode
of expression. By contrast, if user bm had been using
our system, his or her lack of success in getting answers

might well have led to exploration with alternative ways
of phrasing queries, with the result that a larger percent-
age of inputs would have been processed correctly over
the entire session. In the next section, however, we will
see that the" diagnoses, etc. from our system are not yet
good enough to enable such an adaptation to take place
for all users.

The bot tom line is that our system has not yet
achieved a satisfactory level of performance, and it is
not hard to understand why. First and foremost, it is
an incomplete system, in the middle of its development,
and the results of the common task are simply a measure
of our progress so far, and in no sense a measure of the
level of achievement that our system will attain when
fully developed. In fact, in the few weeks before the
test, we confined our attention to a subset of about 550
class A queries from development data available to us,
and had achieved a success rate of 65% on those. So we
were pleasantly surprised to succeed on as many as 53%
of new, previously unseen utterances. We believe that
this is evidence that our development work is indeed of
general applicability for this domain, as opposed to con-
sisting of a collection of ad hoc tricks to make specific
inputs get through the system.

On the other hand, why can our system correctly pro-
cess only 65% of the training input? Why could we
not have achieved a greater success rate by now? We
suspect that the answer involves the wide range of ex-
pressions different people use to make essentially the
same requests in this domain. Indeed, in a later sec-
tion we quantify this observation, comparing vocabulary
growth and grammar growth in this domain with that
in the direction-assistance domain. To return to a point
touched on earlier, it may be significant that the data in
the ATIS domain was collected using a Wizard arrange-
ment which bypassed not only the speech recognition
component but ALSO the automated natural language
understanding component; such was not the case for the
direction-assistance experiment.

Our widely different rates of success for the different
speakers in the common task data supports the observa-
tion that there are a large number of different ways to
ask essentially the same questions. And if this is really
the case, it means that a natural language understanding
system will have to be trained on much larger volumes of
data for the ATI$ domain. In the direction-assistance do-
main, we reported having to train on 1000 sentences to a
success rate of over 80% before our system could achieve
70% new sentence coverage. It is an open question how
many more than 1000 sentences will be necessary for the
ATIS domain; currently we have worked with less than
1000 sentences and have achieved (with comparable ef-
fort) only a 65% coverage on the class A subset of the
training corpus (and about 50% coverage of the entire
corpus). It would be informative to train to an 80%
coverage and reassess coverage on test data.

Individual examples of successes and failures of our
system on the common task data seem not to be of suf-
ficient general interest to report in this paper, given the

144

E

¢
.F.

g:

o
03

0

I * ATIS
Direction-assistance

i i i t i i i

0 200 400 600 800 1000 1200

S e n t e n c e s in Corpus

Figure 3: Incremental growth of grammar in ATIS and direction-assistance domains

current limits of our system. We do, however, feel that
even these experiments with this partially developed sys-
tem point to a need to work in the ATIS domain at a task
level as well as at a sentence level. So, even with the defi-
ciencies of our system in its present state of development,
we have begun experiments along those lines, which we
discuss in the next section.

U n i s y s D a t a a n d E v a l u a t i o n

In order to explore issues in evaluation particularly
from the user's perspective, we designed a data collec-
tion/evaluation task using the system as a tool to collect
data from users. Seven subjects were asked to use the
Unisys ATIS system to solve travel planning scenarios.
They were given the same instructions as the ATIS sub-
jects at TI, the same scenarios, and the same follow up
questionaire. In addition, in order to measure user sat-
isfaction, after the session was over, the subjects were
also asked to score each response from the system on a
zero to five scale of satisfactoriness. A total of 206 typed
inputs were collected, 2 of which 38% were processed cor-
rectly. The mean user satisfaction was 2.4 on the 0 to
5 scale. Although we had planned to collect other data,
such as time to complete task, very few of the subjects
actually completed the task. This was because of the
incomplete development of the system and the difficulty
of the scenarios. Consequently we were unable to collect
this data.

One question which we wished to address was what
factors affect user satisfaction in a spoken language sys-
tem. For example, we were interested in how coverage
affects user satisfaction. Coverage is clearly the most im-
portant component of user satisfaction, although it does
not completely determine it. In comparing user satis-
faction on the queries that were handled to those which

2 This data is available from the authors upon request.

145

were not handled, we found a mean rating of 4.8 (on a
0-5 scale) for the queries that were handled and a mean
rating of .98 for the queries that were not handled. Some
inputs which were not handled received a relatively high
score (4) from the users because the error messages were
perceived to be useful. For example, the query From
Oakland to Boston, what is the fare ¢. was answered with
the error message Sorry, could you rephrase that ¢. which
indicates that it wasn't parsed, but it nevertheless got
a rating of 4 from the user. On the other hand, some-
times a query which was completely understood got a
relatively low rating because the user didn't like how
the information was presented. For example, the query
How much does a flight from San Francisco cost? was
answered correctly, but received a score of 3 because the
fares presented were not associated with specific flights.

Aneedotally, we noted that response time, which is
independent of coverage, is also an important component
of user satisfaction. Nearly all the Unisys subjects said
that the system was too slow, and 28/53 or 53% of the
TI subjects also said that the system they were using
was too slow. ~ This data lead us to believe that there
may be important trade-offs in coverage and informative
error messages vs. speed that can lead to increased user
satisfaction and usability of the system.

S y s t e m G r o w t h a s a F u n c t i o n o f T r a i n i n g

D a t a
One of our most interesting findings was our ability to
quantify the lack of convergence of the ATIS data, both in
terms of grammar rules and in terms of lexicon. Starting
with the direction-assistance application, we developed
techniques for quantifying the growth of the system as

~This data was collected from the TI debriefing questionaires.
We thank Charles Hemphill of TI for making these questionaires
available to u s .

i i i I i i

0 200 400 600 800 1000 1200

Sentences in Corpus

Figure 4: Incremental growth of lexicon in ATIS and direction-assistance domains

a function of training data. We recorded the rate of
growth in terms of g rammar rules and lexical items as
a measure of convergence for both ATIS and direction-
assistance ([1],[2]) versions of PUNDIT. Our expectation
is that the rate of growth should level off as more and
more training is seen. To the extent that it does not,
significant gaps in coverage can be expected. Figure 3
shows the incremental growth of the grammar for both
domains and Figure 4 shows the incremental growth of
the lexicon. It is interesting to note that after 600 sen-
tences from the direction-assistance domain the rate of
growth in both grammar and vocabulary is quite slow,
indicating that this amount of training data is enough
to provide a good sample of the kinds of constructions
used in the domain. In contrast, we do not see any level-
ing off in ATIS growth after 600 sentences. From this we
can conclude that a larger set of da ta will be required
to provide a good sample of the constructions needed
for ATIS. It is impor tant for future evaluations to de-
velop some better methods for estimating the amount
of training data needed for a given application. Since
the vocabulary growth curve is similar to the grammar
growth curve in both applications it may be that sim-
ple measurement of vocabulary convergence would serve
as a crude measure of amount of training data needed.
We are just beginning to assemble some data points in
terms of training da ta for multiple applications. The
direction-assistance vs. A T I S applications illustrate that
two seemingly similar kinds of applications can have very
different characteristics, perhaps reflecting how the ac-
tual da ta collection was carried out. As we look at more
spoken language applications, our ability to make rea-
sonable estimates on training da ta should improve sig-
nificantly.

References
[1] Catherine N. Ball, Deborah Dahl, Lewis M. Nor-

ton, Lynette Hirschman, Carl Weir, and Marcia
Linebarger. Answers and questions: Processing mes-
sages and queries. In Proceedings of the DARPA
Speech and Natural Language Workshop, Cape Cod,
MA, October 1989.

[2] Deborah A. Dahl, Lynette Hirschman, Lewis M. Nor-
ton, Marcia C. Linebarger, David Magerman, and
Catherine N. Ball. Training and evaluation of spo-
ken language understanding system. In Proceedings
of the Darpa Speech and Language Workshop, Hidden
Valley, PA, June 1990.

[3] Lynette Hirschman, Martha Palmer, John Dowd-
ing, Deborah Dahl, Marcia Linebarger, Rebecca Pas-
sonneau, Francois-Michel Lang, Catherine Ball, a n

Carl Weir. The P U N D I T natural-language pr, ~
system. In AI Systems in Government C~
Computer Society of the IEEE, March 198

[4] Don McKay, Tim Finin, and Anthony O'?
intelligent database interface. In Proceed
7 th National Conference on Artificial In~,.
1990.

[5] Stephanie Seneff. Tina: a probabilistic syntactic
parser for speech understanding systems. In Proceed-
ings of the First DARPA Speech and Natural Lan-
guage Workshop, Philadelphia, PA, February 1989.

[6] Victor Zue, James Glass, Michael Phillips, and
Stephanie Seneff. The MIT S U M M I T speech recogni-
tion system: A progress report. In Proceedings of the
First DARPA Speech and NaturaI Language Work-
shop, Philadelphia, PA, February 1989.

146

