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A B S T R A C T  

We describe a series of three experiments in which supervised 
learning techniques were used to acquire three different types of 
grammars for English news stories. The acquired grammar types 
were: 1) context-free, 2) context-dependent, and 3) probabilistic 
context-free. Training data were derived from University of 
Pennsylvania Treebank parses of 50 Wall Street Journal articles. 
In each case, the system started with essentially no grammatical 
knowledge, and learned a set of grammar rules exclusively from 
the training data. Performance for each gr~rnar  type was then 
evaluated on an independent set of test sentences using Parseval, 
a standard measure of parsing accuracy. These experimental 
results yield a direct qtmntitative comparison between each of 
the three methods. 

1. INTRODUCTION 

Designing and refining a natural language grammar is a difficult 
and time-intensive task, often consuming months or even years 
of skilled effort. The resulting grammar is usually not 
completely satisfactory, failing to cover a significant fraction of 
the sentences in the intended domain. Conversely, the grammar 
is likely to overgenerate, leading to multiple interpretations for a 
single sentence, many of which are incorrect. With the 
increasing availability of large, machine-readable, parsed 
corpora such as the University of Pennsylvania Treebank 
[Santorini, 90], it has become worthwhile to consider automatic 
grammar acquisition through the application of machine learning 
techniques. By learning a grammar that completely covers a 
training set for some domain, it is hoped that coverage will also 
be increased for new sentences in that domain. Additionally, 
machine learning techniques may be useful in reducing 
overgeneration through a variety of techniques that have been 
suggested in recent literature. One suggestion is to introduce 
local contextual information into a grammar [Simmons and Yu, 
92], based on the premise that local context provides useful 
information for selecting among competing grammar rules. A 
second suggestion is to introduce probabilities in the form of a 
probabilistic context-free grammar [Chitaro and Gfishman, 9% 
based on the premise that a combination of local probability 
measures provides a useful estimate of the probability of an 
entire parse. 

J 

In this work, we Investigate both of these suggestions and 
compare them with a simple, automatically learned, context-free 
grammar. In each case, the grammar is acquired from a subset 
of parsed Wall Street Journal articles taken from the University 
of Pennsylvania Treebank. We then apply the acquired grammar 
to the problem of producing a single unambiguous parse for each 
sentence of an independent test set derived from the same 
S O U r c e .  

2.  L E A R N I N G  A C O N T E X T - F R E E  

G R A M M A R  

A context-free grammar is acquired from a parsed Treebank 
corpus by straightforward memorization of the grammar rules 
used in each training example. Figure 1 shows a typical parse 
tree from our training corpus; Table 1 shows the grammar rules 
used. 

SMAJ 

NN NN NN VBD CD NN TO $ CD CD 

[ I [ I I I [ [ I  I 
Government construction spending rose 4.3 % to $ 88 billion 

Figure 1: A typical parse tree from the Treebank corpus. 

SMAJ---~ S : S---~ NPVP 
VP ---~ VBD NP PP NP --~ CD NN 
NP--} $ CD CD 

NP --~ NN NN NN 
PP ~ TO NP 

Table 1: Rules used for the parse tree shown in figure I. 

In order to parse new sentences, a simple bottom-up chart parser 
is combined with the acquired grammar. In our experiments, the 
parser is run until a single parse tree is found that spans all of 
the words in the input sentence. If  no such tree is found, then 
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the minimum number of  disjoint fragments is returned such that 
the set of fragments spans the entire input sentence. Because 
the acquired grammar is highly ambiguous, the returned parse 
tree is dependent on the order in which the grammar rules are 
applied. To account for this sensitivity to rule order, we repeat 
our experiments several times with different rule orderings. We 
have found that, although different orderings produce different 
parse trees, the overall accuracy of the results do not differ 
significantly. As expected, the high degree of rule ambiguity, 
together with our procedure that returns a single parse tree for 
each sentence, yields rather poor performance. Nevertheless, the 
performance of this system serves as a baseline which we use to 
assess the performance of other systems based on alternative 
grammar types. 

3 .  L E A R N I N G  A C O N T E X T - D E P E N D E N T  

G R A M M A R  

In this experiment, we closely follow the approach of Simmons 
and Yu, with extensions to accommodate grammar rules of a 
form derivable from the Treebank. Unlike our other 
experiments, the grammar rules in this experiment are situation 
/ action rules for a shift-reduce parser. In the following sections 
we consider: 

• The general structure of the shift-reduce parser. 

• The form of the context-dependent rules. 

• The problem of learning context-dependent rules for a 
shift-reduce parser from Treebank examples. 

• A parsing strategy that attempts to fred a single best parse 
based on contextual information. 

3.1 .  S h i f t - R e d u c e  P a r s e r  

The shift-reduce parser consists of two primary data structures: a 
five position input buffer, and an unlimited depth push down 
stack. New words arriving at the parser flow, in the order in 
which they are received, through the input buffer. Shift 
operations remove the leading word from the input buffer and 
push it onto the top of the stack. 

reduce 

s 

/ N  
NP VP 

Figure 2: Reduce operations construct tree structures. 

When this occurs, all other words are shifted one position 
toward the front of the buffer, and the next unprocessed word is 
moved into the last buffer position. Reduction operations 
remove two or more elements from the top of the stack, and 
replace them with a single constituent. Reduction operations are 
equivalent to constructing parse subtrees, as in Figure 2. 

3.2.  C o n t e x t - d e p e n d e n t  R u l e s  

The determination of what action the parser takes in a particular 
situation is governed by context-dependent rules. Constraints 
given by the rules are matched against actual situations in a two 
part process. First, for a rule to be applicable, a hard constraint 
specified by two or more elements on the top of the stack must 
be satisfied. Next, those rules that satisfy this condition are 
ordered by preference based on soft constraints specified by 
context elements of the stack and buffer. 

Hard constraints for reduction rules are determined directly by 
the reductions themselves. For example, to apply a rule 
reducing {DT JJ NN ...} to {NP ...}, the top three stack elements 
must be NN, JJ, and DT. For shift operations, the hard 
constraints are always given by the top two stack elements. 

Soft constraints are specified by a'two part context comprised of 
a stack portion and a buffer portion.. The stack portion is 
comprised of the three stack positions directly below the hard 
constraint, while the buffer portion is comprised of the entire 
five element buffer. Soft constraints are scored by a weighted 
sum of the number of matches between rule and situation 
contexts. These weights were hand tuned to maximize parsing 
accuracy. 

hard constraint, r 
must match | 
exactly. L 

stack [ 3  ............. 
context 12 ............. 
weigh t s  

/ 
/ 1 ............. L 

STACK 

~p 

~ 1  

top-n- 1 

top-n-2 

top-n-3 

BUFFER 

I w. I w.+,lw.+,lw.,Iw.,I 

15 4 3 2 I 
buffer context weights 

Figure 3: The primary data structures of the shift-reduce parser. 

3.3.  L e a r n i n g  S h i f t - R e d u c e  Rule s  

In order to train the shift-reduce parser, it is first necessary to 
convert the Treebank parse trees into sequences of shift and 
reduce operations. A simple treewalk algorithm that performs 
the conversion is shown in Figure 4. 

Training examples are presented successively to the parser. For 
each example, all rules with satisfied hard constraints are 
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formed into a list. Next, a shorter list is formed by extracting 
only those rules that best satisfy the soft constraints. If the 
correct parser action is among those specified by the shortened 
list of vales, then no action is taken. Otherwise, a new rule is 
formed from the current context and parser action, and is stored 
in the hash table of rules. When training is complete, the rule 
matching mechanism can present a short list of possible rules, 
one of which is guaranteed to be correct, for every situation 
presented in the training examples. 

Convert(tree) 
BEGIN 

IF tree is a leaf node THEN 
emit a Shift operation 

ELSE {has child nodes} 
FOR ALL child nodes of tree (from left to fight) DO 

Convert(child node) 
END FOR 
emit a Reduce operation 
{reducing child nodes to a single symbol} 

ENDIF 
END 

Figure 4: An algorithm for converting a parse tree into 
shift-reduce parser actions. 

3.4. Shift-Reduce Parser Operation 

Parsing a sentence is considered as a search problem, the goal of 
which is to fmd a sequence of actions that lead from an initial 
parser state to a final state. The initial state for a sentence is 
characterized by an empty stack and a buffer filled with the first 
five words of the sentence. The fmal state is characterized by an 
empty buffer and a single element at the top of the stack. Valid 
transitions between states are determined by the rules acquired 
during training. 

Given a parser state, the rule matching mechanism returns a list 
of  rules specifying actions that cause transitions to new states. 
The rules are guaranteed to be legal by hard constraints, but vary 
to the degree to which soft constraints on context are satisfied. 
Each alternative rule corresponds to a different syntactic 
interpretation of a phrase, only one of which is correct. The 
premise, put forth by Simmons and Yu, is that the use of context 
information significantly reduces ambiguity. 

To parse a sentence, a beam search is used to fred a path through 
the state space that maximizes the soft constraints specifying 
context. Upon completion, a list of shift and reduce operations 
is returned. These operations correspond directly to a parse tree 
for the input sentence. 

4. LEARNING A PROBABILISTIC 
CONTEXT-FREE G R A M M A R  

In this experiment, probabilities are used to select one among 
the set of alternative parse trees derivable for an input sentence. 
A straightforward evaluation of the probability of a parse tree is 
obtained from the probabilities of the individual grammar rules 
that comprise the tree. For each rule r of the form ct ~ t ,  the 

rule probability is given by P(r)= P(f l lc t ) .  Then, given a 

parse tree t constructed according to a derivation D(t), the 
probability of t is the product of all the conditional nile 
probabilities in the derivation: 

P(t)= H P(r). 
reD(t) 

Using the Treebank training corpus, P ( ~ a )  is estimated by 

counting the number of times the rule a ~ f l  appears in the 

training, divided by the number of times the nonterminal symbol 
Ot appears. In order to parse new sentences, a simple bottom-up 
chart parser is extended to include probability measures. In 
particular, an extra field is added to the chart structure in order 
to store a probability value corresponding to each completed 
edge. When multiple derivations result in the same edge, the 
probability value stored is the maximum among the competing 
theories. When parsing a sentence, all possible derivations are 
considered, and the derivation with the highest probability is 
then returned. 

5. EXPERIMENTAL RESULTS 

Each of the grammars was learned from a training set of 731 
sentences (16,733 words) from the Wall Street Journal Treebank 
corpus. A separate test set of 49 sentences (1289 wordsi was 
compiled from the same corpus. Parse quality was evaluated 
using Parseval, which reports three different measures of 
correctness: recall, precision, and crossings. Each parse tree to 
be evaluated (the candidate parse) is compared against the 
corresponding parse as found in Treebank (the standard parse). 
Recall measures the percentage of the constituents in the 

standard parse which are present in the candidate parse. 
Precision measures the percentage of the constituents in the 
candidate parse which are correct (i.e., present in the standard 
parse). Crossings measures the number of constituents in the 
candidate parse which are incompatible with the constituents in 
the standard parse, where incompatibility means that the 
constituent,crosses brackets with a constituent in the standard. 
For more details on the evaluation procedure, see [Black, et al., 
91] 

The results of the test are shown in Table 2. As expected, the 
performance of the simple ccontext-free grammar is substantially 
worse than the performance of both the context-dependent 
grammar and the probabilistic context-flee grammar. It is 
interesting to note that although recall for the P-CFG and CDG 
is essentially equal, the P-CFG has a higher precision. This 
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suggests that probabilistic modeling is more successful at 
reducing overgeneration than simple examination of context. 
The P-CFG also shows a lesser average number of crossings per 
sentence. 

Crossings Recall Precision 

P-CFG 4.94 :52.75 51.52 

CDG 6.61 51.20 42.16 

CFG 11.06 28.49 22.25 

Table 2: Parseval results for each grammar 

6. C O N C L U S I O N S  

These experiments provide a quantitative measure of the relative 
effectiveness of the three different types of grammars. Using the 
standard context-free grammar as a baseline, we see great 
improvement both with the addition of context information and 
with the incorporation of a probabilistic model. We also see 
evidence that using context to disambiguate among rules is not 
as effective as using probabilities. 

There are still many problems to overcome. Direct conversion of 
Treebank parse trees into rules yields productions whose fight- 
hand sides can vary in size between I and approximately 10. 
This is suspected to have significant impact on the performance 
of the context-dependent system. 

More improvements will be necessary before a trainable parser 
will be able to produce parses of high enough quality to be 
useful in an understanding system. This increase in accuracy 
should be achievable by combining the strengths of the context- 
dependent model with those of the probabilistic context-free 
model, and by exploring ways to make use of other types of 
information, such as semantic information. It would also be 
worthwhile to fitrther experiment with varying the amount of 
training data, contrasting domain-dependent and domain- 
independent training, and varying the amount and type of 
context information used by the context-dependent model. 
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