
Parsing Noun Phrases in the Penn Treebank

David Vadas∗
University of Sydney

James R. Curran∗∗

University of Sydney

Noun phrases (NPs) are a crucial part of natural language, and can have a very complex
structure. However, this NP structure is largely ignored by the statistical parsing field, as the
most widely used corpus is not annotated with it. This lack of gold-standard data has restricted
previous efforts to parse NPs, making it impossible to perform the supervised experiments that
have achieved high performance in so many Natural Language Processing (NLP) tasks.

We comprehensively solve this problem by manually annotating NP structure for the entire
Wall Street Journal section of the Penn Treebank. The inter-annotator agreement scores that we
attain dispel the belief that the task is too difficult, and demonstrate that consistent NP annotation
is possible. Our gold-standard NP data is now available for use in all parsers.

We experiment with this new data, applying the Collins (2003) parsing model, and find
that its recovery of NP structure is significantly worse than its overall performance. The parser’s
F-score is up to 5.69% lower than a baseline that uses deterministic rules. Through much exper-
imentation, we determine that this result is primarily caused by a lack of lexical information.

To solve this problem we construct a wide-coverage, large-scale NP Bracketing system. With
our Penn Treebank data set, which is orders of magnitude larger than those used previously, we
build a supervised model that achieves excellent results. Our model performs at 93.8% F-score on
the simple NP task that most previous work has undertaken, and extends to bracket longer, more
complex NPs that are rarely dealt with in the literature. We attain 89.14% F-score on this much
more difficult task. Finally, we implement a post-processing module that brackets NPs identified
by the Bikel (2004) parser. Our NP Bracketing model includes a wide variety of features that
provide the lexical information that was missing during the parser experiments, and as a result,
we outperform the parser’s F-score by 9.04%.

These experiments demonstrate the utility of the corpus, and show that many NLP applica-
tions can now make use of NP structure.

1. Introduction

The parsing of noun phrases (NPs) involves the same difficulties as parsing in general.
NPs contain structural ambiguities, just as other constituent types do, and resolving

∗ School of Information Technologies, University of Sydney, NSW 2006, Australia.
E-mail: dvadas1@it.usyd.edu.au.

∗∗ School of Information Technologies, University of Sydney, NSW 2006, Australia.
E-mail: james@it.usyd.edu.au.

Submission received: 23 April 2010; revised submission received: 17 February 2011; accepted for publication:
25 March 2011

© 2011 Association for Computational Linguistics

Computational Linguistics Volume 37, Number 4

these ambiguities is required for their proper interpretation. Despite this, statistical
methods for parsing NPs have not achieved high performance until now.

Many Natural Language Processing (NLP) systems specifically require the informa-
tion carried within NPs. Question Answering (QA) systems need to supply an NP as the
answer to many types of factoid questions, often using a parser to identify candidate NPs
to return to the user. If the parser cannot recover NP structure then the correct candidate
may never be found, even if the correct dominating noun phrase has been found. As an
example, consider the following extract:

. . . as crude oil prices rose by 50%, a result of the. . .

and the question:

The price of what commodity rose by 50%?

The answer crude oil is internal to the NP crude oil prices. Most commonly used parsers
will not identify this internal NP, and will never be able to get the answer correct.

This problem also affects anaphora resolution and syntax-based machine transla-
tion. For example, Wang, Knight, and Marcu (2007) find that the flat tree structure of the
Penn Treebank elongates the tail of rare tree fragments, diluting individual probabilities
and reducing performance. They attempt to solve this problem by automatically bina-
rizing the phrase structure trees. The additional NP annotation provides these SBSMT
systems with more detailed structure, increasing performance. However, this SBSMT
system, as well as others (Melamed, Satta, and Wellington 2004; Zhang et al. 2006), must
still rely on a non-gold-standard binarization. Our experiments in Section 6.3 suggest
that using supervised techniques trained on gold-standard NP data would be superior
to these unsupervised methods.

This problem of parsing NP structure is difficult to solve, because of the absence of
a large corpus of manually annotated, gold-standard NPs. The Penn Treebank (Marcus,
Santorini, and Marcinkiewicz 1993) is the standard training and evaluation corpus for
many syntactic analysis tasks, ranging from POS tagging and chunking, to full parsing.
However, it does not annotate internal NP structure. The NP mentioned earlier, crude oil
prices, is left flat in the Penn Treebank. Even worse, NPs with different structures (e.g.,
world oil prices) are given exactly the same annotation (see Figure 1). This means that
any system trained on Penn Treebank data will be unable to model the syntactic and
semantic structure inside base-NPs.

Figure 1
Parse trees for two NPs with different structures. The top row shows the identical Penn Treebank
bracketings, and the bottom row includes the full internal structure.

754

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00076&iName=master.img-000.png&w=246&h=125

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Our first major contribution is a gold-standard labeled bracketing for every am-
biguous noun phrase in the Penn Treebank. We describe the annotation guidelines and
process, including the use of named entity data to improve annotation quality. We
check the correctness of the corpus by measuring inter-annotator agreement and by
comparing against DepBank (King et al. 2003). We also analyze our extended Treebank,
quantifying how much structure we have added, and how it is distributed across NPs.
This new resource will allow any system or corpus developed from the Penn Treebank
to represent noun phrase structure more accurately.

Our next contribution is to conduct the first large-scale experiments on NP parsing.
We use the newly augmented Treebank with the Bikel (2004) implementation of the
Collins (2003) model. Through a number of experiments, we determine what effect
various aspects of Collins’s model, and the data itself, have on parsing performance.
Finally, we perform a comprehensive error analysis which identifies the many difficul-
ties in parsing NPs. This shows that the primary difficulty in bracketing NP structure is
a lack of lexical information in the training data.

In order to increase the amount of information included in the NP parsing model,
we turn to NP bracketing. This task has typically been approached with unsupervised
methods, using statistics from unannotated corpora (Lauer 1995) or Web hit counts
(Lapata and Keller 2004; Nakov and Hearst 2005). We incorporate these sources of data
and use them to build large-scale supervised models trained on our Penn Treebank
corpus of bracketed NPs. Using this data allows us to significantly outperform previous
approaches on the NP bracketing task. By incorporating a wide range of features into the
model, performance is increased by 6.6% F-score over our best unsupervised system.

Most of the NP bracketing literature has focused on NPs that are only three words
long and contain only nouns. We remove these restrictions, reimplementing Barker’s
(1998) bracketing algorithm for longer noun phrases and combine it with the supervised
model we built previously. Our system achieves 89.14% F-score on matched brackets.
Finally, we apply these supervised models to the output of the Bikel (2004) parser. This
post-processor achieves an F-score of 79.05% on the internal NP structure, compared to
the parser output baseline of 70.95%.

This work contributes not only a new data set and results from numerous exper-
iments, but also makes large-scale wide-coverage NP parsing a possibility for the first
time. Whereas before it was difficult to even evaluate what NP information was being
recovered, we have set a high benchmark for NP structure accuracy, and opened the field
for even greater improvement in the future. As a result, downstream applications can
now take advantage of the crucial information present in NPs.

2. Background

The internal structure of NPs can be interpreted in several ways, for example, the DP
(determiner phrase) analysis argued by Abney (1987) and argued against by van Eynde
(2006), treats the determiner as the head, rather than the noun. We will use a definition
that is more informative for statistical modeling, where the noun—which is much more
semantically indicative—acts as the head of the NP structure.

A noun phrase is a constituent that has a noun as its head,1 and can also contain
determiners, premodifiers, and postmodifiers. The head by itself is then an unsaturated

1 The Penn Treebank also labels substantive adjectives such as the rich as NP, see Bies et al. (1995, §11.1.5)

755

Computational Linguistics Volume 37, Number 4

NP, to which we can add modifiers and determiners to form a saturated NP. Or, in terms
of X-bar theory, the head is an N-bar, as opposed to the fully formed NP. Modifiers do not
raise the level of the N-bar, allowing them to be added indefinitely, whereas determiners
do, making NPs such as *the the dog ungrammatical.

The Penn Treebank annotates at the NP level, but leaves much of the N-bar level
structure unspecified. As a result, most of the structure we annotate will be on unsatu-
rated NPs. There are some exceptions to this, such as appositional structure, where we
bracket the saturated NPs being apposed.

Quirk et al. (1985, §17.2) describe the components of a noun phrase as follows:

� The head is the central part of the NP, around which the other constituent
parts cluster.

� The determinative, which includes predeterminers such as all and both;
central determiners such as the, a, and some; and postdeterminers such as
many and few.

� Premodifiers, which come between the determiners and the head. These
are principally adjectives (or adjectival phrases) and nouns.

� Postmodifiers are those items after the head, such as prepositional phrases,
as well as non-finite and relative clauses.

Most of the ambiguity that we deal with arises from premodifiers. Quirk et al. (1985,
page 1243) specifically note that “premodification is to be interpreted . . . in terms of
postmodification and its greater explicitness.” Comparing an oil man to a man who sells
oil demonstrates how a postmodifying clause and even the verb contained therein can
be reduced to a much less explicit premodificational structure. Understanding the NP is
much more difficult because of this reduction in specificity, although the NP can still be
interpreted with the appropriate context.

2.1 Noun Phrases in the Penn Treebank

The Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993) annotates NPs differ-
ently from any other constituent type. This special treatment of NPs is summed up by
the annotation guidelines (Bies et al. 1995, page 120):

As usual, NP structure is different from the structure of other categories.

In particular, the Penn Treebank does not annotate the internal structure of noun
phrases, instead leaving them flat. The Penn Treebank representation of two NPs with
different structures is shown in the top row of Figure 1. Even though world oil prices is
right-branching and crude oil prices is left-branching, they are both annotated in exactly
the same way. The difference in their structures, shown in the bottom row of Figure 1,
is not reflected in the underspecified Penn Treebank representation. This absence of
annotated NP data means that any parser trained on the Penn Treebank is unable to
recover NP structure.

Base-NP structure is also important for corpora derived from the Penn Treebank. For
instance, CCGbank (Hockenmaier 2003) was created by semi-automatically converting
the Treebank phrase structure to Combinatory Categorial Grammar (CCG) (Steedman

756

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

2000) derivations. Because CCG derivations are binary branching, they cannot directly
represent the flat structure of the Penn Treebank base-NPs. Without the correct brack-
eting in the Treebank, strictly right-branching trees were created for all base-NPs. This
is the most sensible approach that does not require manual annotation, but it is still
incorrect in many cases. Looking at the following example NP, the CCGbank gold-
standard is (a), whereas the correct bracketing would be (b).

(a) (consumer ((electronics) and (appliances (retailing chain))))

(b) ((((consumer electronics) and appliances) retailing) chain)

The Penn Treebank literature provides some explanation for the absence of NP
structure. Marcus, Santorini, and Marcinkiewicz (1993) describe how a preliminary
experiment was performed to determine what level of structure could be annotated
at a satisfactory speed. This chosen scheme was based on the Lancaster UCREL project
(Garside, Leech, and Sampson 1987). This was a fairly skeletal representation that could
be annotated 100–200 words an hour faster than when applying a more detailed scheme.
It did not include the annotation of NP structure, however.

Another potential explanation is that Fidditch (Hindle 1983, 1989)—the partial
parser used to generate a candidate structure, which the annotators then corrected—
did not generate NP structure. Marcus, Santorini, and Marcinkiewicz (1993, page 326)
note that annotators were much faster at deleting structure than inserting it, and
so if Fidditch did not generate NP structure, then the annotators were unlikely to
add it.

The bracketing guidelines (Bies et al. 1995, §11.1.2) suggest a further reason why
NP structure was not annotated, saying “it is often impossible to determine the scope
of nominal modifiers.” That is, Bies et al. (1995) claim that deciding whether an NP
is left- or right-branching is difficult in many cases. Bies et al. give some examples
such as:

(NP fake sales license)
(NP fake fur sale)
(NP white-water rafting license)
(NP State Secretary inauguration)

The scope of these modifiers is quite apparent. The reader can confirm this by making
his or her own decisions about whether the NPs are left- or right-branching. Once this
is done, compare the bracketing decisions to those made by our annotators, shown
in this footnote.2 Bies et al. give some examples that were more difficult for our
annotators:

(NP week-end sales license)
(NP furniture sales license)

However this difficulty in large part comes from the lack of context that we are given. If
the surrounding sentences were available, we expect that the correct bracketing would
become more obvious. Unfortunately, this is hard to confirm, as we searched the corpus
for these NPs, but it appears that they do not come from Penn Treebank text, and

2 Right, left, left, left.

757

Computational Linguistics Volume 37, Number 4

therefore the context is not available. And if the reader wishes to compare again, here
are the decisions made by our annotators for these two NPs.3

Our position then, is that consistent annotation of NP structure is entirely feasible.
As evidence for this, consider that even though the guidelines say the task is difficult,
the examples they present can be bracketed quite easily. Furthermore, Quirk et al. (1985,
page 1343) have this to say:

Indeed, it is generally the case that obscurity in premodification exists only for the
hearer or reader who is unfamiliar with the subject concerned and who is not therefore
equipped to tolerate the radical reduction in explicitness that premodification entails.

Accordingly, an annotator with sufficient expertise at bracketing NPs should be capa-
ble of identifying the correct premodificational structure, except in domains they are
unfamiliar with. This hypothesis will be tested in Section 4.1.

2.2 Penn Treebank Parsing

With the advent of the Penn Treebank, statistical parsing without extensive linguistic
knowledge engineering became possible. The first model to exploit this large corpus of
gold-standard parsed sentences was described in Magerman (1994, 1995). This model
achieves 86.3% precision and 85.8% recall on matched brackets for sentences with fewer
than 40 words on Section 23 of the Penn Treebank.

One of Magerman’s important innovations was the use of deterministic head-
finding rules to identify the head of each constituent. The head word was then used
to represent the constituent in the features higher in the tree. This original table of head-
finding rules has since been adapted and used in a number of parsers (e.g., Collins 2003;
Charniak 2000), in the creation of derived corpora (e.g., CCGbank [Hockenmaier 2003]),
and for numerous other purposes.

Collins (1996) followed up on Magerman’s work by implementing a statistical
model that calculates probabilities from relative frequency counts in the Penn Treebank.
The conditional probability of the tree is split into two parts: the probability of individ-
ual base-NPs; and the probability of dependencies between constituents. Collins uses the
CKY chart parsing algorithm (Kasami 1965; Younger 1967; Cocke and Schwartz 1970), a
dynamic programming approach that builds parse trees bottom–up. The Collins (1996)
model performs similarly to Magerman’s, achieving 86.3% precision and 85.8% recall
for sentences with fewer than 40 words, but is simpler and much faster.

Collins (1997) describes a cleaner, generative model. For a tree T and a sentence S,
this model calculates the joint probability, P(T, S), rather than the conditional, P(T|S).
This second of Collins’s models uses a lexicalized Probabilistic Context Free Grammar
(PCFG), and solves the data sparsity issues by making independence assumptions. We
will describe Collins’s parsing models in more detail in Section 2.2.1. The best perform-
ing model, including all of these extensions, achieves 88.6% precision and 88.1% recall
on sentences with fewer than 40 words.

Charniak (1997) presents another probabilistic model that builds candidate trees
using a chart, and then calculates the probability of chart items based on two values:
the probability of the head, and that of the grammar rule being applied. Both of these

3 Right, left.

758

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

are conditioned on the node’s category, its parent category, and the parent category’s
head. This model achieves 87.4% precision and 87.5% recall on sentences with fewer
than 40 words, a better result than Collins (1996), but inferior to Collins (1997). Charniak
(2000) improves on this result, with the greatest performance gain coming from gener-
ating the lexical head’s pre-terminal node before the head itself, as in Collins (1997).

Bikel (2004) performs a detailed study of the Collins (2003) parsing models, finding
that lexical information is not the greatest source of discriminative power, as was pre-
viously thought, and that 14.7% of the model’s parameters could be removed without
decreasing accuracy.

Note that many of the problems discussed in this article are specific to the Penn
Treebank and parsers that train on it. There are other parsers capable of recovering full
NP structure (e.g., the PARC parser [Riezler et al. 2002]).

2.2.1 Collins’s Models. In Section 5, we will experiment with the Bikel (2004) implemen-
tation of the Collins (2003) models. This will include altering the parser itself, and so
we describe Collins’s Model 1 here. This and the NP submodel are the parts relevant to
our work.

All of the Collins (2003) models use a lexicalized grammar, that is, each non-
terminal is associated with a head token and its POS tag. This information allows a
better parsing decision to be made. However, in practice it also creates a sparse data
problem. In order to get more reasonable estimates, Collins (2003) splits the generation
probabilities into smaller steps, instead of calculating the probability of the entire rule.
Each grammar production is framed as follows:

P(h) → Ln(ln) . . . L1(l1)H(h)R1(r1) . . .Rm(rm) (1)

where H is the head child, Ln(ln) . . . L1(l1) are its left modifiers, and R1(r1) . . .Rm(rm) are
its right modifiers. Making independence assumptions between the modifiers and then
using the chain rule yields the following expressions:

Ph(H|Parent, h) (2)
∏

i=1...n+1 Pl(Li(li)|Parent, H, h) (3)
∏

i=1...m+1 Pr(Ri(ri)|Parent, H, h) (4)

The head is generated first, then the left and right modifiers, which are conditioned on
the head but not on any other modifiers. A special STOP symbol is introduced (the n + 1th

and m + 1th modifiers), which is generated when there are no more modifiers.
The probabilities generated this way are more effective than calculating over one

very large rule. This is a key part of Collins’s models, allowing lexical information to be
included while still calculating useful probability estimates.

Collins (2003, §3.1.1, §3.2, and §3.3) also describes the addition of distance measures,
subcategorization frames, and traces to the parsing model. However, these are not
relevant to parsing NPs, which have their own submodel, described in the following
section.

2.2.2 Generating NPs in Collins’s Models. Collins’s models generate NPs using a slightly
different model to all other constituents. These differences will be important in Section 5,
where we make alterations to the model and analyze its performance. For base-NPs,

759

Computational Linguistics Volume 37, Number 4

instead of conditioning on the head, the current modifier is dependent on the previous
modifier, resulting in what is almost a bigram model. Formally, Equations (3) and (4)
are changed as shown:

∏

i=1...n+1

Pl(Li(li)|Parent, Li−1(li−1)) (5)

∏

i=1...m+1

Pr(Ri(ri)|Parent, Ri−1(ri−1)) (6)

There are a few reasons given by Collins for this. Most relevant for this work is
that because the Penn Treebank does not fully bracket NPs, the head is unreliable. When
generating crude in the NP crude oil prices, we would want to condition on oil, the true
head of the internal NP structure. However, prices is the head that would be found. Using
the NP submodel thus results in the correct behavior. As Bikel (2004) notes, the model
is not conditioning on the previous modifier instead of the head, the model is treating
the previous modifier as the head. With the augmented Penn Treebank that we have
created, the true head can now be identified. This may remove the need to condition on
the previous modifier, and will be experimented with in Section 5.4.

The separate NP submodel also allows the parser to learn NP boundaries effectively,
namely, that it is rare for words to precede a determiner in an NP. Collins (2003,
page 602) gives the example Yesterday the dog barked, where conditioning on the head
of the NP, dog, results in incorrectly generating Yesterday as part of the NP. On the other
hand, if the model is conditioning on the previous modifier, the, then the correct STOP

category is much more likely to be generated, as words do not often come before the in
an NP.

Collins also notes that a separate X-bar level is helpful for the parser’s performance.
For this reason, and to implement the separate base-NP submodel, a preprocessing step
is taken wherein NP brackets that do not dominate any other non-possessive NP nodes
are relabeled as NPB. For consistency, an extra NP bracket is inserted around NPB nodes
not already dominated by an NP. These NPB nodes are removed before evaluation. An
example of this transformation can be seen here:

(S (S
(NP (DT The) (NN dog)) (NP
(VP (VBZ barks))) (NPB (DT The) (NN dog)))

(VP (VBZ barks)))

2.3 NP Bracketing

Many approaches to identifying noun phrases have been explored as part of chunking
(Ramshaw and Marcus 1995), but determining internal NP structure is rarely addressed.
Recursive NP bracketing—as in the CoNLL 1999 shared task and as performed by
Daumé III and Marcu (2004)—is closer, but still less difficult than full NP bracketing.
Neither of these tasks require the recovery of full sub-NP structure, which is in part
because gold-standard annotations for this task have not been available in the past.

Instead, we turn to the NP bracketing task as framed by Marcus (1980, page 253)
and Lauer (1995), described as follows: given a three-word noun phrase like those here,
decide whether it is left branching (a) or right branching (b):

(a) ((crude oil) prices)

760

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

(b) (world (oil prices))

Most approaches to the problem use unsupervised methods, based on competing
association strengths between pairs of words in the compound (Marcus 1980, page
253). There are two possible models to choose from: dependency or adjacency. The
dependency model compares the association between words 1–2 to words 1–3, whereas
the adjacency model compares words 1–2 to words 2–3. Both models are illustrated in
Figure 2.

Lauer (1995) demonstrated superior performance of the dependency model using a
test set of 244 (216 unique) noun compounds drawn from Grolier’s encyclopedia. These
data have been used to evaluate most research since. Lauer uses Roget’s thesaurus to
smooth words into semantic classes, and then calculates association between classes
based on their counts in a body of text, also drawn from Grolier’s. He achieves 80.7%
accuracy using POS tags to identify bigrams in the training set.

Lapata and Keller (2004) derive estimates of association strength from Web counts,
and only compare at a lexical level, achieving 78.7% accuracy. Nakov and Hearst (2005)
also use Web counts, but incorporate additional counts from several variations on
simple bigram queries, including queries for the pairs of words concatenated or joined
by a hyphen. This results in an impressive 89.3% accuracy.

There have also been attempts to solve this task using supervised methods, even
though the lack of gold-standard data makes this difficult. Girju et al. (2005) train a
decision tree classifier, using 362 manually annotated NPs from the Wall Street Journal
(WSJ) as training data, and testing on Lauer’s data. For each of the three words in the NP,
they extract five features from WordNet (Fellbaum 1998). This approach achieves 73.1%
accuracy, although when they shuffled their WSJ data with Lauer’s to create a new test
and training split, performance increased to 83.1%. This may be a result of the ∼10%
duplication in Lauer’s data set, however.

Barker (1998) describes an algorithm for bracketing longer NPs (described in Sec-
tion 6.4) by reducing the problem to making a number of decisions on three word NPs.
This algorithm is used as part of an annotation tool, where three-word NPs for which
no data are available are presented to the user. Barker reports accuracy on these three-
word NPs only (because there is no gold-standard for the complete NPs), attaining 62%
and 65% on two different data sets.

In this section, we have described why the Penn Treebank does not internally
annotate NPs, as well as how a widely used parser generates NP structure. The following
section will detail how we annotated a corpus of NPs, creating data for both a PCFG
parser and an NP bracketing system.

Figure 2
The associations compared by the adjacency and dependency models, from Lauer (1995).

761

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00076&iName=master.img-001.png&w=236&h=79

Computational Linguistics Volume 37, Number 4

3. Annotation Process

The first step to statistical parsing of NPs is to create a gold-standard data set. This
section will describe the process of manually annotating such a corpus of NP structure.
The data will then be used in the parsing experiments of Section 5 and the NP Bracketing
experiments in Section 6. Extending the Penn Treebank annotation scheme and corpus
is one of the major contributions of this article.

There are a handful of corpora annotated with NP structure already, although these
do not meet our requirements. DepBank (King et al. 2003) fully annotates NPs, as does
the Briscoe and Carroll (2006) reannotation of DepBank. This corpus consists of only
700 sentences, however. The Redwoods Treebank (Oepen et al. 2002) also includes
NP structure, but is again comparatively small and not widely used in the parsing
community. The Biomedical Information Extraction Project (Kulick et al. 2004) intro-
duces the use of NML nodes to mark internal NP structure in its Addendum to the Penn
Treebank Bracketing Guidelines (Warner et al. 2004). This corpus is specifically focused
on biomedical text, however, rather than newspaper text. We still base our approach
to bracketing NP structure on these biomedical guidelines, as the grammatical structure
being annotated remains similar.

We chose to augment the WSJ section of the Penn Treebank with the necessary NP
structure, as it is the corpus most widely used in the parsing field for English. This also
meant that the NP information would not need to be imported from a separate model,
but could be included into existing parsers and their statistical models with a minimum
of effort. One principle we applied during the augmentation process was to avoid
altering the original Penn Treebank brackets. This meant that results achieved with the
extended corpus would be comparable to those achieved on the original, excluding the
new NP annotations.

The manual annotation was performed by the first author, and a computational
linguistics PhD student also annotated Section 23. This helped to ensure the reliability of
the annotations, by allowing inter-annotator agreement to be measured (see Section 4.1).
This also maximized the quality of the section used for parser testing. Over 60% of
sentences in the corpus were manually examined during the annotation process.

3.1 Annotation Guidelines

We created a set of guidelines in order to aid in the annotation process and to keep
the result consistent and replicable. These are presented in full in Appendix A, but we
will also present a general description of the guidelines here, together with a number
of examples.

Our approach is to leave right-branching structures unaltered, while labeled brack-
ets are inserted around left-branching structures.

(NP (NN world) (NN oil) (NNS prices))

(NP (NML(NML(NML (NN crude) (NN oil))))
(NNS prices))

Left- and right-branching NPs are now differentiated. Although explicit brackets are not
added to right-branching NPs, they should now be interpreted as having the following
implicit structure:

(NP (NN world)
(NODE(NODE(NODE (NN oil) (NNS prices)))))

762

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

This representation was used in the biomedical guidelines, and has many ad-
vantages. By keeping right-branching structure implicit, the tree does not need to be
binarized. Binarization can have a harmful effect on parsers using PCFGs, as it re-
duces the context-sensitivity of the grammar (Collins 2003, page 621). It also reduces
the amount of clutter in the trees, making them easier to view and annotate. Right-
branching structure can still be added automatically if required, as we experiment with
in Section 5.5. Not inserting it, however, makes the annotator’s task simpler.

The label of the newly created constituent is NML (nominal modifier), as in the
example above, or JJP (adjectival phrase), depending on whether its head is a noun
or an adjective. Examples using the JJP label are shown here:

(NP (JJP(JJP(JJP (JJ dark) (JJ red))))
(NN car))

(NP (DT the)
(JJP(JJP(JJP (JJS fastest) (VBG developing))))
(NNS trends))

Rather than this separate JJP label, the biomedical treebank replicates the use of the
ADJP label in the original Penn Treebank. We wanted to be able to distinguish the
new annotation from the old in later experiments, which required the creation of this
additional label. JJPs can easily be reverted back to ADJP, as we will experiment with in
Section 5.2.

Non-base-NPs may also need to be bracketed, as shown:

(NP-SBJ
(NML(NML(NML (JJ former)

(NAC (NNP Ambassador)
(PP (TO to)
(NP (NNP Costa) (NNP Rica)))))))

(NNP Francis) (NNP J.) (NNP McNeil))

In this example, we join former and the NAC node, as he is formerly the Ambassador, not
formerly Mr. McNeil.

Many coordinations need to be bracketed, as in the following examples:

(NP (DT the)
(NML(NML(NML (NNPS Securities)

(CC and) (NNP Exchange))))
(NNP Commission))

(NP (PRP$ its)
(JJP(JJP(JJP (JJ current)

(CC and) (JJ former))))
(NNS ratepayers))

Without these brackets, the NP’s implicit structure, as shown here, would be incorrect.

(NP (DT the)
(NODE(NODE(NODE
(NODE(NODE(NODE (NNPS Securities))))
(CC and)
(NODE(NODE(NODE (NNP Exchange) (NNP Commission))))))))

The erroneous meaning here is the Securities and the Exchange Commission, rather than
the correct the Securities Commission and the Exchange Commission. There is more detail
on how coordinations are bracketed in Appendix A.2.1

763

Computational Linguistics Volume 37, Number 4

As can be seen from these examples, most of the our annotation is concerned with
how premodifiers attach to each other and to their head.

3.1.1 Difficult Cases. During the annotation process, we encountered a number of NPs
that were difficult to bracket. The main cause of this difficulty was technical jargon, for
example, in the phrase senior subordinate reset discount debentures. The Penn Treebank
guidelines devote an entire section to this Financialspeak (Bies et al. 1995, §23). The
biomedical guidelines similarly contain some examples that are difficult for a non-
biologist to annotate:

liver cell mutations
p53 gene alterations
ras oncogene expression
polymerase chain reaction

Even these NPs were simple to bracket for an expert in the biological domain, however.
We did find that there were relatively few NPs that the annotators clearly understood,
but still had difficulty bracketing. This agrees with our hypothesis in Section 2.1, that
modifier scope in NPs is resolvable.

For those difficult-to-bracket NPs that were encountered, we bracket what struc-
ture is clear and leave the remainder flat. This results in a right-branching default.
The biomedical guidelines (Warner et al. 2004, §1.1.5) also take this approach, which
can be compared to how ambiguous attachment decisions are bracketed in the Penn
Treebank and in the Redwoods Treebank (Oepen et al. 2002). Bies et al. (1995, §5.2.1)
says “the default is to attach the constituent at the highest of the levels where it can be
interpreted.”

3.2 Annotation Tool

We developed a bracketing tool to identify ambiguous NPs and present them to an
annotator for disambiguation. An ambiguous NP is any (possibly non-base) NP with
three or more contiguous children that are either single words or another NP. Certain
common patterns, such as three words beginning with a determiner, were observed as
being entirely unambiguous during the initial phase of the annotation. Because of this,
they are filtered out by the tool. The complete list of patterns is: * CC *, $ * * -NONE-, DT
* *, PRP$ * *, and * * POS. The latter pattern also inserts a NML bracket around the first
two tokens.

In order to better inform the annotator, the tool also displayed the entire sentence
surrounding the ambiguous NP. During the annotation process, most NPs could be
bracketed without specifically reading this information, because the NP structure was
clear and/or because the annotator already had some idea of the article’s content from
the NPs (and surrounding context) shown previously. In those cases where the surround-
ing sentence provided insufficient context for disambiguation, it was typically true that
no amount of surrounding context was informative. For these NPs, the principle of
leaving difficult cases flat was applied. We did not mark flat NPs during the annotation
process (it is a difficult distinction to make) and so cannot provide a figure for how
many there are.

3.2.1 Automatic Bracketing Suggestions. We designed the bracketing tool to automatically
suggest a bracketing, using rules based mostly on named entity tags. These NER tags
are drawn from the BBN Pronoun Coreference and Entity Type Corpus (Weischedel

764

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

and Brunstein 2005). This corpus of gold-standard data annotates 29 different entity
tags. Some of the NER tags have subcategories, for example, GPEGPEGPE (Geo-Political Entity) is
divided into CountryCountryCountry, CityCityCity, State/ProvinceState/ProvinceState/Province and OtherOtherOther, however we only use the coarse
tags for the annotation tool suggestions.

This NER information is useful, for example, in bracketing the NP Air Force contract.
Because Air Force is marked as an organization, the tool can correctly suggest that the
NP is left-branching. Using NER tags is more informative than simply looking for NNP POS
tags, as there are many common nouns that are entities; for example, vice president is a
PER DESCPER DESCPER DESC (person descriptor).

The tool also suggests bracketings based on the annotator’s previous decisions.
Whenever the annotator inserts a bracket, the current NP and its structure, together
with the label and placement of the new bracket, is stored. Then, whenever the same
NP and structure is seen in the future, the same bracketing is suggested. This source of
suggestions is particularly important, as it helps to keep the annotator consistent.

Other suggestions are based on gazetteers of common company and person name
endings. Preliminary lists were generated automatically by searching for the most fre-
quently occurring final tokens in the relevant named entities. Some of the most common
examples are Co. and Inc for companies and Jr and III for people’s names. There were
also some incorrect items that were removed from the lists by manual inspection.

The guidelines also mandate the insertion of nodes around brackets and speech
marks (see Appendix A.2.2 and A.2.3). These are detected automatically and included in
the suggestion system accordingly. Unbalanced quotes do not result in any suggestions.

The last source of suggestions is final possessives, as in John Smith’s. In these cases,
a bracket around the possessor John Smith is suggested.

It should be noted that using this suggestion feature of the annotation tool may bias
an annotator towards accepting an incorrect decision. The use of previous decisions
in particular makes it much easier to always choose the same decision. We believe it is
worth the trade-off of using the suggestions, however, as it allows faster, more consistent
annotation.

3.3 Annotation Post-Processes

In order to increase the reliability of the corpus, a number of post-processes have been
carried out since the annotation was first completed. Firstly, 915 NPs were marked
by the annotator as difficult during the main annotation phase. In discussion with
two other experts, the best bracketing for these NPs was determined. Secondly, the
annotator identified 241 phrases that occurred numerous times and were non-trivial
to bracket. These phrases were usually idiomatic expressions like U.S. News & World
Report and/or featured technical jargon as in London Interbank Offered Rate. An extra
pass was made through the corpus, ensuring that every instance of these phrases was
bracketed consistently.

The main annotator made another pass (from version 0.9 to 1.0) over the corpus in
order to change the standard bracketing for coordinations, speech marks, and brackets.
These changes were aimed at increasing consistency and bringing our annotations more
in line with the biomedical guidelines (Kulick et al. 2004). For example, royalty and
rock stars is now bracketed the same way as rock stars and royalty. For more detail, see
Sections A.2.1, A.2.2, and A.2.3 in the annotation guidelines appendix.

Only those NPs that had at least one bracket inserted during the first pass were
manually inspected during this pass. NPs with a conjunction followed by multiple
tokens, such as president and chief executive officer, also needed to be reannotated. By

765

Computational Linguistics Volume 37, Number 4

only reanalyzing this subset of ambiguous NPs, the annotator’s workload was reduced,
while still allowing for a number of simple errors to be noted and corrected.

Lastly, we identified all NPs with the same word sequence and checked that they
were always bracketed identically. Those that differed from the majority bracketing
were manually reinspected and corrected as necessary. However, even after this process,
there were still 48 word sequences by type (201 by token) that were inconsistent. In these
remaining cases, such as the NP below:

(NP-TMP (NMLNMLNML (NNP Nov.) (CD 15)) (NP-TMP (NPNPNP (NNP Nov.) (CD 15))
(, ,) (, ,)
(CD 1999)) (CD 1999))

we were inconsistent in inserting the NML node (shown on the left) because the Penn
Treebank sometimes already has the structure annotated under an NP node (shown
on the right). Since we do not make changes to existing brackets, we cannot fix these
cases. This problem may be important later on, as a statistical parser will have difficulty
learning whether it is appropriate to use an NML or NP label.

3.4 Annotation Time

Annotation initially took over 9 hours per section of the Treebank. With practice,
however, this was reduced to about 3 hours per section. Each section contains around
2,500 ambiguous NPs (i.e., annotating took approximately 5 seconds per NP). Most NPs
require no bracketing, or fit into a standard pattern which the annotator soon becomes
accustomed to, hence the task can be performed quite quickly.

As a comparison, during the original creation of the Treebank, annotators per-
formed at 375–475 words per hour after a few weeks, and increased to about 1,000
words per hour after gaining more experience (Marcus, Santorini, and Marcinkiewicz
1993). For our annotations, we would expect to be in the middle of this range, as the
task was not large enough to get more than a month’s experience, or perhaps faster as
there is less structure to annotate. The actual figure, calculated by counting each word
in every NP shown, is around 800 words per hour. This matches the expectation quite
well.

4. Corpus Analysis

Looking at the entire Penn Treebank corpus, the annotation tool finds 60,959 ambigu-
ous NPs out of the 432,639 NPs in the corpus (14.09%). Of these, 23,129 (37.94%) had
brackets inserted by the annotator. This is as we expect, as the majority of NPs are right-
branching. Of the brackets added, 26,372 were NML nodes, and 894 were JJP.

To compare, we can count the number of existing NP and ADJP nodes found in the
NPs that the bracketing tool presents. We find there are 32,772 NP children, and 579 ADJP,
which is quite similar to the number and proportion of nodes we have added. Hence,
our annotation process has introduced almost as much structural information into NPs
as there was in the original Penn Treebank.

Table 1 shows the most common POS tag sequences for NP, NML, and JJP nodes, over
the entire corpus. An example is given showing typical words that match the POS tags.
For NML and JJP, the example shows the complete NP node, rather than just the NML or JJP
bracket. It is interesting to note that RB JJ sequences are annotation errors in the original
Treebank, and should have an ADJP bracket already.

766

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 1
The most common POS tag sequences in the NP annotated corpus. The examples show a complete
NP, and thus the POS tags for NML and JJP match only the bracketed words.

LABEL COUNT POS TAGS EXAMPLE

NP 3,557 NNP NNP NNP John A. Smith
2,453 DT NN POS (the dog) ’s
1,693 JJ NN NNS high interest rates

NML 8,605 NNP NNP (John Smith) Jr.
2,475 DT NN (the dog) ’s
1,652 NNP NNP NNP (A. B. C.) Corp

JJP 162 ‘‘ JJ ’’ (“ smart ”) cars
120 JJ CC JJ (big and red) apples
112 RB JJ (very high) rates

4.1 Inter-Annotator Agreement

To determine the correctness and consistency of our corpus, we calculate inter-annotator
agreement on Section 23. Note that the second annotator was following version 0.9
of the bracketing guidelines, and since then the guidelines have been updated to ver-
sion 1.0. Because of this, we can only analyze the 0.9 version of the corpus, that is, before
the primary annotator made the second pass mentioned in Section 3.3.4 This is not
problematic, as the definition of what constitutes an NML or JJP node has not changed,
only their representation in the corpus. That is, the dependencies that can be drawn
from the NPs remain the same.

We have not calculated a kappa statistic, a commonly used measure of inter-
annotator agreement, as it is difficult to apply to this task. This is because the bracketing
of an NP cannot be divided into two choices; there are far more possibilities for NPs
longer than three words. Whether the evaluation is over brackets or dependencies,
there is always structure that the annotator has made an implicit decision not to add,
and counting these true negatives is a difficult task. The true negative count cannot
be taken as zero either, as doing so makes the ratios and thus the final kappa value
uninformative.

Instead, we measure the proportion of matching brackets and (unlabeled) depen-
dencies between annotators, taking one as a gold standard and then calculating preci-
sion, recall, and F-score. For the brackets evaluation, we count only the newly added NML

and JJP brackets, not the enclosing NP or any other brackets. This is because we want to
evaluate our annotation process and the structure we have added, not the pre-existing
Penn Treebank annotations. The dependencies are generated by assuming the head of
a constituent is the right-most token, and then joining each modifier to its head. This
is equivalent to adding explicit right-branching brackets to create a binary tree. The
number of dependencies is fixed by the length of the NP, so the dependency precision
and recall are the same.

Table 2 shows the results, including figures from only those NPs that have three
consecutive nouns. Noun compounds such as these have a high-level of ambiguity (as

4 Although the subsequent consistency checks described there had been carried out, and were applied
again afterwards.

767

Computational Linguistics Volume 37, Number 4

Table 2
Agreement between annotators, before and after discussion and revision. Two evaluations are
shown: matched brackets of the newly added NML and JJP nodes, and automatically generated
dependencies for all words in the NP.

PREC. RECALL F-SCORE

Brackets 89.17 87.50 88.33
Dependencies 96.40 96.40 96.40

Brackets, NPs with three consecutive nouns only 87.46 91.46 89.42
Dependencies, NPs with three consecutive nouns only 92.59 92.59 92.59

Brackets, revised 97.56 98.03 97.79
Dependencies, revised 99.27 99.27 99.27

will be shown later in Table 14), so it is interesting to compare results on this subset
to those on the corpus in full. Table 2 also shows the result after cases of disagreement
were discussed and the annotations revised.

In all cases, matched brackets give a lower inter-annotator agreement F-score. This
is because it is a harsher evaluation, as there are many NPs that both annotators agree
should have no additional bracketing that are not taken into account by the metric. For
example, consider an NP that both annotators agree is right-branching:

(NP (NN world) (NN oil) (NNS prices))

The F-score is not increased by the matched bracket evaluation here, as there is no NML

or JJP bracket and thus nothing to evaluate. A dependency score, on the other hand,
would find two matching dependencies (between world and prices and oil and prices),
increasing the inter-annotator agreement measure accordingly.

We can also look at exact matching on NPs, where the annotators originally agreed
in 2,667 of 2,908 cases (91.71%), or 613 of 721 (85.02%) NPs that had three consecutive
nouns. After revision, the annotators agreed in 2,864 of 2,908 cases (98.49%). Again, this
is a harsher evaluation as partial agreement is not taken into account.

All of these inter-annotator figures are at a high level, thus demonstrating that the
task of identifying nominal modifier scope can be performed consistently by multiple
annotators. We have attained high agreement rates with all three measures, and found
that even difficult cases could be resolved by a relatively short discussion.

The bracketing guidelines were revised as a result of the post-annotation discussion,
to clarify those cases where the disagreements had occurred. The disagreements after
revision occurred for a small number of repeated instances, such as:

(NP (NNP Goldman) (NP
(, ,) (NML (NNP Goldman)
(NNP Sachs) (, ,)
(CC &) (NNP Co)) (NNP Sachs))

(CC &) (NNP Co))

The second annotator felt that Goldman , Sachs should form its own NML constituent,
whereas the first annotator did not.

We would like to be able to compare our inter-annotator agreement to that achieved
in the original Penn Treebank project. Marcus, Santorini, and Marcinkiewicz (1993)
describe a 3% estimated error rate for their POS tag annotations, but unfortunately, no

768

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

figure is given for bracketing error rates. As such, a meaningful comparison between
the NP annotations described here and the original Penn Treebank cannot be made.

We can compare against the inter-annotator agreement scores in Lauer (1995, §5.1.7).
Lauer calculates a pair-wise accuracy between each of seven annotators, and then aver-
ages the six numbers for each annotator. This results in agreement scores between 77.6%
and 82.2%. These figures are lower than those we have reported here, although Lauer
only presented the three words in the noun compound with no context. This makes
the task significantly harder, as can be seen from the fact the annotators only achieve
between 78.7% and 86.1% accuracy against the gold standard. Considering this, it is not
surprising that the annotators were not able to come to the same level of agreement that
the two annotators in our process reached.

4.2 DepBank Agreement

Another approach to measuring annotator reliability is to compare with an indepen-
dently annotated corpus of the same text. We use the Briscoe and Carroll (2006) ver-
sion of the PARC700 Dependency Bank (King et al. 2003). These 560 sentences from
Section 23 are annotated with labeled dependencies, and are used to evaluate the RASP
parser.

Some translation is required to compare our brackets to DepBank dependencies,
as this is not a trivial task. We map the brackets to dependencies by finding the head
of the NP, using the Collins (1999) head-finding rules, and then creating a dependency
between each other child’s head and this head. The results are shown in Table 3. We give
two evaluation scores, the dependencies themselves and how many NPs had all their
dependencies correct. The second evaluation is tougher, and so once again the depen-
dency numbers are higher than those at the NP level. And although we cannot evaluate
matched brackets as we did for inter-annotator agreement, we can (in the bottom two
rows of the table) look only at cases where we have inserted some annotations, which is
similar in effect. As expected, these are more difficult cases and the score is not as high.

The results of this analysis are better than they appear, as performing a cross-
formalism conversion to DepBank does not work perfectly. Clark and Curran (2007)
found that their conversion method to DepBank only achieved 84.76% F-score on la-
beled dependencies, even when using gold-standard data. In the same way, our agree-
ment figures could not possibly reach 100%. Accordingly, we investigated the errors
manually to determine their cause, with the most common results shown in Table 4.

True disagreement between the Briscoe and Carroll (2006) annotations and ours is
only the second most common cause. In the example in Table 4, the complete sentence

Table 3
Agreement with DepBank. Two evaluations are shown: over-all dependencies, and where all
dependencies in an NP must be correct. The bottom two rows exclude NPs where no NML or
JJP annotation was added.

MATCHED TOTAL %

By dependency 1,027 1,114 92.19
By noun phrase 358 433 82.68

By dependency, only annotated NPs 476 541 87.99
By noun phrase, only annotated NPs 150 203 73.89

769

Computational Linguistics Volume 37, Number 4

Table 4
Disagreement analysis with DepBank, showing how many dependencies were not matched.

ERROR TYPE COUNT EXAMPLE NP

Company name post-modifier 26 Twenty-First Securities Corp
True disagreement 25 mostly real estate
Head finding error 21 Skippy the Kangaroo

is: These “clean-bank” transactions leave the bulk of bad assets, mostly real estate, with the
government, to be sold later. We annotated mostly real estate as a right-branching NP, that
is, with dependencies between mostly and estate and real and estate. Briscoe and Carroll
form a dependency between mostly and real.

The largest source of disagreements arises from how company names are bracketed.
Whereas we have always separated the company name from post-modifiers such as
Corp and Inc, DepBank does not in most cases. The other substantial cause of annotation
discrepancies is a result of the head-finding rules. In these cases, the DepBank depen-
dency will often be in the opposite direction of the Penn Treebank one, or the head
found by Collins’s rules will be incorrect. For example, in the NP Skippy the Kangaroo, the
Collins’s head-finding rules identify Kangaroo as the head, whereas the DepBank head
is Skippy. In both cases, a dependency between the two words is created, although the
direction is different and so no match is found.

Even without taking these problems into account, these results show that con-
sistently and correctly bracketing noun phrase structure is possible, and that inter-
annotator agreement is at an excellent level.

4.3 Evaluating the Annotation Tool’s Suggestions

This last analysis of our corpus evaluates the annotation tool’s suggestion feature. This
will serve as a baseline for NP bracketing performance in Section 5, and will be a much
stronger baseline than making all NPs left- or right-branching. A left-branching baseline
would perform poorly, as only 37.94% of NPs had left-branching structure. A right-
branching baseline would be even worse as no brackets would be inserted, resulting
in an F-score of 0.0%.

The annotation tool was run over the entire Penn Treebank in its original state.
Suggestions were automatically followed and no manual changes were made. All the
suggestion rules (described in Section 3.2.1) were used, except for those from the anno-
tator’s previous bracketings, as these would not be available unless the annotation had
already been completed. Also note that these experiments use gold-standard NER data;
we expect that automatically generated NER tags would not perform as well. The results
in Table 5 show that in all cases, the suggestion rules have high precision and low recall.
NER-based features, for example, are only helpful in NPs that dominate named entities,
although whenever they can be applied, they are almost always correct.

The subtractive analysis shows that each of the suggestion types increases perfor-
mance, with NER and company and name endings providing the biggest gains. Surpris-
ingly, precision improves with the removal of the NER suggestion type. We suspect that
this is caused by some of the annotation choices in the BBN corpus that do not align
well with the parse structure. For example, in Mr Vinken, the words are annotated as OOO
and PERSONPERSONPERSON respectively, rather than having PERSONPERSONPERSON on both words. Conversely, all three

770

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

tokens in a few years are annotated as DATEDATEDATE, even though years is the only date-related
word.

Note that all of the results in Table 5, except for the last two lines, are evaluating
over the entire corpus, as there was no need for training data. With this baseline, we
have set a significant challenge for finding further improvement.

5. Statistical Parsing

In the previous section, we described the augmentation of the Penn Treebank with NP
structure. We will now use this extended corpus to conduct parsing experiments. We
use the Bikel (2004) implementation of the Collins (2003) models, as it is a widely used
and well-known parser with state-of-the-art performance. It is important to make the
distinction between Collins’s and Bikel’s parsers, as they are not identical. The same is
true for their underlying models, which again have slight differences. We use Bikel’s
parser in all of our experiments, but will still refer to Collins’s models for the most part.

We compare the parser’s performance on the original Penn Treebank and the new
NML and JJP bracketed version. We report the standard Parseval measures (Black et al.
1991) labeled bracket precision, recall, and F-scores over all sentences. Sections 02–21 are
used for training, Section 00 for development, and testing is carried out on Section 23.

5.1 Initial Experiments

Table 6 shows the results of Section 00. The first row comes from training and evaluating
on the original Penn Treebank, and the next three are all using the extended NP corpus.
The first of these, Original structure, evaluates only the brackets that existed before
the NP augmentation. That is, the NML and JJP brackets are removed before calculating
these figures, in the same way that the NPB brackets added as part of Collins’s parsing
process are excised. The next figures, for NMLNMLNML and JJPJJPJJP brackets only, work in the opposite
manner, with all brackets besides NML and JJP being ignored. The final row shows the
results when all of the brackets—NMLs, JJPs, and the original structure—are evaluated.

These figures supply a more detailed picture of how performance has changed,
showing that although the new brackets make parsing marginally more difficult overall
(by about 0.5% in F-score), accuracy on the original structure is only negligibly worse.

Table 5
Suggestion rule performance. The middle group shows a subtractive analysis, removing
individual suggestion groups from the All row. The final two rows are on specific sections;
all other figures are calculated over the entire corpus.

SUGGESTIONS USED PREC. RECALL F-SCORE

NER only 94.16 32.57 48.40
All 94.84 54.86 69.51

−NER 97.46 41.31 58.02
−Company and name endings 94.55 41.42 57.60
−Brackets and speech marks 95.03 50.62 66.05
−Possessives 94.51 50.95 66.20

All, Section 00 95.64 59.36 73.25
All, Section 23 94.29 56.81 70.90

771

Computational Linguistics Volume 37, Number 4

Table 6
Performance achieved with the Bikel (2004) parser, initial results on development set.

PREC. RECALL F-SCORE

Original PTB 88.88 88.85 88.86

Original structure 88.81 88.88 88.85
NML and JJP brackets only 76.32 60.42 67.44
All brackets 88.55 88.15 88.35

The new NML and JJP brackets are the cause of the performance drop, with an F-score
more than 20% lower than the overall figure. This demonstrates the difficulty of parsing
NPs.

The all-brackets result actually compares well to the original Penn Treebank model,
as the latter is not recovering or being evaluated on NP structure and as such, has a much
easier task. However the parser’s performance on NML and JJP brackets is surprisingly
poor. Indeed, the figure of 67.44% is more than 5% lower than the baseline established
using the annotation tool’s suggestions (see Table 5). The suggestions were in part based
on NER information that the parser does not possess, but we would still expect the parser
to outperform a set of deterministic rules. The rest of this section will describe a number
of attempts to improve the parser’s performance by altering the data being used and
the parser model itself.

5.2 Relabeling NML and JJP

Bikel’s parser does not come inbuilt with an expectation of NML or JJP nodes in the tree-
bank, and these new labels could cause problems. For example, head-finding for these
constituents is undefined. Further, changing the structure of NPs (which are already
treated differently in many aspects of Collins’s model) also has deeper implications, as
we shall see. In an attempt to remove any complications introduced by the new labels,
we ran an experiment where the new NML and JJP labels were relabeled as NP and ADJP.
These are the labels that would be given if NPs were originally bracketed with the rest of
the Penn Treebank. This relabeling means that the model does not have to discriminate
between two different types of noun and adjective structure, and for this reason we
might expect to see an increase in performance. This approach is also easy to implement,
and negates the need for any change to the parser itself.

The figures in Table 7 show that this is not the case, as the all-brackets F-score has
dropped by almost half a percent, compared to the numbers in Table 6. To evaluate
the NML and JJP brackets only, we compare against the corpus without relabeling, and
whenever a test NP matches a gold NML we count it as a correct bracketing. The same is
done for ADJP and JJP brackets. However, only recall can be measured in this way, and
not precision, as the parser does not produce NML or JJP brackets that can be evaluated.

These nodes can only be known when they have already been matched against the
gold standard, which falsely suggests a precision of 100%. The incorrect NML and JJP

nodes are hidden by incorrect NP or ADJP nodes and the difference cannot be recovered.
Thus the NML and JJP brackets difference in Table 7 is for recall, not F-score. This also
means that the figures given for the original structure are not entirely accurate, as the
original NPs cannot be distinguished from the NMLs we annotated and have converted to
NPs. This explains why precision drops by 0.89%, whereas recall is only 0.20% lower.

772

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 7
Performance achieved with the Bikel (2004) parser and relabeled brackets. The DIFF column
compares against the initial results in Table 6.

PREC RECALL F-SCORE DIFF

Original structure 87.92 88.68 88.30 −0.55
NML and JJP brackets only – 53.54 – −6.88
All brackets 88.09 87.77 87.93 −0.42

Despite all these complications, the decreases in performance on every evaluation
make it clear that the relabeling has not been successful. We carried out a visual inspec-
tion of the errors that were made in this experiment, which hadn’t been made when
the NP and NML labels were distinct. It was noticeable that many of these errors occurred
when a company name or other entity needed to be bracketed, such as W.R. Grace in
the following gold-standard NP:

(NP

(ADVP (RB formerly))

(DT a) (NML (NNP W.R.) (NNP Grace))

(NN vice) (NN chairman))

The parser output had no bracket around W.R. Grace.
We conclude that the model was not able to generalize a rule that multiple tokens

with the NNP POS tag should be bracketed. Even though NML brackets often follow this
rule, NPs do not. As a result, the distinction between the labels should be retained, and
we must change the parser itself to deal with the new labels properly.

5.3 Head-Finding Rules

The first and simplest change we made was to create head-finding rules for NML and JJP

constituents. In the previous experiments, these nodes would be covered by the catch-
all rule, which simply chooses the left-most child as the head. This is incorrect in most
NMLs, where the head is usually the right-most child. To define the NML and JJP rules, we
copy those for NPs and ADJPs, respectively. We also add to the rules for NPs, so that child
NML and JJP nodes can be recursively examined, in the same way that NPs and ADJPs are.
This change is not needed for other labels, as NMLs and JJPs only exist under NPs. We ran
the parser again with this change, and achieved the results in Table 8. The differences
shown are against the original results from Table 6.

Table 8
Performance achieved with the Bikel (2004) parser and correct head-finding rules. The DIFF
column compares against the initial results in Table 6.

PREC RECALL F-SCORE DIFF

Original structure 88.78 88.86 88.82 −0.03
NML and JJP brackets only 75.27 58.33 65.73 −1.71
All brackets 88.51 88.07 88.29 −0.06

773

Computational Linguistics Volume 37, Number 4

Once again, we were surprised to find that the F-score has been reduced, though by
only a small amount overall, which chiefly comes from the NML and JJP brackets. This
can be explained by considering an example NML: lung cancer. The corrected head-finding
rule conditions the modifier lung on the head cancer. This NML constituent would then be
quite likely, as the set of possible modifiers is restricted by the probability distribution.
However, the reverse (conditioning the head cancer on the modifier lung) would also be
informative, as the set of heads is likewise restricted. An NML’s left-most token is rarely
the or another uninformative token, and thus the uncorrected head-finding rules are
also quite effective.

Furthermore, for NMLs such as Judge Curry or Mr Vinken, the left-most token is
actually a much better generalization to pass up the tree and base probabilistic actions
upon. Finally, Bikel (2004, §6.1.1) and Chiang and Bikel (2002) note that head-finding
rules do not affect Collins’s models to a large degree. Using a much simpler set of
rules degrades performance by only a small amount, whereas an optimal set of rules
derived using Expectation Maximization (EM) does not perform significantly better than
the standard ones. For these reasons, choosing the left- or right-most token as the head
achieves similar performance.

5.4 The Base-NP Submodel

The next alteration to the parser is to turn off the base-NP submodel. Collins (1999,
page 179) explains that this separate model is used because the Penn Treebank does
not fully annotate internal NP structure, something that we have now done. Hopefully,
with these new brackets in place, we can remove the NP submodel and perhaps even
improve performance in doing so.

We experimented with three different approaches to turning off the base-NP model.
All three techniques involved editing the parser code:

1. Changing the isBaseNP() method to always return false. This means that
the main model, rather than the NP submodel, is always used.

2. Removing the preprocessing step that creates NPB nodes. This alteration
will have the same effect as the first change, and will also remove the
distinction between NP and NPB nodes.

3. Changing the isNP() method to return true for NMLs. This will affect which
NPs are turned into NPBs during the preprocessing step, as NPs that
dominate NMLs will no longer be basal.

The third change does not turn the base-NP model off as such, but it does affect where
it functions.

The results in Table 9 show that overall F-score has decreased in all cases. In the first
change, to isBaseNP(), performance on only NML and JJP brackets has actually increased
by 3.78% F-score, although the original structure is almost 10% worse. The second
change, to the preprocessing step, results in a much smaller loss to the original structure,
but also not as big an increase on the internal NP brackets. The third change, to isNP(),
is most notable for the large drop in performance on the internal NP structure.

There are a few reasons for these results, which demonstrate the necessity of the
base-NP submodel. Collins (1999, §8.2.2) explains why the distinction between NP and
NPB nodes is needed: Otherwise, structures such as that in Figure 3, which never occur in
the Treebank, are given too high a probability. The parser needs to know where NPs

774

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 9
Performance achieved with the Bikel (2004) parser and the base-NP model off in three different
ways: (1) No NP submodel, (2) No NPB nodes, (3) No NPB nodes when the NP is dominating a
NML. DIFF is again comparing against the initial results in Table 6.

PREC RECALL F-SCORE DIFF

1 Original structure 72.09 88.19 79.33 −9.52
NML and JJP brackets only 72.93 69.58 71.22 +3.78
All brackets 72.11 87.71 79.14 −9.21

2 Original structure 87.75 87.65 87.70 −1.05
NML and JJP brackets only 72.36 69.27 70.78 +3.34
All brackets 87.37 87.17 87.27 −1.08

3 Original structure 86.90 88.66 87.77 −1.08
NML and JJP brackets only 48.61 3.65 6.78 −60.66
All brackets 86.83 86.46 86.64 −1.71

will not recurse anymore (when they are basal), so that it can generate the correct
flat structure. Furthermore, the third change effectively treats NP and NML nodes as
equivalent, and we have already seen problems caused by this approach in Section 5.2.

5.5 Bracket Structure

We have now seen how a Collins-style parser performs on internal NP structure, but the
question remains about whether the structure itself is optimal. Treebank structure can
have a large effect on parser performance, as has been studied by many researchers.
Collins (2003, page 621) notes that binary trees would be a poor choice, as the parser
loses some context sensitivity, and the distance measures (§3.1.1) become ineffective.
He advocates one level of bracketing structure per X-bar level.

Goodman (1997) on the other hand, explicitly converts trees to a binary branching
format as a preprocessing step, in order to avoid problems from varying structures.
Johnson (1998) finds that the performance of simple PCFGs can be improved through
tree transformations, whereas Klein and Manning (2001) observe that some simple tree
transformations can increase parsing speed. Petrov et al. (2006) perform automatic tree
transformations by splitting nonterminal symbols, creating a smaller grammar that
achieves state-of-the-art performance. The variation shown in these approaches, all for
the same task, highlights the difficulty in identifying optimal tree structure.

Kübler (2005) investigates two German treebanks with different annotation
schemes, and finds that certain properties, such as having unary nodes and flatter
clauses, increase performance. Rehbein and van Genabith (2007) suggest that evaluation

Figure 3
This structure, which never appears in the corpus, will be generated unless base-NPs are
marked.

775

Computational Linguistics Volume 37, Number 4

methods are also affected by treebank structure, showing that the Parseval measures
are biased towards an increased number of non-terminal nodes.

It may be argued that a better representation for some NPs is to explicitly bracket
right-branching structure. For example, in the NP the New York Stock Exchange, if there
was a bracket around New York Stock Exchange, then it would be useful training for
when the parser comes across New York Stock Exchange composite trading (which it
does quite often). The parser should learn to add a bracket in both cases. The cur-
rent bracketing guidelines do not mark right-branching constituents, they are simply
assumed implicitly to be there.

We experiment with automatically adding these right-branching brackets and then
examine what difference this change makes. Table 10 shows that overall performance
drops by 1.51% F-score. This was a surprising result, as there are a number of easily
recoverable brackets that are introduced by making right-branching structure explicit.
For example, a POS tag sequence of DT NN NN is always right-branching. This explains
the more than 10% increase in F-score when evaluating internal NP brackets only. As
Rehbein and van Genabith (2007) found, increasing the number of non-terminal nodes
has caused an increase in performance, though we may question, as they do, whether
performance has truly increased, or whether the figure is simply inflated by the eval-
uation method. Either way, the deleterious effect on overall performance suggests that
right-branching structure should be left implicit.

5.6 Test Set Results

Having found that the best performing model is the initial one with no alterations,
we now evaluate its results on the test data: Section 23. Table 11 shows that, as with
the Section 00 results, the original Penn Treebank structure is barely affected by the
additional NML and JJP brackets. The new brackets themselves are recovered slightly
better than they were on the development data, achieving a figure that is almost the
same as the suggestion baseline in this case.

These results confirm those we saw in our initial experiments: Recovering NP struc-
ture is a difficult task for the Collins (2003) model. As a result, there is a slight drop in
overall performance.

5.7 Error Analysis

Despite the large number of experiments we have performed in this section, we are no
closer to outperforming the suggestion baseline established in Section 4.3. The highest
accuracy has come from the unaltered parser, and changes to the corpus and model
have proven unsuccessful. We need to look at the errors being made by the parser, so
that any problems that appear can be solved. Accordingly, we categorized each of the

Table 10
Performance achieved with the Bikel (2004) parser and explicit right-branching structure. The
DIFF column compares against the initial results in Table 6.

PREC RECALL F-SCORE DIFF

Original structure 87.96 88.06 88.01 −0.84
NML and JJP brackets only 82.33 74.28 78.10 +10.66
All brackets 87.33 86.36 86.84 −1.51

776

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 11
Performance achieved with the Bikel (2004) parser, final results on the test set. The suggestion
baseline is comparable to the NML and JJP brackets only figures, as are the Original PTB and
Original structure figures.

PREC. RECALL F-SCORE

Original PTB 88.58 88.45 88.52
Suggestion baseline 94.29 56.81 70.90

Original structure 88.49 88.53 88.51
NML and JJP brackets only 80.06 63.70 70.95
All brackets 88.30 87.80 88.05

560 NML and JJP errors in our initial model through manual inspection. The results of
this analysis (performed on the development set) are shown in Table 12, together with
examples of the errors being made. Only relevant brackets and labels are shown in the
examples; the final column describes whether or not the bracketing shown is correct.

Table 12
Error analysis for the Bikel (2004) parser on the development set, showing how many times the
error occurred (#), the percentage of total errors (%), and how many of the errors were false
positives (FP) or false negatives (FN). If a cross (×) is in the final column then the example
shows the error being made. On the other hand, if the example is marked with a tick (

√
) then it

is demonstrating the correct bracketing.

ERROR # % FP FN EXAMPLE

Modifier attachment 213 38.04 56 157
NML 122 21.79 21 101 lung cancer deaths ×
Entity structure 43 7.68 24 19 (Circulation Credit) Plan ×
Appositive title 29 5.18 6 23 (Republican Rep.) Jim Courter

√
JJP 10 1.79 4 6 (More common) chrysotile fibers

√
Company/name 9 1.61 1 8 (Kawasaki Heavy Industries) Ltd.

√

Mislabeling 92 16.43 30 62 (ADJP more influential) role
√

Coordinations 92 16.43 38 54 (cotton and acetate) fibers
√

Company names 10 1.79 0 10 (F.H. Faulding) & (Co.)
√

Possessives 61 10.89 0 61 (South Korea) ’s
√

Speech marks/brackets 35 6.25 0 35 (“ closed-end ”)
√

Clear errors 45 8.04 45 0
Right-branching 27 4.82 27 0 (NP (NML Kelli Green)) ×
Unary 13 2.32 13 0 a (NML cash) transaction ×
Coordination 5 0.89 5 0 (NP a (NML savings and loan)) ×

Structural 8 1.43 3 5 (NP . . . spending) (VP (VBZ figures) . . .) ×

Other 14 2.50 8 6

Total 560 100.00 180 380

777

Computational Linguistics Volume 37, Number 4

The most common error caused by an incorrect bracketing results in a modifier
being attached to the wrong head. In the example in the table, because there is no bracket
around lung cancer, there is a dependency between lung and deaths, instead of lung and
cancer. The example is thus incorrectly bracketed, as shown by the cross in the final
column of the table. We can further divide these errors into general NML and JJP cases,
and instances where the error occurs inside a company name or in a person’s title.

The reason for these errors is that the n-grams that need to be bracketed simply do
not exist in the training data. Looking for each of the 142 unique n-grams that were not
bracketed, we find that 93 of them do not occur in Sections 02–21 at all. A further 17 of
the n-grams do occur, but not as constituents, which would make reaching the correct
decision even more difficult for the parser. In order to fix these problems, it appears
that an outside source of information must be consulted, as the lexical information is
currently not available.

The next largest source of errors is mislabeling the bracket itself. In particular,
distinguishing between using NP and NML labels, as well as ADJP and JJP, accounts for
75 of the 92 errors. This is not surprising, as we noted during the final preparation of
the corpus (see Section 3.3) that the labels of some NPs were inconsistent. The previous
relabeling experiment suggests that we should not evaluate the pairs of labels equally,
meaning that the best way to fix these errors would be to change the training data itself.
This would require alterations to the original Penn Treebank brackets, something we
avoided during the annotation process. In this case the example shown in the table is
correct (with a tick in the final column), while the parser would’ve incorrectly labeled
the bracket as JJP.

Coordinations are another significant source of errors, because coordinating multi-
token constituents requires brackets around each of the constituents, as well as a further
bracket around the entire coordination. Getting just a single decision wrong can mean
that a number of these brackets are in error. Another notable category of errors arises
from possessive NPs, which always have a bracket placed around the possessor in our
annotation scheme. The parser is not very good at replicating this pattern, perhaps be-
cause these constituents would usually not be bracketed if it were not for the possessive.
In particular, NML nodes that begin with a determiner are quite rare, only occurring when
a possessive follows. The parser also has difficulty in replicating the constituents around
speech marks and brackets. We suspect that this is due to the fact that Collins’s model
does not generate punctuation as it does other constituents.

There are a number of NML and JJP brackets in the parser’s output that are clearly
incorrect, either because they define right-branching structure (which we leave implicit)
or because they dominate only a single token. The only single token NMLs exist in
coordinations, but unfortunately the parser is too liberal with this rule. The final major
group of errors are structural; that is, the entire parse for the sentence is malformed, as
in the example where figures is actually a noun.

From this analysis, we can say that the modifier attachment problem is the best to
pursue. Not only is it the largest cause of errors, but there is an obvious way to reduce
the problem: Find and make use of more data. One way to do this with a Collins-style
parser would be to add a new probability distribution to the model, akin to subcatego-
rization frames and distance measures (Collins 2003, §3.2 and §3.1.1). However, doing
so would be a challenging task.

We take a different approach in Section 6: using a separate NP Bracketer. This
allows us to use n-gram counts as well as a wide range of other features drawn from
many different sources. These can then be included in a model specifically dedicated
to parsing NP structure. This approach is similar to the machine translation system

778

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

of Koehn (2003), which uses a parser to identify NPs and then translates them using
an NP-specific subsystem. Additional features are included in the subsystem’s model,
improving accuracy from 53.9% to 67.1%. When this subsystem is embedded in a word-
based MT system, its BLEU score (Papineni et al. 2002) increases from 0.172 to 0.198.

6. Noun Phrase Bracketing

In this section, we will use NP bracketing techniques (as described in Section 2.3) to
improve upon the parser’s performance of only 67.44%.

We divide NPs into two categories:5

Simple NPs:. are exactly three words long and contain only nouns.

Complex NPs:. include all simple NPs as well as those that are longer than three
words, contain non-nominal parts of speech (such as adjective, determiner,
etc.), and include clausal modifiers. We consider every constituent annotated
as NP in the Penn Treebank to be a complex NP.

We will begin with simple NPs, as most previous work has limited itself in these ways
and we wish to allow a comparison between our experiments and those in the literature.
Our eventual aim, however, will be to build a post-processor that can bracket the full
range of NPs in the Penn Treebank. Thus, in our later experiments we will take on the
much more difficult task of bracketing complex NPs from our newly annotated corpus.

6.1 Data

In order to build an NP Bracketing system, there must be data to evaluate it, and for
supervised models, to train on as well. We extract both a simple and a complex NP data
set from our extended Penn Treebank.

6.1.1 Simple NPs. Simple NPs are extracted from our extended Penn Treebank data as
follows. If the last three children of an NP are nouns, then they became an example in our
data set. We mark the NP as left-branching if the first and second words are bracketed,
and as right-branching otherwise. This method (assuming that all NPs have a right-most
head) will retrieve all possible simple NPs from the corpus. It also means that we will
not have headless sequences of modifiers in the data set, because only the right-most
part of the NP is being looked at. This also allows us to retrieve simple NPs from NPs
longer than three words, by simply ignoring the left-most modifier(s). One final step is
to remove examples where each word has the same NER tag, ignoring many flat base-NP
cases such as John A. Smith. Lauer (1995) used a similar approach to collect three noun
sequences from Grolier’s encyclopedia.

Some example NPs from the Penn Treebank are shown below:

(NP (NN executive) (NN vice) (NN president))
(NP (NML (NN lung) (NN cancer)) (NNS deaths))
(NP (JJ separate) (NN board) (NNS meetings))
(NP (DT an) (NN assistant) (NN state) (NN attorney) (NN general))
(NP (NML (NNP New) (NNP York)) (NNP Stock) (NNP Exchange))

5 Note that this is our own terminology, and has no relation to other uses of these terms in the literature.

779

Computational Linguistics Volume 37, Number 4

From this set we extract one left-branching NP (lung cancer deaths), and two right-
branching NPs (executive vice president and state attorney general). Other potential se-
quences that we don’t extract include: separate board meetings, as separate is an adjective;
assistant state attorney, as these tokens are not right-most in the NP; and York Stock
Exchange as these tokens are not (even implicitly) dominated by single node.

This process results in 5,569 three-word NPs for bracketing, which is an order of
magnitude larger than all previous data sets. Previous researchers have typically used
Lauer’s set (244 NPs) or created their own small set (∼500 NPs at most). This new, much
larger data set means that we can carry out large-scale machine learning effectively,
rather than using unsupervised methods.

Statistics comparing our new data set to those used by other researchers are shown
in Table 13. As can be seen, the Penn Treebank-based corpus is significantly larger than
all other data sets. The distribution of left- and right-branching NPs also appears to vary
greatly, which may be affected by the content of the corpus. The Nakov and Hearst
(2005) biomedical and Barker (1998) small engines data sets are both very technical texts,
and the Buckeridge and Sutcliffe (2002) AmiPro software manual and Buckeridge and
Sutcliffe (2002) Time magazine articles are probably aimed at a more general audience.

6.1.2 Complex NPs. We have also extracted another even larger data set of complex NPs
for the experiments in Section 6.4. For this set we retrieve an example for each NP of
length three or more in the Penn Treebank. We will only be identifying the structure
in NML and JJP brackets and so NPs with other child nodes (e.g., prepositional phrases)
must be treated specially. We choose a simple approach, taking the head word of the
child node to represent the entire constituent. This means we can treat such NPs in the
same manner as base-NPs and don’t have to store internal structure that our system will
not attempt to parse. An example of this is shown in the first row of Table 14, where
ABC Co and the market leader would both have been NP nodes. We have elided the words
in square brackets, leaving only the heads of those constituents.

Some common POS tag sequences (e.g., initial determiner and final possessive) are
unambiguous in three word NPs, and so we remove these cases. This has the side effect
of increasing the ambiguity in the data and making the task harder on average. This
leaves 53,568 instances in our data set, which is two orders of magnitude larger than
any that has been created previously.

Table 14 shows the most common POS tag sequences in our complex NP data set. The
entropy of the distribution of bracketings for the POS tag sequences gives an indication

Table 13
Comparison showing the sizes of various NP bracketing corpora.

CORPUS # ITEMS LEFT (%) RIGHT (%)

Penn Treebank 5,569 59 41

Lauer (1995) 244 67 33
Buckeridge and Sutcliffe (2002) AmiPro 307 58 42
Buckeridge and Sutcliffe (2002) CISI 235 63 37
Buckeridge and Sutcliffe (2002) CRAN 223 74 26
Buckeridge and Sutcliffe (2002) Time 214 48 52
Nakov and Hearst (2005) Biomedical 430 84 16
Barker (1998) SPARC 188 45 55
Barker (1998) small engines 164 91 9

780

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 14
The most common bracketings of POS tag sequences in our complex NP corpus.

ENTROPY SEQUENCE EXAMPLE

2,228 0.00 (NNP , NN) [ABC] Co , [the market] leader
1,796 1.00 ((NNP NNP) NNP) John Smith Co.
1,762 1.00 (NNP NNP NNP) John A. Smith
1,481 0.54 (JJ NN NNS) high interest rates
1,359 0.59 (DT JJ NN NN) the high interest rate
1,054 0.13 (JJ JJ NNS) big red cars

of the difficulty of the task. Larger entropy means that the sequence is more ambiguous,
because there are many bracketing alternatives to choose from and/or because the al-
ternatives are close to equally likely. The entropy figure for the NNP NNP NNP bracketings
reinforce the result we saw in Section 5.7: A sequence of three nouns is very hard to
bracket, as there is no good baseline decision.

Figure 4 shows a histogram of the entropy distribution across POS tag sequences.
Although 43.71% of all sequences have a single bracketing, the majority of sequences
are ambiguous. There is a spike just below an entropy of 1, mostly made up of se-
quences with two almost equally likely bracketings. This demonstrates that complex
NP bracketing is far from a trivial task.

6.2 Unsupervised Experiments

With our new data set of simple NPs, we began running experiments similar to those
carried out in the literature (Nakov and Hearst 2005). Refer back to Section 2.3 for a
reminder of the models typically used for this task. We implemented both an adjacency
and dependency model, and three different association measures: the raw bigram count,
the bigram probability, and χ2.

Raw bigram count = count(wi, wj) (7)

P(wi|wj) =
count(wi, wj)

count(wj)
(8)

Figure 4
Entropy over the bracketings of POS tag sequences from the complex NP corpus.

781

Computational Linguistics Volume 37, Number 4

χ2(wi, wj) =
N(AD − BC)2

(A + C)(B + D)(A + B)(C + D) (9)

where A = count(wi, wj) (10)

B = count(wi, w̄j) (11)

C = count(w̄i, wj) (12)

D = count(w̄i, w̄j) (13)

and N = A + B + C + D (14)

w̄ indicates any word except w
Our counts come from three different sources: Google and MSN search engine hit

counts, and from the Google Web 1T corpus (Brants and Franz 2006), which contains
n-gram counts collected from 1 trillion words of Web text. We can calculate N, for the
χ2 measure shown in Equation (9), as the total number of bigrams in the Web 1T corpus
(910,884,463,583), and take the same estimate as Nakov and Hearst of 8 trillion when
using search engine counts.

One problem with the bigram probability and χ2 measures is that a single zero count
will cause the entire measure to be zero, ignoring the effect of other non-zero counts.
To solve this problem, Nakov and Hearst (2005) apply a basic form of smoothing:
adding 0.5 to each frequency count. Although this is not a particularly effective form
of smoothing, we take a similar approach so that our results will be comparable with
theirs.

The results from the experiments, on both Lauer’s and our data set, are shown
in Tables 15 and 16, respectively. Our results on Lauer’s corpus are similar to those
reported previously, with the dependency model outperforming the adjacency model
on all measures. The Web 1T counts are the most effective, and the raw counts—the

Table 15
Unsupervised results for the simple NPs in Lauer’s data set.

COUNTS ADJACENCY DEPENDENCY

RAW PROB. χ2 RAW PROB. χ2

Google 72.5 68.4 73.0 77.5 75.0 76.2
MSN 71.3 65.6 72.1 75.0 74.6 74.6
Web 1T 74.2 70.5 75.4 81.2 82.8 77.5

Table 16
Unsupervised results for the simple NPs in the Penn Treebank data set.

COUNTS ADJACENCY DEPENDENCY

RAW PROB. χ2 RAW PROB. χ2

Google 75.53 69.85 79.98 69.58 68.61 69.94
MSN 76.53 74.38 80.07 69.22 69.29 69.82
Web 1T 80.05 79.62 79.33 74.18 75.18 70.71

782

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

simplest association measure—work surprisingly well. The results on the new corpus
are also surprising, as the adjacency model outperforms the dependency model by a
wide margin. Once again, the Web 1T counts perform well in all cases, although the
best result is from the MSN search engine. The χ2 measure gives the highest accuracy
for both search engines, but is least effective with the Web 1T counts. The two search
engines give reasonably similar results on both data sets.

Our analysis shows that the good performance of the adjacency model comes from
the large number of named entities in the corpus. When we remove all items that have
any word as a named entity, the results are reversed, and the dependency model is
superior. On the 1,556 NPs that remain, using Web 1T counts and the χ2 measure, the
adjacency model achieves 71.85% accuracy, and the dependency model attains 73.84%.
The other count sources and association measures show the same trend.

6.2.1 n-gram Variations. Both the adjacency and dependency models are relatively
knowledge-poor, only utilizing a pair of bigram counts in order to make a decision.
In order to increase the amount of information available, we retrieved hit counts for a
number of other variations on the simple bigrams, as proposed by Nakov and Hearst
(2005). For example, the bigram joined by a hyphen to form a single token, or with a
possessive marker. The full list is shown in Table 17 — Google (G), MSN (M), Web 1T
(W), and snippets (S). Also shown is whether or not the count source used that pattern.

Table 17
Variations on the basic query used in our experiments. The final four columns show which
count sources the variation was used with: Google, MSN, Web 1T, and/or Snippets. A tick
(
√

) indicates that the count source was used, and a cross (×) means that it was not.

NAME LEFT BRANCHING RIGHT BRANCHING G M W S

Wildcard 1 brain stem * cells brain * stem cells
√ × × ×

Wildcard 2 brain stem * * cells brain * * stem cells
√ × × ×

Wildcard 3 brain stem * * * cells brain * * * stem cells
√ × × ×

Reverse wildcard 1 cells * brain stem stem cells * brain
√ × × ×

Reverse wildcard 2 cells * * brain stem stem cells * * brain
√ × × ×

Reverse wildcard 3 cells * * * brain stem stem cells * * * brain
√ × × ×

Adjacency concat. brainstem stemcells
√ √ √ ×

Dependency concat. brainstem braincells
√ √ √ ×

Concatenation triple brainstem cells brain stemcells
√ √ √ ×

Swap first two words brain stem cells stem brain cells
√ √ √ ×

Reorder cells brain stem stem cells brain
√ √ √ ×

Abbreviation brain stem bs cells brain stem cells sc
√ √ √ ×

Abbreviation w/brackets brain stem (BS) stem cells (SC) × × √ ×
Possessive stem’s brain’s

√ √ × ×
Possessive triple brain stem’s cells brain’s stem cells

√ √ √ √
Capitalization brain stem Cells brain Stem cells × × √ √
Internal hyphenation brain-stem cells brain stem-cells × × √ √
External hyphenation brain stem cells-* *-brain stem cells × × √ √
Internal slash brain/stem cells brain/stem cells × × √ √
External slash brain stem cells/* */brain stem cells × × √ √
Left brackets (brain stem) cells (brain) stem-cells × × √ √
Right brackets brain stem (cells) brain (stem-cells) × × √ √
Comma brain stem, cells brain, stem cells × × √ √
Colon brain stem: cells brain: stem cells × × √ √
Period brain stem. cells brain. stem cells × × √ ×
N&H period brain. stem cells brain stem. cells × × √ √

783

Computational Linguistics Volume 37, Number 4

Some patterns cannot be used by some count sources, for example, MSN does not do
wildcards searches, and Web 1T only goes up to 5-grams. Snippets is another source
of counts suggested by Nakov and Hearst (2005), utilizing the short piece of text that
comes with each search result. These snippets come from the Google search engine.

Nakov and Hearst (2005) used these n-gram variations in a complicated voting
scheme, where different counts from different sources were given hand-tuned weights
and then combined. Rather than implementing such a complex algorithm, we per-
formed some simpler voting experiments. Each n-gram variation was given a single
unweighted vote. If the left and right counts were equal, then the variation supplied no
vote, and if the final votes were equally split, then we defaulted to left-branching.

We performed a greedy search through the possible sets of voters, to optimize
performance on Lauer’s data. Our best result uses the voters in Table 18. This set
achieves 90.2% accuracy, a similar figure to Nakov and Hearst’s 89.3%, without the
morphological or paraphrase queries, and without manually weighting any features.

Both of these voting systems are effectively supervised models, however, where
the training process determines the optimal set of features (and weights for Nakov
and Hearst’s model). As such, a separate training set should be used to avoid over-
estimating performance. Due to the small size of Lauer’s data set, we followed Nakov
and Hearst (2005) in developing the test data itself. They note that Lapata and Keller
(2004) divided Lauer’s in half to develop, and that the difference in performance on
the two halves was negligible. Despite this, we argue that neither of the results give
an accurate representation of NP Bracketing performance. The optimal set of voters we
identified is unlikely to be as effective for any other data set.

We can test this by applying the Lauer optimal voter set (from Table 18) to the
Penn Treebank data. This results in 76.49% accuracy, which is lower than using the
adjacency model alone. Considering the seemingly random selection of voters, this is
not particularly surprising, although it may be because of the different performance
levels of the dependency and adjacency models of the two corpora. In the following
section, we will perform the reverse experiment, training on the Penn Treebank data
and testing on Lauer’s. This will provide a better idea of the true performance levels.

The main problem with a voting technique is that it does not effectively combine
competing factors into a single model. The new Penn Treebank data set enables a
much better solution: Apply a robust supervised model. This Penn Treebank data set
is an order of magnitude larger than Lauer’s, making available a sufficient amount of
training, development, and test data for the first time.

Table 18
The optimal set of voters for the simple NPs in Lauer’s data set, as found by our greedy
search method.

GOOGLE WEB 1T SNIPPETS

Wildcard 2 Dependency probability Possessive
Abbreviation Concatenation triple Capitalization
Possessive Abbreviation with brackets Internal hyphenation

Capitalization Right brackets
Internal hyphenation
Internal slash
External slash
Left brackets
Right brackets

784

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

6.3 Supervised Models

Supervised models typically outperform unsupervised models for most NLP tasks. For
NP bracketing, the small quantity of gold-standard data has meant that few supervised
models have been implemented, and those that have been performed poorly. With our
new, significantly larger data set covering the Penn Treebank, we have built the first
large-scale supervised NP bracketer.

The data set is split into training, development, and test sets, with 4,451; 559;
and 559 NPs, respectively. We use the MegaM Maximum Entropy classifier (Daumé III
2004), and discretize non-binary features using Fayyad and Irani’s (1993) algorithm.
Maximum entropy models allow diverse and overlapping features to be incorporated
in a principled manner. Our initial features use counts from Google, Web 1T, and the
snippets. We no longer use MSN because it produces similar results to Google. We use
the adjacency and dependency models, and all three association measures. The n-gram
variations in Table 17 for the three count sources are also used, but only the raw count.
This is because the counts are often too small. For each of these, there is one feature
for the left association measure, another for the right association measure, and a pair
of binary features representing whether the left or right measure is greater. If the two
measures are equal, then neither binary feature is on.

The results on our Penn Treebank development set are shown in Table 19, compared
to an unsupervised adjacency model and the unsupervised voting system from Sec-
tion 6.2.1. As we described there, calling the latter model unsupervised is a misnomer,
as the set of voters needs to be optimized on training data. With the larger Penn
Treebank corpus available, we can now “train” this unsupervised voting model on the
training set, rather than on the test set itself. This avoids over-estimating its perfor-
mance figures.

Table 19
Comparing unsupervised approaches to a supervised model on the development data of the
Penn Treebank simple NP corpus. The last two results groups show a subtractive analysis,
removing individual feature groups from the All features model.

MODEL F-SCORE

Unsupervised, Web 1T adjacency 82.5
Unsupervised, voting 89.6

All unsupervised features 90.2
All supervised features 89.5
All features 93.0

−Google 93.0
−Snippets 93.0
−Web 1T corpus 92.1

−Lexical 92.3
−POS 92.5
−NER 92.1
−Context sentence 92.7
−Context window 92.0
−Semantic 93.8

785

Computational Linguistics Volume 37, Number 4

The supervised model outperforms the unsupervised voting model by 0.6%,
even though both models are using the same information to base their decisions
on. This improvement comes from the supervised model’s ability to weight the in-
dividual contributions of all the unsupervised counts from Google and the Web 1T
corpus.

We can also test on Lauer’s data set using the supervised model trained on Penn
Treebank data. The result is an 82.4% accuracy figure, which is higher than our unsu-
pervised dependency model and Lauer’s. However, it is much lower than Nakov and
Hearst’s (2005) best result and our own voting scheme. This suggests that the voting
schemes, by training on their own test data, have over-estimated their performance by
about 9%.

6.3.1 Additional Features. One of the main advantages of using a maximum entropy
classifier is that we can easily incorporate a wide range of features in the model. We
now add lexical features for all unigrams, bigrams, and the trigram within the NP. All
of these features are labeled with the position of the n-gram within the NP.

Because we are bracketing NPs in situ rather than stand-alone NPs (like Lauer),
the context around the NP can be exploited as well. To do this we added bag-of-word
features for all words in the surrounding sentence, and well as specific features for a
two-word window around the NP. For the context sentence, there are features for words
before the NP, after the NP, and either before or after the NP.

We have access to gold-standard POS and NER tags, from the Penn Treebank and
the BBN Pronoun Coreference and Entity Type Corpus (Weischedel and Brunstein
2005), respectively. These are used by adding generalized n-gram and context win-
dow features, replacing the words with their POS and NER tags. POS tags are included
even though all the words in the NP are nouns for these simple NP experiments, as
they may be proper and/or plural. We use the coarse-grained NER tags, including the
B−B−B− and I−I−I−.

Finally, we incorporate semantic information from WordNet (Fellbaum 1998). These
features are intended to work similarly to how Lauer (1995) groups nouns into semantic
classes. For each sense of each word in the NP, we extract a semantic feature for its
synset, and also the synset of each of its hypernyms up to the WordNet root. These
features are marked with how far up the tree from the original synset the hypernym is,
but there is also an unordered bag-of-hypernyms for all senses.

Table 19 shows the results for a model using only the supervised features, and
a combination of the supervised and unsupervised features. It also presents a sub-
tractive analysis. The unsupervised features alone outperform the supervised ones by
themselves, and using both together gives a further increase. The Google and snippets
features do not appear to contribute at all, probably because they overlap significantly
with the Web 1T searches. Of the supervised features, the context window and NER are
most important but all make a positive contribution, except for the semantic features.
One reason why the semantic features perform negatively is that we have not attempted
to disambiguate between word senses. We do not have enough data for the model to
accurately choose which senses are accurate, and furthermore, many of the synsets used
are close to the WordNet root and thus uninformative. Our best performance of 93.8%
F-score is obtained by removing this group.

Finally, results on the test set are shown in Table 20. The supervised model has
improved over the unsupervised baseline by 6.6%, demonstrating that the voting
method’s performance is quite variable, whereas the Maximum Entropy model remains
consistent.

786

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 20
Test set results for the Penn Treebank simple NP corpus comparing the best supervised and
unsupervised models.

MODEL ACCURACY

Unsupervised, Web 1T adjacency 77.6
Unsupervised, voting 86.8

Best supervised model 93.4

Figure 5
Barker’s (1998) NP bracketing algorithm.

6.4 Complex NPs

All of our experiments so far (and almost all results from the literature) have only
focused on NPs that consist of exactly three nouns (noun compound bracketing). This is
a simplification of the actual problem, where longer NPs with higher levels of ambiguity
make finding the correct bracketing significantly harder. Adjectives, determiners, and
other non-nominal parts of speech also complicate the task.

Barker (1998) describes a method for bracketing these complex NPs, by reducing the
problem to a series of three word bracketing decisions using a sliding window. These
decisions can then be made using the techniques described previously for simple6 NPs.
Barker’s algorithm is shown in Figure 5.

When a pair of words is bracketed, the head is chosen to represent the phrase and
remains in the window. We use the standard head-finding rules of Collins (1999). The
window then expands one word to the right, unless it is already right-most in which
case it grows to the left.

For these experiments, we use the complex NP data set previously described in
Section 6.1. The 53,568 complex NPs are split in a 8:1:1 ratio, giving 42,854 examples
for training and 5,357 for development and testing.

6 We abuse the terminology slightly here, as these NPs can include non-noun parts of speech.

787

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00076&iName=master.img-003.png&w=278&h=123

Computational Linguistics Volume 37, Number 4

6.4.1 Evaluation Measures. The complex NP results are evaluated using several measures.
Firstly, matching brackets is the standard Parseval evaluation method (Black et al. 1991).
Secondly, because our annotation only marks left-branching structure explicitly (see
Section 3), we can also report implicit matching brackets, where we automatically insert
the implicit right-branching brackets for evaluation purposes. This takes into account
fully right-branching NPs, which contribute no score using the harsher, explicit match-
ing brackets evaluation. For example, a baseline of always choosing right branching will
score 0.0, as no explicit brackets are needed.

We also measure exact NP match, which measures the percentage of complex NPs
that are entirely correct, and the model’s performance on the three word NPs that are
processed during Barker’s algorithm. We only report accuracy for implicit brackets,
as there is a set number of brackets dependent on the length of the word, and so
precision and recall are always equal. Finally, note that the three-word NPs are different
for each model, as the next three word NP to bracket depends on the decisions made
previously for this complex NP. Consequently, the numbers for this measure are not
directly comparable.

6.4.2 Complex NP Results. Our first experiment implements Barker’s algorithm, using
only the χ2 dependency and adjacency methods to make each decision. We only use
counts from the Web 1T corpus, because performing Web searches has become im-
practical with the increased data set size and NP length. The difficulty of complex NP
bracketing can be seen in Table 21, by the drop in performance using these simple
approaches (e.g., from 79.33% in Table 16 to to 56.29% for the adjacency model).

We next apply our supervised approach to complex NPs. This is more complicated
now as we need to extract a training set of three word windows from the complex NPs.
To do this, we run Barker’s algorithm on the 42,854 complex NPs. At each decision point,
we bracket left or right according to the gold standard, and store the three-word win-
dow as a training example. This process is similar to a shift-reduce parser, such as that
used in the RASP parser (Briscoe and Carroll 2006) or Ratnaparkhi’s (1997) maximum
entropy parsing model. The complex NP data produces 95,964 training examples.

We experiment with the same features used for simple NPs, as well as some novel
features. Firstly, we add features encoding the non-head words when the window
already contains a bracket. This means that for each bracket that has already been
inserted for the complex NP, all words dominated by the bracket are labeled with their
position in the window and added as features. For example, consider the NP French
onion soup bowl after onion soup has been bracketed. Although only soup remains in the
window, onion is added as a feature and labeled as the first word of the second node in
the window. The POS tag, NER tag, and Web 1T count of these words are also included
as separate features. This feature group proved to be very informative for the model.

Secondly, we add the bigram of the words on the NP border, that is, where it overlaps
with the context. Thirdly, we measured the entropy of every POS tag sequence in the
training data. Some of these figures were shown earlier in Table 14. Those sequences
with entropy below 0.05 bits, that is, the ones that are quite unambiguous, were then ex-
tracted. For example, DT JJ NN is almost always right-branching. We then implemented
a feature explicitly encoding their most common branching. There are only two features
for left- and right-branching, rather than features for each POS tag.

Finally, we introduce features based on the Bikel (2004) parser’s output, which have
been informative in PCFG parsing. For the parent and grandparent of the NP, we add a
feature for the phrase label, the head-word and its POS tag, NER tag, and Web 1T count.

788

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 21
Results with gold-standard complex NPs over four evaluation measures: (1) matched brackets
(precision, recall, and F-score), (2) accuracy after including all implicit right-branching brackets,
(3) exact NP match, and (4) accuracy over the simple NPs that were bracketed. The third group of
results shows a subtractive analysis, removing individual feature groups from the All features
model. The negative feature groups are removed for the Best results. The final three rows are
calculated over the test set, rather than the development set as in all earlier experiments.

MODEL MATCHED BRACKETS IMPLICIT EXACT SIMPLE

P R F

Baseline – right branching 0.00 0.00 0.00 74.67 69.31 74.82
χ2 Dependency 13.79 42.84 20.87 38.40 24.32 48.11
χ2 Adjacency 16.13 41.00 23.15 49.27 34.50 56.29

All features 89.14 84.26 86.63 94.96 92.18 95.67

−Web 1T corpus 89.58 82.79 86.05 94.75 91.69 95.55
−Lexical 87.95 83.00 85.40 94.57 91.58 95.30
−POS 89.09 83.37 86.13 94.73 91.92 95.44
−NER 89.27 84.11 86.61 94.88 92.25 95.64
−Context sentence 91.45 86.11 88.70 95.69 93.19 96.33
−Context window 90.41 85.37 87.82 95.32 92.79 96.00
−Semantic 89.61 84.00 86.72 94.97 92.14 95.67
−Non-head words 84.84 81.58 83.18 94.03 90.76 94.80
−Border words 89.69 84.74 87.14 95.18 92.48 95.85
−POS tag sequence 89.93 85.05 87.42 95.26 92.70 95.96
−Parser 89.35 84.32 86.76 95.04 92.25 95.78

Best 92.09 86.37 89.14 95.88 93.49 96.48

Test – Baseline 0.00 0.00 0.00 72.79 68.08 72.98
Test – χ2 Adjacency 17.76 41.89 24.95 50.08 36.64 57.07
Test – Best 91.32 88.19 89.73 95.95 93.69 96.68

The results are shown in Table 21. The supervised methods significantly outperform
the unsupervised methods, with a matched brackets F-score comparable to the Bikel
(2004) parser’s overall performance. We carry out a subtractive analysis of the feature
types, and find that both context feature groups, as well as the semantic, border, POS tag
rule, and parser features all have a negative impact on performance.

Our optimal result comes from removing these feature groups. The 89.14% F-score
achieved with this model is shown as Best in Table 21. All experiments were run using
500 iterations in MegaM, to allow the estimation to converge.

Finally, we applied our best model to the test data. The results, again in Table 21,
are similar to those we achieved on the development set. This demonstrates that our
complex NP Bracketing system achieves high performance on a wide range of inputs.

6.5 Parser Post-Processor

This final set of experiments uses the complex NP models as a post-processing step for a
parser. As we saw previously in Section 5, the parser failed to outperform the suggestion
baseline of 73.12% on NML and JJP brackets. We intend to surpass this figure with our NP
bracketing technique, as it includes many additional feature types. This will be made
more difficult by the fact that the post-processor is dependent on NPs identified by the
parser, which are incorrect in approximately 10% of cases.

789

Computational Linguistics Volume 37, Number 4

Atterer and Schütze (2007) use a similar approach, applying prepositional phrase at-
tachment techniques to parser output, rather than to manually prepared, gold-standard
examples. Doing so provides a more realistic view of a PP attachment system’s perfor-
mance, as it must contend with the additional difficulties created by parser error. The
same applies to our NP Bracketing system.

We train the complex NP bracketer on gold-standard NPs from Sections 02–21,
extracting 78,757 complex NPs that produce 132,195 three word training examples. The
development set is created by first parsing Section 00 using the Bikel (2004) parser.
We then extract the base NPs that the parser identifies and insert the gold-standard NP
Bracketing for evaluation. We reject brackets that cross an NP boundary (i.e., a parsing
error). This results in a development set of 3,946 complex NPs. A test set of 4,834 NPs is
also produced in the same way from Section 23.

The results of these experiments, including subtractive analysis on the feature types,
are shown in Table 22. Unfortunately, we find that many of the features are not helpful,
and our best model utilizes only the Web 1T, lexical, POS, and non-head word features.
Note that these are the same features that proved helpful in the subtractive analysis in
the previous experiment with gold-standard data. This model achieves 82.10% matched
bracket F-score.

Table 22
Results with Bikel (2004) parsed complex NPs over four evaluation measures: (1) matched
brackets (precision, recall, and F-score), (2) accuracy after including all implicit right-branching
brackets, (3) exact NP match, and (4) accuracy over the simple NPs that were bracketed. The third
group of results shows a subtractive analysis, removing individual feature groups from the All
features model. The negative feature groups are removed for the Best results. The final three
rows are calculated over the test set, rather than the development set as in all earlier experiments.

MODEL MATCHED BRACKETS IMPLICIT EXACT SIMPLE

P R F

Baseline – right-branching 0.00 0.00 0.00 81.83 80.31 81.86
χ2 Dependency 9.93 39.90 15.90 36.46 31.20 43.23
χ2 Adjacency 12.50 42.55 19.32 47.24 41.41 51.37

All features 76.37 83.53 79.79 93.04 92.42 93.70

−Web 1T corpus 77.10 80.53 78.78 92.90 92.45 93.55
−Lexical 73.67 81.73 77.49 92.23 91.66 92.97
−POS 76.61 83.05 79.70 93.36 92.65 93.96
−NER 76.78 85.46 80.89 93.43 92.70 94.08
−Context sentence 78.53 84.86 81.57 93.78 93.26 94.38
−Context window 76.41 84.50 80.25 93.33 92.57 93.98
−Semantic 75.73 83.65 79.50 93.11 92.37 93.83
−Non-head words 74.21 81.97 77.90 93.15 91.97 93.78
−Border words 76.37 83.53 79.79 93.27 92.50 94.01
−POS tag sequence 76.77 84.62 80.50 93.55 92.68 94.27
−Parser 76.33 84.50 80.21 93.33 92.60 93.95

Best 78.78 85.70 82.10 94.08 93.41 94.67

Test – Baseline 0.00 0.00 0.00 79.68 79.56 79.68
Test – χ2 Adjacency 14.55 44.06 21.87 48.83 42.22 53.44
Test – Best 81.16 87.08 84.02 94.22 93.94 94.78

790

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Table 23
Performance comparison of suggestion baseline, parser, and the NP bracketer post-processing
the parser’s output on development data.

EVALUATING MODEL P R F

Suggestions 95.64 59.36 73.25
NML JJP Parser 76.32 60.42 67.44

Post-processor 76.40 76.56 76.48

All brackets Parser 88.55 88.15 88.35
Post-processor 88.49 88.56 88.53

Table 24
Performance comparison of suggestion baseline, parser, and the NP bracketer post-processing
the parser’s output on test data.

EVALUATING MODEL P R F

Suggestions 94.29 56.81 70.90
NML JJP Parser 80.06 63.70 70.95

Post-processor 79.44 78.67 79.05

All brackets Parser 88.30 87.80 88.05
Post-processor 88.23 88.24 88.23

This result is 7.04% lower than the figure previously achieved for complex NPs,
despite the fact that unambiguous NPs are now included in the data. There are a
number of reasons for this. Firstly, the test NPs produced by the parser may be incorrect,
whereas the model is trained on gold-standard NPs. Also, the brackets that we rejected
for crossing NP boundaries would introduce a noticeable amount of noise, and mean
that the evaluation might not be entirely accurate. Finally, the POS tags used in these
experiments are no longer gold-standard, as they come from the parser’s output.

6.5.1 Parsing Evaluation. Finally, we can now put the rebracketed NPs back into the parser
output and re-evaluate. This requires the additional task of labeling the brackets. There
are only two labels to distinguish between (NML and JJP), and they can be inferred
directly from the POS tag of the head. If it is a verb or an adjective, we label the node
as JJP, and otherwise it is a NML. A small number of errors (a 0.42% drop in matched
bracket F-score) are introduced by this method, because of annotation errors in the Penn
Treebank POS tags and in our own annotation, as well as errors in head finding.

Tables 23 and 24 show the final results. A suggestion baseline is not shown for all
brackets because they only apply to NMLs and JJPs and it is difficult to post-process
the parser’s output with them. The post-processor outperformed the parser by 9.04%
and 8.10% on the development and test data, respectively. The post-processor has also
improved on the suggestion baseline established earlier.

We measure statistical significance using a computer-intensive, randomized, strat-
ified shuffling technique (Noreen 1989; Cohen 1995, §5.3) as implemented by Bikel.7

7 http://www.cis.upenn.edu/∼dbikel/software.html.

791

Computational Linguistics Volume 37, Number 4

The difference in all-brackets F-scores reported in Table 24 is statistically significant
(p ≤ 0.0001) using this test. Our results demonstrate the effectiveness of large-scale NP
bracketing techniques, and show that internal NP structure can be recovered with better
preformance than has ever been possible in the past.

7. Future Work

This work is the first to create and make use of a large-scale corpus of NP annotations.
Our experiments with this new data have set a high benchmark for NP parsing. In many
cases, there has been no previous work or state-of-the-art result to compare to, only
experiments on a data set that is limited in scale and coverage. Our NP Bracketing
experiments in Section 6, for example, set a new bar for what can be achieved, and
demonstrate the applicability of supervised methods. There are now many directions
for future work on the subject of NP parsing.

7.1 NP Annotation

In Section 3, we extended the Penn Treebank with NP annotations. For the first time, this
widely used corpus can be used to train parsers to recover NP structure. We are aware
of only one other corpus that has been annotated with a large volume of NP structure:
the Biomedical Information Extraction Project (Kulick et al. 2004). Because these are the
first NP annotation schemes, it seems probable that they can be improved.

The first category of NPs are those with genuinely flat structure, which are cur-
rently treated as implicitly right branching. For example, John A. Smith should be inter-
preted as a single unit, rather than as having left or right-branching structure. McInnes,
Pedersen, and Pakhomov (2007) recognize monolithic NPs in their annotation of medical
terms.

The second additional category is semantically indeterminate NPs. These NPs can be
thought of as both left- and right-branching (i.e., a dependency should exist between
all word pairs). Lauer (1995) found that 35 out of the 279 non-error NPs in his data
set fit this category, for example, city sewerage systems and government policy decisions. It
is the government policy in question in the latter example, but also policy decisions and
government decisions, resulting in all three possible dependencies.

Marcus, Santorini, and Marcinkiewicz (1993) make some mention of indeterminate
NPs, calling them permanent predictable ambiguities, a term they ascribe to Martin Kay.
The example a boatload of warriors blown ashore is given, which is similar to the prepo-
sitional phrase attachment ambiguities in Hindle and Rooth (1993). The meanings of
both attachments are true in cases like this: the boatload was blown ashore, and so were
the warriors. Marcus et al. (1994) describe the *PPA* trace used in the Penn Treebank,
which is applied to these permanent predictable ambiguities, or as we have called them,
indeterminates. However *PPA* is also applied to cases of general ambiguity (those
described in the following paragraphs), whereas we would separate the two.

The final category that we suggest is for ambiguous NPs. These NPs do have a left-
or right-branching structure, although the annotator has no hope of determining which
is correct. This may be because of technical jargon (e.g., senior subordinated debentures), or
simply an ambiguity that cannot be resolved by the given context, as in the often cited
PP-attachment example: I saw the man with the telescope. In these cases, there is a definite
correct answer. The man either has a telescope, or a telescope is being used to do the

792

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

seeing, but not both.8 This differentiates these ambiguous cases from indeterminate NPs,
where both readings are true.

None of the divisions just described are reflected in our corpus, and as a result, may
have affected our experiments and/or their evaluations. For example, an NP bracketer
training on a genuinely flat NP will learn that there is a dependency between the right-
most words when there is not. Similarly, an indeterminate NP (i.e., left flat by the
annotator) suggests that the left-branching dependency is incorrect, when in fact both
the left- and right-branching dependencies are correct. Adding these distinctions to the
corpus may improve the performance of a bracketing model. However, we expect that
any change would be small. This is because almost all NPs can be confidently assigned to
left- or right-branching classes. We can present no gold-standard figures from the data,
as the annotation of these additional NP structure categories has not been performed, but
we can note that the annotator only marked 915 of the 60,959 inspected NPs as difficult
(1.50%), and that in our experience, most of the difficulty comes from financial jargon,
rather than the linguistic complications described here.

7.2 Parsing NP Structure

Our experiments in Section 5 highlighted the difficulty of parsing NPs. Many of the
errors that occurred were due to a lack of lexical information and the productivity of
nouns and noun phrases. One potential approach to solving these problems would be
to incorporate the information sources that were successfully applied to NP Bracketing
into a Collins-style parser. In particular, the possibility exists to include NER and Web
1T features as additional probability distributions in the model. Other parsers without
a specialized NP submodel may make this process easier and/or more effective.

Our NP Bracketing work could be improved by finding a more effective process
than the Barker (1998) algorithm. This is only one way to bracket complex NPs, which
is a standard structured search problem. Another potential framing would be to treat
the task as a sequence tagging problem, where the goal is to generate some number of
brackets between individual tokens. The systems in Daumé III and Marcu (2004) and
Bergsma and Wang (2007) function in a similar manner.

8. Conclusion

The addition of consistent, gold-standard, noun phrase structure to a large corpus is
a significant achievement. We have shown that these annotations can be created in a
feasible time frame with high inter-annotator agreement of 98.52% (measuring exact NP
matches). In doing so, we have created a significantly larger corpus for analyzing NP
structure than has ever been made available before. This is integrated with perhaps the
most influential corpus in NLP. The large number of systems trained on Penn Treebank
data can all benefit from the extended resource we have created.

In Section 5, we put the NP augmented Penn Treebank to use in training and evalu-
ating the Collins (2003) parsing model. The results of these experiments demonstrated
the difficulty that statistical methods have in bracketing NPs. The parsing model could
not effectively adapt to the productivity of NP structure, and as a result, its performance

8 In theory, the telescope could be with the man and used to do the seeing, but we will ignore this rather
pathological possibility.

793

Computational Linguistics Volume 37, Number 4

was lower than the baseline we set using deterministic rules. This baseline from the
annotation tool’s suggestion feature outperformed the parser by 5.81%.

Despite this, our analysis of Collins’s model highlighted a number of interest-
ing points. In particular, the continued importance of the base-NP submodel was a
surprising result, as performance dropped spectacularly when it was removed. Our
comprehensive error analysis showed that the largest cause of errors was a lack of lexical
information in the training data.

Attempting to solve this problem, Section 6 saw the development of our NP Bracket-
ing system. This is the first NP Bracketer that uses a supervised model to good effect and
that can analyze NPs of arbitrary length and complexity. The initial simple NP bracketing
experiments demonstrated that we could achieve performance on Lauer’s small data
set akin to that of previous researchers (e.g., Lauer 1995; Nakov and Hearst 2005). Our
much larger data set from the Penn Treebank allowed us to build supervised models
with even higher performance, however.

We moved onto the more realistic task of bracketing complex NPs. Utilizing the
supervised model we built for simple NPs, and including a wide range of features,
both novel and based on those used by other researchers, we achieved an excellent
performance figure of 89.14% matched bracket F-score. These results demonstrated that
complex NP Bracketing is an interesting task with much room for innovation.

Using this complex NP Bracketer, we constructed a post-processor for the parsing
experiments from Section 5. In doing so, we finally outperformed the suggestion base-
line and improved on the parser’s result by 9.04% F-score. Our NP Bracketing system
performs better than a state-of-the-art parsing model.

A widely used Collins-style parser, together with our NP post-processor, and trained
using the extended corpus we created, is now able to identify sub-NP brackets with
a level of accuracy that can be exploited by many practical applications. As a result,
we have made it possible to increase performance on question answering, anaphora
resolution, and many other downstream NLP tasks.

Appendix A: Annotation Guidelines

This document describes guidelines for bracketing NP structure in the Penn Treebank.
These guidelines are in addition to the Treebank II Guidelines (Bies et al. 1995). They are
also based on, and overlap with, the Addendum for BioMedical Annotation (Warner
et al. 2004). An earlier version (0.9) of these guidelines was used in the annotation
described in Vadas and Curran (2007), whereas this version was used in a subsequent
pass over the data.

A.1. Bracketing NPs

The goal of our annotation is to identify and bracket multi-token premodifiers in NPs.
Quirk et al. (1985, page 1321) describe such premodifiers, which include adjectives,
participles, nouns, genitives, and adverbs. All of these items are modifiable themselves,
and this is precisely the behavior that we have annotated. Indeed, NPs with multiple
premodifiers can be recursive to an arbitrary depth (though more than three or four
levels is unusual), and the underlying structure is by no means always right-branching.
However, we can still resolve this ambiguity, as (with our emphasis)

obscurity in premodification exists only for the hearer or reader who is unfamiliar with
the subject concerned . . . (Quirk et al. 1985, page 1343)

794

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Thus, our most difficult cases come from the financial jargon of the Wall Street Journal,
but the correct bracketing of most NPs is simple to ascertain.

The main change described in these guidelines is a different way of representing
NP structure. Treebank II Style is to leave NPs flat, not specifying additional structure. In
our extension, we assume a right-branching structure in all NPs, and mark explicitly any
left-branching constituents. As most NPs are right-branching, this reduces the amount
of bracketing required and thus increases legibility. This means that NPs like this one do
not need further bracketing:

(NP (DT The) (JJ average)

(JJ seven-day) (NN compound) (NN yield))

And the implicit structure represented is:

(NP (DT The)

(NODE (JJ average)

(NODE (JJ seven-day)

(NODE (NN compound)

(NODE (NN yield))))))

When a left-branching modifier is present, as in this NP,

(NP (NN lung) (NN cancer) (NNS deaths))

it is bracketed explicitly. To specify that lung cancer is a constituent, we insert a bracket
around those words:

(NP

(NML (NN lung) (NN cancer))

(NNS deaths))

Though less frequent, brackets can also be necessary in non-base-NPs, as in these
examples:

(NP-SBJ

(NML (JJ former)

(NAC (NNP Ambassador)

(PP (TO to)

(NP (NNP Costa) (NNP Rica)))))

(NNP Francis) (NNP J.) (NNP McNeil))

(NP

(NML

(NP (NN Wendy) (POS ’s))

(NNP International))

(NNP Inc.))

In the first example, we join former and the NAC node, as he is formerly the Ambassador,
not formerly Mr. McNeil.

Multiple words can be included in a bracket, and internal to the bracket are still
implicitly right-branching.

795

Computational Linguistics Volume 37, Number 4

(NP

(NML (JJ chief) (JJ financial) (NN officer))

(NNP John) (NNP Pope))

(NP

(NML (JJ hot-dipped) (JJ galvanized) (NN sheet))

(NNS products))

So the sheet is hot-dipped and galvanized, and the products are made of this sheet.
Alternate, incorrect bracketings could suggest the galvanization is hot-dipped (a NML

node around those two words) or that the products themselves are hot-dipped and
galvanized (if no NML node was used).

New brackets can be nested, and this is needed quite often.

(NP

(NML

(NML (NNP New) (NNP York))

(NNP Stock) (NNP Exchange))

(JJ composite) (NN trading))

This correct bracketing describes composite trading on the Stock Exchange of New York.
Note that we never alter existing Treebank brackets or POS tags, we only add new

brackets to specify our extended representation. Similarly, we have not corrected errors
that have been noticed during the annotation process. This is so that the corpus remains
as comparable as possible to the original version. Pre-existing errors can mean that
the correct extended annotation cannot possibly be implemented, however. In these
cases, we try to mark up any constituents that we still can, while not adding any
brackets that are incorrect. This often results in the opposite to what is done in the
normal case.

(NP

(NP (DT the) (NNP Carper) (POS ’s))

(NNP Creek)

(NN wine))

In this example, the determiner should be outside the inner NP, so that it has scope
over wine. Normally, we would bracket the Carper to separate it from the possessive (see
Section A.2.7), but that is incorrect here. Similarly, we do not bracket the Carper’s Creek
because it would include the. This would be incorrect, as the is the determiner for the
overall NP, not just Carper’s Creek.

A.1.1 Node Labels

We use two new node labels: NML and JJP. We have distinguished these from the existing
NP and ADJP labels, so that we can analyze them separately. This approach has the
advantage that they can be mapped back to the existing labels if needed. NML is used
when the modifier’s head is a noun, as in previous examples, whereas JJP is used when
the head is adjectival, as in this example:

(NP (JJP (JJ dark) (JJ red))

(NN car))

796

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

The label should also be JJP in cases where the head is a gerund.

(NP (DT the)

(JJP (JJS fastest) (VBG developing))

(NNS trends))

A JJP node is needed when an adverb modifies an adjective:

(NP

(JJP (RB relatively) (JJR higher))

(NNS rates))

Finally, we also apply the JJP label to coordinated adjectives premodifying a noun.
In cases like these with multiple heads, only one head needs to be adjectival for the label
to be JJP. We do not have a label similar to UCP.

(NP (PRP$ its)

(JJP (JJ current)

(CC and) (JJ former))

(NNS ratepayers))

(NP (DT the)

(JJP (JJ British)

(CC and) (NNP U.S.))

(NNS troops))

In all other cases (the vast majority), a NML label should be used. This means that
cases with unusual heads, like the following one where DTs are being coordinated, are
labeled NML.

(NP

(NML (DT any)

(CC or) (DT all))

(NNS warrants))

If any POS tag has been incorrectly annotated, then the label used should reflect the
correct POS tag, rather than propagate the error.

A.1.2 Ambiguous Cases

In general, if an annotator is unsure as to whether bracketing is needed, or if both
alternatives seem equally likely, then they should leave the NP flat. The following NPs
are examples of such semantically ambiguous cases. In the first, both dependencies are
true (i.e., the players are in college, and they play basketball). The third example has a
genuinely flat structure.

(NP (NN college) (NN basketball) (NNS players))

(NP (NN army) (NN ordnance) (NN depot))

(NP (NNP John) (NNP A.) (NNP Smith))

A.1.3 Head Derivation

Head-finding rules for NML and JJP constituents are the same as for NP and ADJP nodes,
respectively. For a detailed description of these rules, see Collins (1999, page 238).

797

Computational Linguistics Volume 37, Number 4

In most cases, the head is either the right-most noun, or inside the right-most NML

node.
This is more complicated with coordinated and apposited structures, which will

have multiple heads. The individual heads can still be determined with the standard
rules.

A.1.4 Identifying the Correct Bracketing

The bracketing task involves deciding which words belong together as constituents. It is
often useful to reword the sentence to see whether a constituent makes sense. In doing
so, the aim is to determine the dependencies that will be formed, that is, to create a
syntactic structure which yields the correct semantic structure. Here are a few ways this
can be done:

1. Inversion – In the following NP, we are deciding whether or not to bracket
other two.

(NP-LGS (DT the) (JJ other)

(CD two) (JJ outside) (NNS bidders))

If we invert these words to two other, then the NP retains the same meaning.
Therefore other does not modify two and they should not be bracketed.

2. Removal – This test involves trying to force one word to modify another
by placing them side by side, removing the intervening text.
In the example below, does Japanese modify auto maker or Mazda Motor
Corp? If we remove auto maker, then the NP would not make sense, and so
it must be the former. We have inserted the appropriate NML node.

(NP (NML (JJ Japanese) (NN auto) (NN maker))

(NML (NNP Mazda) (NNP Motor))

(NNP Corp))

3. Postmodifier – If we move a premodifier to the end of the NP, making it
postmodify the head, then the correct bracketing should become clearer. In
the following description of a car that is a certain shade of red,

(NP (JJ tomato) (JJ red) (NN car))

if we change the NP to red car that is tomato then we get a meaning that
doesn’t make sense. As this is not the case, we know that tomato and red
should be joined in a constituent.

(NP

(JJP (JJ tomato) (JJ red))

(NN car))

798

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

A.2. Specific Cases

A.2.1 Coordinations

Coordinations are one of the most difficult structures to bracket in NPs. This is because
of the multi-headed nature of such constructs. We should not read the next example as
implicitly right-branching, but with dependencies between Bill and and, and Ted and
and. It does not need further bracketing.

(NP (NNP Bill) (CC and) (NNP Ted))

On the other hand, the following example does need the NML bracket shown:

(NP (DT the)

(NML (NNPS Securities)

(CC and) (NNP Exchange))

(NNP Commission))

Otherwise, its implicit structure would be as follows:

(NP (DT the)

(NODE

(NODE (NNPS Securities))

(CC and)

(NODE (NNP Exchange)

(NODE (NNP Commission)))))

The erroneous meaning here is the Securities and the Exchange Commission, rather than
the correct the Securities Commission and the Exchange Commission.

Bracketing is also needed in the first of the following, or else the interpretation
will be rock stars and rock royalty, which is clearly incorrect. However, this is the case
in the second example (both the words and actions are rude) and so no new brackets
are needed there.

(NP (NML (NN rock) (NNS stars))

(CC and)

(NML (NN royalty)))

(NP (JJ rude) (NNS words)

(CC and) (NNS actions))

Also note that royalty is bracketed as a single word. This is because whenever one
coordinated constituent is bracketed, all other constituents of the coordinate must be
bracketed as well, even single tokens as seen here. This has changed since version 0.9 of
these guidelines.

The implicit structure of the following NP is correct, as rock stars is already right-most.

(NP (NN royalty)

(CC and) (NN rock) (NNS stars))

However, this NP should be treated in the same way as the previous one. We therefore
insert brackets around rock stars and royalty as before.

(NP (NML (NN royalty))

(CC and)

(NML (NN rock) (NNS stars)))

799

Computational Linguistics Volume 37, Number 4

If any constituent to be coordinated is multi-token (even right-most and implicitly cor-
rect ones), then all constituents of the coordinator must be explicitly bracketed. This is
another change since the version 0.9 guidelines, which would not add any new brackets
to this example.

Lists do not need any bracketing.

(NP (NNS cars)

(, ,)

(NNS trucks)

(CC and) (NNS buses))

This is true even when the conjunction is missing:

(NP

(NP (DT no) (NN crack) (NNS dealers))

(, ,)

(NP

(NP (DT no) (JJ dead-eyed) (NNS men))

(VP (VBG selling)

(NP

(NP (JJ four-year-old) (NNS copies))

(PP (IN of)

(NP (NNP Cosmopolitan))))))

(, ,)

(NP

(NP (DT no) (PRP one))

(VP (VBD curled)

(PRT (RP up))

(PP-LOC (IN in)

(NP (DT a) (NN cardboard) (NN box))))))

However, the entire list may still need to be bracketed before being joined to words
outside the list, as shown:

(NP

(NP (NNP Mazda) (POS ’s))

(NNP U.S.)

(NML (NNS sales)

(, ,)

(NN service)

(, ,)

(NNS parts)

(CC and) (NN marketing))

(NNS operations))

A list of attributes separated by commas does not need any bracketing:

(NP

(JJ tricky)

(, ,)

(JJ unproven) (NN chip) (NN technology))

This is because tricky and unproven are not being coordinated here. They are simply both
acting as modifiers on technology, like in the NP: big red car.

800

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Conjunctions between a neither/nor pair do not need any bracketing.

(NP-SBJ (DT Neither)

(NP (NNP Lorillard))

(CC nor)

(NP

(NP (DT the) (NNS researchers))

(SBAR

(WHNP-3 (WP who))

(S

(NP-SBJ (-NONE- *T*-3))

(VP (VBD studied)

(NP (DT the) (NNS workers)))))))

A.2.2 Speech Marks

Tokens surrounded by speech marks should be bracketed:

(NP-PRD (DT a)

(NML (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’))

(NN decision))

This includes when there is only a single token inside the speech marks, and when the
speech marks are right-most:

(NP-PRD (DT a)

(JJP (‘‘ ‘‘) (JJ long) (’’ ’’))

(NN decision))

(NP-PRD (DT a)

(NML (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’)))

Note that the label of the bracket should reflect the internal head, as in the first example
in the previous block, where JJP is used.

If the speech marks and the tokens they surround are the only items under the NP,
then a new bracket should not be added.

(NP-PRD (‘‘ ‘‘) (JJ long) (NN term) (’’ ’’))

The bracketing of speech marks has changed since the 0.9 version guidelines. Previ-
ously, the internal tokens were bracketed, whereas right-most speech marks were not.

Conventional editorial style for speech marks does not lend itself to bracketing eas-
ily. Because of this, there are a number of exceptions and corner cases when annotating
NPs with speech marks. Firstly, in these examples:

(NP (‘‘ ‘‘)

(NP-TTL (DT A) (NNP Place) (IN in) (NNP Time))

(, ,)

(’’ ’’)

(NP

(NP (DT a) (JJ 36-minute) (JJ black-and-white) (NN film))

(PP (IN about)

(NP

(NP (DT a) (NN sketch) (NN artist))

801

Computational Linguistics Volume 37, Number 4

(, ,)

(NP

(NP (DT a) (NN man))

(PP (IN of)

(NP (DT the) (NNS streets))))))))

the comma serves to separate the film’s title from its description, and the speech marks
surround just the title. This causes a “crossing” constituent, as we cannot bracket the
speech marks and the title together without including the comma. In these cases, we
still add a NML bracket around the speech marks:

(NP

(NML (‘‘ ‘‘)

(NP-TTL (DT A) (NNP Place) (IN in) (NNP Time))

(, ,)

(’’ ’’))

(NP

(NP (DT a) (JJ 36-minute) (JJ black-and-white) (NN film))

(PP (IN about)

(NP

(NP (DT a) (NN sketch) (NN artist))

(, ,)

(NP

(NP (DT a) (NN man))

(PP (IN of)

(NP (DT the) (NNS streets))))))))

Many NPs contain a single opening or closing speech mark, whose partner is
stranded in another constituent. For example, the following NP has only the opening
speech mark:

(NP (DT the) (‘‘ ‘‘)

(NML (NN type) (NN F))

(NN safety) (NN shape))

In order to find the closing speech mark, we must look into the surrounding context:

(NP

(NP (DT the) (‘‘ ‘‘)

(NML (NN type) (NN F))

(NN safety) (NN shape))

(, ,)

(’’ ’’)

(NP

(NP (DT a) (JJ four-foot-high) (JJ concrete) (NN slab))

(PP (IN with)

(NP (DT no) (NNS openings)))))

In these cases, we could not bracket the speech marks properly without altering the
existing structure. So once again, we do not add any new brackets in NPs such as this.
In the next example, the speech marks have not been put in the right place:

(NP-PRD (‘‘ ‘‘) (DT a) (JJ worst-case) (’’ ’’) (NN scenario))

802

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

The determiner should be outside the speech marks. In cases such as these, the anno-
tator should not follow the incorrect placement. Because no accurate bracketing can be
inserted, no brackets should be added at all.

A.2.3 Brackets

These should be treated the same as speech marks, and bracketed as described in the
previous section.

(NP (DT an)

(JJP (-LRB- -LCB-) (VBG offending) (-RRB- -RCB-))

(NN country))

An example of another corner case is shown here:

(NP (-LRB- -LCB-)

(NML (NNP Fed) (NNP Chairman))

(NNP Alan)

(-RRB- -RCB-)

(NNP Greenspan))

Once again, the tokens cannot be bracketed without a crossing constituent. We can still
bracket Fed Chairman, but beyond that, no other brackets should be added.

A.2.4 Companies

Company names may need to be bracketed a number of ways. When there are post-
modifiers such as Corp. or Ltd., the rest of the company needs to be separated if it is
longer than one word.

(NP-SBJ

(NML (NNP Pacific) (NNP First) (NNP Financial))

(NNP Corp.))

(NP

(NML (NNP W.R.) (NNP Grace))

(CC &) (NNP Co.))

(NP

(NML (NNP Goldman)

(, ,)

(NNP Sachs))

(CC &) (NNP Co.))

Other identifiable nominal groups within the company name, such as locations, also
need to be bracketed separately.

(NP

(NP (NN today) (POS ’s))

(NML (NNP New) (NNP England))

(NNP Journal))

803

Computational Linguistics Volume 37, Number 4

(NP (DT the)

(NML (NNP Trade)

(CC and) (NNP Industry))

(NNP Ministry))

A.2.5 Final Adverbs

The tokens preceding a final adverb should be separated:

(NP (NML (NN college) (NNS radicals))

(RB everywhere))

A.2.6 Names

Names are to be left unbracketed:

(NP (NNP Brooke) (NNP T.) (NNP Mossman))

However, numbers, as well as Jr., Sr., and so forth, should be separated:

(NP

(NML (NNP William) (NNP H.) (NNP Hudnut))

(NNP III))

Titles that are longer than one word also need to be bracketed separately.

(NP

(NML (NNP Vice) (NNP President))

(NNP John) (NNP Smith))

A.2.7 Possessives

NPs preceding possessives need to be bracketed.

(NP (NML (NNP Grace) (NNP Energy))

(POS ’s))

A.2.8 Postmodifying Constituents

The words preceding a postmodificational constituent, such as a preposition or SBAR, do
not need to be bracketed.

(NP

(DT the) (JJ common) (NN kind)

(PP (IN of)

(NP (NN asbestos))))

804

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

A.2.9 Unit Traces

This trace is necessary to make the unit (dollars in the following example) the head of
the NP.

(NP (RB over) ($ $) (CD 27) (-NONE- *U*))

If the NP is longer, and there are words to the right of the amount, then the trace should
be inside the bracket.

(NP (DT a)

(NML ($ $) (CD 27) (-NONE- *U*))

(NN charge))

A.2.10 Unusual Punctuation

Sometimes a period indicating an acronym will be separated from the initial letter(s). In
these cases, a bracket should be added to join them back together, as shown:

(NP (NNP Finmeccanica)

(NML (NNP S.p) (. .))

(NNP A.))

Some NPs also include final punctuation. These are mostly short fragmental sen-
tences. In these cases, the rest of the NP should have a bracket placed around it:

(NP

(NML

(NML (NNP New) (NNP York))

(NNP City))

(: :))

A.3. Future Improvements

Here we describe improvements to these guidelines and the bracketing scheme that we
intend to carry out in the future. We noticed these issues during the first pass through
the corpus, and all of them require another full pass.

A.3.1 Flat Structures

There are a number of NPs in the Penn Treebank that display genuinely flat struc-
ture. For some examples, refer back to Section A.1.2. We would like to distinguish
these from the implicitly right-branching structures that make up the majority of the
corpus. To do this, we intend to use a marker on the NP, NML, or JJP label itself, as
shown:

(NP-FLAT (NNP John) (NNP A.) (NNP Smith))

(NP

(NML-FLAT (NNP John) (NNP A.) (NNP Smith))

(NNS apples))

805

Computational Linguistics Volume 37, Number 4

A.3.2 Appositions

Appositions are a multi-headed structure, similar but still different to coordination.
They are extremely common throughout the Penn Treebank, and usually fit the pattern
shown here, with a person’s name and their position separated by a comma:

(NP-SBJ

(NP (NNP Rudolph) (NNP Agnew))

(, ,)

(NP

(NP (JJ former) (NN chairman))

(PP (IN of)

(NP (NNP Gold) (NNP Fields) (NNP PLC)))))

We would like to mark these structures explicitly, so that they can be treated ap-
propriately. This raises issues of what is and isn’t an apposition (whether they are truly
co-referential), and whether to discriminate between different types.

A.3.3 Head Marking

For some NPs, Collins’s standard head-finding rules do not work correctly. In this
example, IBM is the head, but Australia would be found.

(NP (NNP IBM) (NNP Australia))

Marking heads explicitly would require a much larger degree of work, as NPs of
length two would be ambiguous. All other annotation described here only needs to
look at NPs of length three or more.

References
Abney, Steven. 1987. The English Noun Phrase

in its Sentential Aspects. Ph.D. thesis, MIT,
Cambridge, MA.

Atterer, Michaela and Hinrich Schütze. 2007.
Prepositional phrase attachment without
oracles. Computational Linguistics,
33(4):469–476.

Barker, Ken. 1998. A trainable bracketer
for noun modifiers. In Proceedings of the
Twelfth Canadian Conference on Artificial
Intelligence (LNAI 1418), pages 196–210,
Vancouver.

Bergsma, Shane and Qin Iris Wang.
2007. Learning noun phrase query
segmentation. In Proceedings of the 2007
Joint Conference on Empirical Methods
in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 819–826, Prague.

Bies, Ann, Mark Ferguson, Karen Katz,
and Robert MacIntyre. 1995. Bracketing
guidelines for Treebank II style Penn
Treebank project. Technical report.

University of Pennsylvania,
Philadelphia, PA.

Bikel, Daniel M. 2004. On the Parameter Space
of Generative Lexicalized Statistical Parsing
Models. Ph.D. thesis, University of
Pennsylvania, Philadelphia, PA.

Black, Ezra, Steven Abney, Dan Flickinger,
Claudia Gdaniec, Ralph Grishman, Philip
Harrison, Donald Hindle, Robert Ingria,
Frederick Jelinek, Judith Klavans, Mark
Liberman, Mitch Marcus, Salim Roukos,
Beatrice Santorini, and Tomek
Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic
coverage of English grammars. In
Proceedings of the February 1991 DARPA
Speech and Natural Language Workshop,
pages 306–311, San Mateo, CA.

Brants, Thorsten and Alex Franz. 2006. Web
1T 5-gram version 1. Technical report.
LDC Catalog No.: LDC2006T13. Google
Research, Mountain View, CA.

Briscoe, Ted and John Carroll. 2006.
Evaluating the accuracy of an

806

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

unlexicalized statistical parser on the
PARC DepBank. In Proceedings of the
COLING/ACL 2006 Main Conference
Poster Sessions, pages 41–48, Sydney.

Buckeridge, Alan M. and Richard F. E.
Sutcliffe. 2002. Using latent semantic
indexing as a measure of conceptual
association for noun compound
disambiguation. In Proceedings of the
13th Irish International Conference on
Artificial Intelligence and Cognitive Science
(AICS-02), pages 12–19, Limerick.

Charniak, Eugene. 1997. Statistical parsing
with a context-free grammar and word
statistics. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence
(AAAI-97), pages 598–603, Providence, RI.

Charniak, Eugene. 2000. A
maximum-entropy-inspired parser. In
Proceedings of the 1st Meeting of the North
American Chapter of the Association for
Computational Linguistics (NAACL-00),
pages 132–139, Seattle, WA.

Chiang, David and Daniel M. Bikel. 2002.
Recovering latent information in
treebanks. In Proceedings of the 19th
International Conference on Computational
Linguistics (COLING-02), pages 1–7,
Taipei.

Clark, Stephen and James R. Curran. 2007.
Formalism-independent parser evaluation
with CCG and DepBank. In Proceedings of
the 45th Annual Meeting of the Association
for Computational Linguistics (ACL-07),
pages 248–255, Prague.

Cocke, John and Jacob T. Schwartz. 1970.
Programming Languages and Their Compilers:
Preliminary Notes. Courant Institute of
Mathematical Sciences, New York
University, New York, NY.

Cohen, Paul R. 1995. Empirical Methods
for Artifical Intelligence. MIT Press,
Cambridge, MA.

Collins, Michael. 1996. A new statistical
parser based on bigram lexical
dependencies. In Proceedings of the
34th Annual Meeting of the Association
for Computational Linguistics (ACL-96),
pages 184–191, Santa Cruz, CA, USA,
June 24–27.

Collins, Michael. 1997. Three generative,
lexicalised models for statistical parsing.
In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics
and 8th Conference of the European Chapter of
the Association for Computational Linguistics
(ACL-97), pages 16–23, Madrid.

Collins, Michael. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.

thesis, University of Pennsylvania,
Philadelphia, PA.

Collins, Michael. 2003. Head-driven
statistical models for natural language
parsing. Computational Linguistics,
29(4):589–637.

Daumé III, Hal. 2004. Notes on CG and
LM-BFGS optimization of logistic
regression. Paper available at
http://pub.hal3.name, implementation
available at http://hal3.name/megam/.

Daumé III, Hal and Daniel Marcu. 2004. NP
bracketing by maximum entropy tagging
and SVM reranking. In Dekang Lin and
Dekai Wu, editors, Proceedings of the 2004
Conference on Empirical Methods in Natural
Language Processing (EMNLP-04),
pages 254–261, Barcelona.

Fayyad, Usama M. and Keki B. Irani.
1993. Multi-interval discretization of
continuous-valued attributes for
classification learning. In Proceedings
of the 13th International Joint Conference
on Artificial Intelligence (IJCAI–93),
pages 1022–1029, Chambery.

Fellbaum, Christiane, editor. 1998. WordNet:
An Electronic Lexical Database. MIT Press,
Cambridge, MA.

Garside, Roger, Geoffrey Leech, and Geoffrey
Sampson, editors. 1987. The Computational
Analysis of English: A Corpus-Based
Approach. Longman, London, UK.

Girju, Roxana, Dan Moldovan, Marta Tatu,
and Daniel Antohe. 2005. On the semantics
of noun compounds. Journal of Computer
Speech and Language - Special Issue on
Multiword Expressions, 19(4):313–330.

Goodman, Joshua. 1997. Probabilistic
feature grammars. In Proceedings of the
5th International Workshop on Parsing
Technologies (IWPT-97), September 17–20,
1997, pages 89–100, Cambridge, MA.

Hindle, Donald. 1983. User manual for
Fidditch. Technical Report 7590-142,
Naval Research Laboratory,
Washington, DC.

Hindle, Donald. 1989. Acquiring
disambiguation rules from text.
In Proceedings of the 27th Annual Meeting
of the Association for Computational
Linguistics (ACL-89), pages 118–125,
Vancouver.

Hindle, Donald and Mats Rooth. 1993.
Structural ambiguity and lexical relations.
Computational Linguistics, 19(1):103–120.

Hockenmaier, Julia. 2003. Data and Models
for Statistical Parsing with Combinatory
Categorial Grammar. Ph.D. thesis,
University of Edinburgh, Edinburgh.

807

Computational Linguistics Volume 37, Number 4

Johnson, Mark. 1998. PCFG models of
linguistic tree representations.
Computational Linguistics, 24(4):613–632.

Kasami, Tadao. 1965. An efficient recognition
and syntax analysis algorithm for
context-free languages. Technical Report
AFCRL-65-758, Air Force Cambridge
Research Lab, Bedford, MA.

King, Tracy Holloway, Richard Crouch,
Stefan Riezler, Mary Dalrymple, and
Ronald M. Kaplan. 2003. The PARC700
dependency bank. In Proceedings
of the 4th International Workshop on
Linguistically Interpreted Corpora (LINC-03),
pages 1–8, Budapest.

Klein, Dan and Christopher D. Manning.
2001. Parsing with treebank grammars:
empirical bounds, theoretical models,
and the structure of the Penn Treebank.
In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics
(ACL-01), pages 338–345, Toulouse.

Koehn, Philipp. 2003. Noun Phrase
Translation. Ph.D. thesis, University of
Southern California, Los Angeles, CA.

Kübler, Sandra. 2005. How do treebank
annotation schemes influence parsing
results? Or how not to compare apples
and oranges. In Proceedings of the Recent
Advances in Natural Language Processing
Conference (RANLP-05), September 21–23,
2005, pages 293–300, Borovets.

Kulick, Seth, Ann Bies, Mark Liberman,
Mark Mandel, Ryan McDonald, Martha
Palmer, Andrew Schein, and Lyle Ungar.
2004. Integrated annotation for biomedical
information extraction. In Proceedings of
BioLink Workshop at the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics (BioLink-04), pages 61–68,
Boston, MA.

Lapata, Mirella and Frank Keller. 2004.
The web as a baseline: Evaluating the
performance of unsupervised web-based
models for a range of NLP tasks.
In Proceedings of the Human Language
Technology Conference of the North
American Chapter of the Association for
Computational Linguistics (HLT-NAACL-04),
pages 121–128, Boston, MA.

Lauer, Mark. 1995. Designing Statistical
Language Learners: Experiments on Noun
Compounds. Ph.D. thesis, Macquarie
University, Sydney.

Magerman, David. 1994. Natural Language
Parsing as Statistical Pattern Recognition.
Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA.

Magerman, David. 1995. Statistical decision
tree models for parsing. In Proceedings of
the 33rd Annual Meeting of the Association
for Computational Linguistics (ACL-95),
pages 276–283, Cambridge, MA.

Marcus, Mitchell. 1980. A Theory of
Syntactic Recognition for Natural Language.
MIT Press, Cambridge, MA.

Marcus, Mitchell, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre,
Ann Bies, Mark Ferguson, Karen Katz,
and Britta Schasberger. 1994. The Penn
Treebank: Annotating predicate argument
structure. In Proceedings of the Workshop on
Human Language Technology (HLT-94),
pages 114–119, Plainsboro, NJ.

Marcus, Mitchell, Beatrice Santorini, and
Mary Marcinkiewicz. 1993. Building a
large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19(2):313–330.

McInnes, Bridget, Ted Pedersen, and
Serguei Pakhomov. 2007. Determining the
syntactic structure of medical terms in
clinical notes. In Workshop on Biological,
Translational, and Clinical Language
Processing, pages 9–16, Prague.

Melamed, I. Dan, Giorgio Satta, and
Benjamin Wellington. 2004. Generalized
multitext grammars. In Proceedings of the
42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04),
pages 661–668, Barcelona.

Nakov, Preslav and Marti Hearst. 2005.
Search engine statistics beyond the
n-gram: Application to noun compound
bracketing. In Proceedings of the 9th
Conference on Computational Natural
Language Learning (CoNLL-05),
pages 17–24, Ann Arbor, MI.

Noreen, Eric W. 1989. Computer Intensive
Methods for Testing Hypotheses: An
Introduction. John Wiley & Sons,
New York, NY.

Oepen, Stephan, Kristina Toutanova, Stuart
Shieber, Christopher Manning, Dan
Flickinger, and Thorsten Brants. 2002. The
LinGO Redwoods Treebank: Motivation
and preliminary applications. In
Proceedings of the 19th International
Conference on Computational Linguistics
(COLING-02), pages 1253–1257, Taipei.

Papineni, Kishore, Salim Roukos, Todd
Ward, and Wei-Jing Zhu. 2002. Bleu:
A method for automatic evaluation of
machine translation. In Proceedings of
40th Annual Meeting of the Association for
Computational Linguistics (ACL-02),
pages 311–318, Philadelphia, PA.

808

Vadas and Curran Parsing Noun Phrases in the Penn Treebank

Petrov, Slav, Leon Barrett, Romain Thibaux,
and Dan Klein. 2006. Learning accurate,
compact, and interpretable tree annotation.
In Proceedings of the 21st International
Conference on Computational Linguistics
and the 44th Annual Meeting of the
Association for Computational Linguistics
(COLING-ACL-06), pages 433–440,
Sydney.

Quirk, Randolph, Sidney Greenbaum,
Geoffrey Leech, and Jan Svartvik. 1985.
A Comprehensive Grammar of the English
Language. Longman, London.

Ramshaw, Lance A. and Mitchell
Marcus. 1995. Text chunking using
transformation-based learning. In
Proceedings of the Third ACL Workshop
on Very Large Corpora, pages 82–94,
Cambridge, MA.

Ratnaparkhi, Adwait. 1997. A linear
observed time statistical parser based on
maximum entropy models. In Proceedings
of the Second Conference on Empirical
Methods in Natural Language Processing
(EMNLP-2), pages 1–10, Providence, RI.

Rehbein, Ines and Josef van Genabith. 2007.
Treebank annotation schemes and parser
evaluation for German. In Proceedings
of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing
and Computational Natural Language
Learning (EMNLP-CoNLL), pages 630–639,
Prague.

Riezler, Stefan, Tracy H. King, Ronald M.
Kaplan, Richard Crouch, John T. Maxwell,
and Mark Johnson. 2002. Parsing the Wall
Street Journal using a Lexical-Functional
Grammar and discriminative estimation
techniques. In Proceedings of the 40th
Annual Meeting of the Association for
Computational Linguistics (ACL-02),
pages 271–278, Philadephia, PA.

Steedman, Mark. 2000. The Syntactic Process.
MIT Press, Cambridge, MA.

Vadas, David and James R. Curran. 2007.
Adding noun phrase structure to the
Penn Treebank. In Proceedings of the
45th Annual Meeting of the Association of
Computational Linguistics (ACL-07),
pages 240–247, Prague.

van Eynde, Frank. 2006. NP-internal
agreement and the structure of the noun
phrase. Journal of Linguistics, 42:139–186.

Wang, Wei, Kevin Knight, and Daniel
Marcu. 2007. Binarizing syntax trees
to improve syntax-based machine
translation accuracy. In Proceedings of
the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 746–754, Prague.

Warner, Colin, Ann Bies, Christine Brisson,
and Justin Mott. 2004. Addendum to
the Penn Treebank II style bracketing
guidelines: BioMedical Treebank
annotation. Technical report, Linguistic
Data Consortium, University of
Pennsylvania, Philadelphia, PA.

Weischedel, Ralph and Ada Brunstein. 2005.
BBN pronoun coreference and entity type
corpus. Technical report. LDC Catalog
No.: LDC2005T33, BBN Technologies,
Cambridge, MA.

Younger, Daniel. 1967. Recognition and
parsing of context-free languages in time
n3. Information and Control, 10(2):189–208.

Zhang, Hao, Liang Huang, Daniel Gildea,
and Kevin Knight. 2006. Synchronous
binarization for machine translation.
In Proceedings of the Human Language
Technology Conference - North American
Chapter of the Association for Computational
Linguistics Annual Meeting (HLT-NAACL),
pages 256–263, New York, NY.

809

