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1. Introduction

Semantic Role Labeling (SRL) is the problem of analyzing clause predicates in text by
identifying arguments and tagging them with semantic labels indicating the role they
play with respect to the predicate. Such sentence-level semantic analysis allows the
determination of who did what to whom, when and where, and thus characterizes the
participants and properties of the events established by the predicates. For instance,
consider the following sentence, in which the arguments of the predicate to send have
been annotated with their respective semantic roles.1

(1) [Mr. Smith]Agent sent [the report]Object [to me]Recipient [this morning]Temporal.

Recognizing these event structures has been shown to be important for a broad
spectrum of NLP applications. Information extraction, summarization, question
answering, machine translation, among others, can benefit from this shallow semantic
analysis at sentence level, which opens the door for exploiting the semantic relations
among arguments (Boas 2002; Surdeanu et al. 2003; Narayanan and Harabagiu 2004;
Melli et al. 2005; Moschitti et al. 2007; Higashinaka and Isozaki 2008; Surdeanu,
Ciaramita, and Zaragoza 2011). In Màrquez et al. (2008) the reader can find a broad
introduction to SRL, covering several historical and definitional aspects of the problem,
including also references to the main resources and systems.

State-of-the-art systems leverage existing hand-tagged corpora (Fillmore,
Ruppenhofer, and Baker 2004; Palmer, Gildea, and Kingsbury 2005) to learn supervised
machine learning systems, and typically perform SRL in two sequential steps:
argument identification and argument classification. Whereas the former is mostly a
syntactic recognition task, the latter usually requires semantic knowledge to be taken
into account. The semantic knowledge that most current systems capture from text is
basically limited to the predicates and the lexical units contained in their arguments,
including the argument head. These “lexical features” tend to be sparse, especially
when the training corpus is small, and thus SRL systems are prone to overfit the
training data and generalize poorly to new corpora (Pradhan, Ward, and Martin 2008).
As a simplified example of the effect of sparsity, consider the following sentences
occurring in an imaginary training data set for SRL:

(2) [JFK]Patient was assassinated [in Dallas]Location

(3) [John Lennon]Patient was assassinated [in New York]Location

(4) [JFK]Patient was assassinated [in November]Temporal

(5) [John Lennon]Patient was assassinated [in winter]Temporal

All four sentences share the same syntactic structure, so the lexical features (i.e., the
words Dallas, New York, November, and winter) represent the most relevant knowledge
for discriminating between the Location and Temporal adjunct labels in learning.

1 For simplicity, in this paper we talk about arguments in the most general sense. Unless noted otherwise,
argument will refer to both core-arguments (Agent, Patient, Instrument, etc.) and adjuncts (Manner,
Temporal, Location, etc.).
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The problem is that, as in the following sentences, for the same predicate, one may
encounter similar expressions with new words like Texas or December, which the
classifiers cannot match with the lexical features seen during training, and thus become
useless for classification:

(6) [Smith] was assassinated [in Texas]

(7) [Smith] was assassinated [in December]

This problem is exacerbated when SRL systems are applied to texts coming from
new domains where the number of new predicates and argument heads increases
considerably. The CoNLL-2004 and 2005 evaluation exercises on semantic role labeling
(Carreras and Màrquez 2004, 2005) reported a significant performance degradation
of around 10 F1 points when applied to out-of-domain texts from the Brown corpus.
Pradhan, Ward, and Martin (2008) showed that this performance degradation is
essentially caused by the argument classification subtask, and suggested the lexical
data sparseness as one of the main reasons.

In this work, we will focus on Semantic Role Classification (SRC), and we will show
that selectional preferences (SP) are useful for generalizing lexical features, helping
fight sparseness and domain shifts, and improving SRC results. Selectional preferences
try to model the kind of words that can fill a specific argument of a predicate, and
have been widely used in computational linguistics since the early days (Wilks 1975).
Both semantic classes from existing lexical resources like WordNet (Resnik 1993b) and
distributional similarity based on corpora (Pantel and Lin 2000) have been successfully
used for acquiring selectional preferences, and in this work we have used several of
those models.

The contributions of this work to the field of SRL are the following:

1. We formalize and implement a method that applies several selectional
preference models to Semantic Role Classification, introducing for the first
time the use of selectional preferences for prepositions, in addition to
selectional preferences for verbs.

2. We show that the selectional preference models are able to generalize
lexical features and improve role classification performance in a controlled
experiment disconnected from a complete SRL system. The positive effect
is consistently observed in all variants of WordNet and distributional
similarity measures and is especially relevant for out-of-domain data. The
separate learning of SPs for verbs and prepositions contributes
significantly to the improvement of the results.

3. We integrate the information of several SP models in a state-of-the-art SRL
system (SwiRL)2 and obtain significant improvements in semantic role
classification and, as a consequence, in the end-to-end SRL task. The key
for the improvement lies in the combination of the predictions provided
by SwiRL and the several role classification models based on selectional
preferences.

2 http://surdeanu.info/mihai/swirl/.
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4. We present a manual analysis of the output of the combined role
classification system. By observing a set of real examples, we categorized
and quantified the situations in which SP models tend to help role
classification. By inspecting also a set of negative cases, this analysis also
sheds light on the limitations of the current approach and identifies
opportunities for further improvements.

The use of selectional preferences for improving role classification was first pre-
sented in Zapirain, Agirre, and Màrquez (2009), and later extended in Zapirain et al.
(2010) to a full-fledged SRC system. In the current paper, we provide more detailed
background information and details of the selectional preference models, as well as
complementary experiments on the integration in a full-fledged system. More impor-
tantly, we incorporate a detailed analysis of the output of the system, comparing it with
that of a state-of-the-art SRC system not using SPs.

The rest of the paper is organized as follows. Section 2 provides background on the
automatic acquisition of selectional preference, and its recent relation to the semantic
role labeling problem. In Section 3, the SP models investigated in this paper are ex-
plained in all their variants. The results of the SP models in laboratory conditions are
presented in Section 4. Section 5 describes the method for integrating the SP models in a
state-of-the-art SRL system and discusses the results obtained. In Section 6 the qualita-
tive analysis of the system output is presented, including a detailed discussion of several
examples. Finally, Section 7 concludes and outlines some directions for future research.

2. Background

The simplest model for generating selectional preferences would be to collect all heads
filling each role of the target predicate. This is akin to the lexical features used by current
SRL systems, and we refer to this model as the lexical model. More concretely, the
lexical model for verb-role selectional preferences consists of the list of words appearing
as heads of the role arguments of the predicate verb. This model can be extracted
automatically from the SRL training corpus using straightforward techniques. When
using this model for role classification, it suffices to check whether the head word of
the argument matches any of the words in the lexical model. The lexical model is the
baseline for our other SP models, all of which build on that model.

In order to generalize the lexical model, semantic classes can be used. Although in
principle any lexical resource listing semantic classes for nouns could be applied, most
of the literature has focused on the use of WordNet (Resnik 1993b). In the WordNet-
based model, the words occurring in the lexical model are projected over the semantic
hierarchy of WordNet, and the semantic classes which represent best those words are
selected. Given a new example, the SRC system has to check whether the new word
matches any of those semantic classes. For instance, in example sentences (2)–(5), the
semantic class <time period> covers both training examples for Temporal (i.e., November
and winter), and <geographical area> covers the examples for Location. When test
words Texas and December occur in Examples (6) and (7), the semantic classes to which
they belong can be used to tag the first as Location and the second as Temporal.

As an alternative to the use of WordNet, one can also apply automatically acquired
distributional similarity thesauri. Distributional similarity methods analyze the co-
occurrence patterns of words and are able to capture, for instance, that December is more
closely related to November than to Dallas (Grefenstette 1992). Distributional similarity is
typically used on-line (i.e., given a pair of words, their similarity is computed on the go),
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but, in order to speed up its use, it has also been used to produce off-line a full thesauri,
storing, for every word, the weighted list of all outstanding similar words (Lin 1998).
In the Distributional similarity model, when test item Texas in Example (6) is to be
labeled, the higher similarity to Dallas and New York, in contrast to the lower similarity
to November and winter, would be used to label the argument with the Location role.

The automatic acquisition of selectional preferences is a well-studied topic in NLP.
Many methods using semantic classes and selectional preferences have been proposed
and applied to a variety of syntactic–semantic ambiguity problems, including syntactic
parsing (Hindle 1990; Resnik 1993b; Pantel and Lin 2000; Agirre, Baldwin, and Martinez
2008; Koo, Carreras, and Collins 2008; Agirre et al. 2011), word sense disambiguation
(Resnik 1993a; Agirre and Martinez 2001; McCarthy and Carroll 2003), pronoun res-
olution (Bergsma, Lin, and Goebel 2008) and named-entity recognition (Ratinov and
Roth 2009). In addition, selectional preferences have been shown to be effective to
improve the quality of inference and information extraction rules (Pantel et al. 2007;
Ritter, Mausam, and Etzioni 2010). In some cases, the aforementioned papers do not
mention selectional preferences, but all of them use some notion of preferring certain
semantic types over others in order to accomplish their respective task.

In fact, one could use different notions of semantic types. In one extreme, we would
have a small set of coarse semantic classes. For instance, some authors have used the
26 so-called “semantic fields” used to classify all nouns in WordNet (Agirre, Baldwin,
and Martinez 2008; Agirre et al. 2011). The classification could be more fine-grained, as
defined by the WordNet hierarchy (Resnik 1993b; Agirre and Martinez 2001; McCarthy
and Carroll 2003), and other lexical resources could be used as well. Other authors have
used automatically induced hierarchical word classes, clustered according to occurrence
information from corpora (Koo, Carreras, and Collins 2008; Ratinov and Roth 2009).
On the other extreme, each word would be its own semantic class, as in the lexical
model, but one could also model selectional preference using distributional similarity
(Grefenstette 1992; Lin 1998; Pantel and Lin 2000; Erk 2007; Bergsma, Lin, and Goebel
2008). In this paper we will focus on WordNet-based models that use the whole hierarchy
and on distributional similarity models, and we will use the lexical model as baseline.

2.1 WordNet-Based Models

Resnik (1993b) proposed the modeling of selectional preferences using semantic classes
from WordNet and applied the model to tackle some ambiguity issues in syntax, such
as noun-compounds, coordination, and prepositional phrase attachment. Given two
alternative structures, Resnik used selectional preferences to choose the attachment
maximizing the fitness of the head to the selectional preferences of the attachment
points. This is similar to our task, but in our case we compare the target head to the selec-
tional preference models for each possible role label (i.e., given a verb and the head of an
argument, we need to find the role with the selectional preference that fits the head best).

In Resnik’s model, he first characterizes the restrictiveness of the selectional pref-
erence of an argument position r of a governing predicate p, noted as R(p, r). For that,
given a set of classes C from the WordNet nominal hierarchies, he takes the relative en-
tropy or Kullback-Leibler distance between the prior distribution P(C) and the posterior
distribution P(C|p, r):

R(p, r) =
∑
c∈C

P(c|p, r)log
P(c|p, r)

P(c) (1)
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The priors can be computed from any corpora, computing frequencies of classes
and using maximum likelihood estimates. The frequencies for classes cannot be directly
observed, but they can be estimated from the lexical frequencies of the nouns under
the class, as in Equation (2). Note that in WordNet, hypernyms (“hyp” for short)
correspond to superclass relations, and therefore hyp(n) returns all superclasses of
noun n.

freq(c) =
∑

{n|c∈hyp(n)}
freq(n) (2)

A complication arises because of the polysemy of nouns. If each occurrence of a
noun counted once in all classes that its senses belong to, polysemous nouns would
account for more probability mass than monosemous nouns, even if they occurred the
same number of times. As a solution, the frequency of polysemous nouns is split among
its senses uniformly. For instance, the probability of the class <time period> can be
estimated according to the frequencies of nouns like November, spring, and the rest of
nouns under it. November has a single sense, so every occurrence counts as 1, but spring
has six different senses, so each occurrence should only count as 0.16. Note that with
this method we are implicitly dealing with the word sense ambiguity problem. When
encountering a polysemous noun as an argument of a verb, we record the occurrence
of all of its senses. Given enough occurrences of nouns, the classes generalizing the
intended sense of the nouns will gather more counts than competing classes. In the
example, <time period> would have 1.16 compared with 0.16 <tool> (i.e., for the metal
elastic device meaning of spring). Researchers have used this fact to perform Word Sense
Disambiguation using selectional preferences (Resnik 1993a; Agirre and Martinez 2001;
McCarthy and Carroll 2003).

The posterior probability can be computed similarly, but it takes into account occur-
rences of the nouns in the required argument position of the predicate, and thus requires
a corpus annotated with roles.

The selectional preference of a predicate p and role r for a head w0 of any potential
argument, noted as SPRes(p, r, w0), is formulated as follows:3

SPRes(p, r, w0) = max
c0∈hyp(w0 )

P(c0|p, r)log P(c0|p,r)
P(c0)

R(p, r) (3)

The numerator formalizes the goodness of fit for the best semantic class c0 that
contains w0. The hypernym (i.e., superclass) of w0 yielding the maximum value is
chosen. The denominator models how restrictive the selectional preference is for p and
r, as modeled in Equation (1).

Variations of Resnik’s idea to find a suitable level of generalization have been
explored in later years. Li and Abe (1998) applied the minimum-description length
principle. Alternatively, Clark and Weir (2002) devised a procedure to decide when a
class should be preferred rather than its children.

Brockmann and Lapata (2003) compared several class-based models (including
Resnik’s selectional preferences) on a syntactic plausibility judgment task for German.

3 We slightly modified the notation of Resnik (1993b) in order to be coherent with the formulae presented
in this paper.
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The models return weights for (verb, syntactic function, noun) triples, and correla-
tion with human plausibility judgment is used for evaluation. Resnik’s selectional
preference scored best among WordNet-based methods (Li and Abe 1998; Clark and
Weir 2002). Despite its earlier publication, Resnik’s method is still the most popular
representative among WordNet-based methods (Padó, Padó, and Erk 2007; Erk, Padó,
and Padó 2010; Baroni and Lenci 2010). We also chose to use Resnik’s model in this
paper.

One of the disadvantages of the WordNet-based models, compared with the distri-
butional similarity models, is that they require that the heads are present in WordNet.
This limitation can negatively influence the coverage of the model, and also its general-
ization ability.

2.2 Distributional Similarity Models

Distributional similarity models assume that a word is characterized by the words it
co-occurs with. In the simplest model, co-occurring words are taken from a fixed-size
context window. Each word w would be represented by the set of words that co-occur
with it, T(w). In a more elaborate model, each word w would be represented as a vector
of words �T(w) with weights, where �Ti(w) corresponds to the weight of the ith word in
the vector. The weights can be calculated following a simple frequency of co-occurrence,
or using some other formula.

Then, given two words w and w0, their similarity can be computed using any simi-
larity measure between their co-occurrence sets or vectors. For instance, early work by
Grefenstette (1992) used the Jaccard similarity coefficient of the two sets T(w) and T(w0)
(cf. Equation (4) in Figure 1). Lee (1999) reviews a wide range of similarity functions,
including Jaccard and the cosine between two vectors �T(w) and �T(w0) (cf. Equation (5)
in Figure 1).

In the context of lexical semantics, the similarity measure defined by Lin (1998)
has been very successful. This measure (cf. Equation (6) in Figure 1) takes into account
syntactic dependencies (d) in its co-occurrence model. In this case, the set T(w) of co-
occurrences of w contains pairs (d,v) of dependencies and words, representing the fact

simJac(w, w0) =
|T(w) ∩ T(w0)|
|T(w) ∪ T(w0)| (4)

simcos(w, w0) =
∑n

i=1
�Ti(w)�Ti(w0)√∑n

i=1
�Ti(w)2

√∑n
i=1

�Ti(w0)2
(5)

simLin(w, w0) =

∑
(d,v)∈T(w)∩T(w0 )(I(w, d, v) + I(w0, d, v))∑

(d,v)∈T(w) I(w, d, v) +
∑

(d,v)∈T(w0 ) I(w0, d, v)
(6)

Figure 1
Similarity measures used in the paper. Jac and cos stand for Jaccard and cosine similarity metrics.
T(w) is the set of words co-occurring with w, �Ti(w) is the weight of the ith element of the vector
of words co-occurring with w, and I(w, d, v) is the mutual information between w and d, v.
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that the corpus contains an occurrence of w having dependency d with v. For instance,
if the corpus contains John loves Mary, then the pair (ncsubj, love) would be in the set
T for John. The measure uses information-theoretic principles, and I(w, d, v) represents
the information content of the triple (Lin 1998).

Although the use of co-occurrence vectors for words to compute similarity has been
standard practice, some authors have argued for more complex uses. Schütze (1998)
builds vectors for each context of occurrence of a word, combining the co-occurrence
vectors for each word in the context. The vectors for contexts were used to induce
senses and to improve information retrieval results. Edmonds (1997) built a lexical co-
occurrence network, and applied it to a lexical choice task. Chakraborti et al. (2007)
used transitivity over co-occurrence relations, with good results on several classification
tasks. Note that all these works use second order and higher order to refer to their method.
In this paper, we will also use second order to refer to a new method which goes beyond
the usual co-occurrence vectors (cf. Section 3.3).

A full review of distributional models is out of the scope of this paper, as we are in-
terested in showing that some of those models can be used successfully to improve SRC.
Padó and Lapata (2007) present a review of distributional models for word similarity,
and a study of several parameters that define a broad family of distributional similarity
models, including Jaccard and Lin. They provide publicly available software,4 which
we have used in this paper, as explained in the next section. Baroni and Lenci (2010)
present a framework for extracting distributional information from corpora that can be
used to build models for different tasks.

Distributional similarity models were first used to tackle syntactic ambiguity. For
instance, Pantel and Lin (2000) obtained very good results on PP-attachment using the
distributional similarity measure defined by Lin (1998). Distributional similarity was
used to overcome sparsity problems: Alongside the counts in the training data of the
target words, the counts of words similar to the target ones were also used. Although
not made explicit, Lin was actually using a distributional similarity model of selectional
preferences.

The application of distributional selectional preferences to semantic roles (as op-
posed to syntactic functions) is more recent. Gildea and Jurafsky (2002) are the only ones
applying selectional preferences in a real SRL task. They used distributional clustering
and WordNet-based techniques on a SRL task on FrameNet roles. They report a very
small improvement of the overall performance when using distributional clustering
techniques. In this paper we present complementary experiments, with a different role
set and annotated corpus (PropBank), a wider range of selectional preference models,
and the analysis of out-of-domain results.

Other papers applying semantic preferences in the context of semantic roles rely on
the evaluation of artificial tasks or human plausibility judgments. Erk (2007) introduced
a distributional similarity–based model for selectional preferences, reminiscent of that
of Pantel and Lin (2000). Her approach models the selectional preference SPsim(p, r, w0)
of an argument position r of governing predicate p for a possible head-word w0 as
follows:

SPsim(p, r, w0) =
∑

w∈Seen(p,r)

sim(w0, w) · weight(p, r, w) (7)

4 http://www.coli.uni-saarland.de/∼pado/dv/dv.html.

638



Zapirain et al. Selectional Preferences for Semantic Role Classification

where sim(w0, w) is the similarity between the seen and potential heads, Seen(p, r) is the
set of heads of role r for predicate p seen in the training data set (as in the lexical model),
and weight(p, r, w) is the weight of the seen head word w. Our distributional model for
selectional preferences follows her formalization.

Erk instantiated the basic model with several corpus-based distributional similarity
measures, including Lin’s similarity, Jaccard, and cosine (Figure 1) among others, and
several implementations of the weight function such as the frequency. The quality of
each model instantiation, alongside Resnik’s model and an expectation maximization
(EM)-based clustering model, was tested in a pseudo-disambiguation task where the
goal was to distinguish an attested filler of the role and a randomly chosen word. The
results over 100 frame-specific roles showed that distributional similarities attain similar
error rates to Resnik’s model but better than EM-based clustering, with Lin’s formula
having the smallest error rate. Moreover, the coverage of distributional similarity mea-
sures was much better than Resnik’s. In a more recent paper, Erk, Padó, and Padó (2010)
extend the aforementioned work, including evaluation to human plausibility judgments
and a model for inverse selectional preferences.

In this paper we test similar techniques to those presented here, but we evaluate
selectional preference models in a setting directly related to semantic role classification,
namely, given a selectional preference model for a verb we find the role which fits
best the given head word. The problem is indeed qualitatively different from previous
work in that we do not have to choose among the head words competing for a role but
among selectional preferences of roles competing for a head word.

More recent work on distributional selectional preference has explored the use of
discriminative models (Bergsma, Lin, and Goebel 2008) and topical models (Ó Séaghdha
2010; Ritter, Mausam, and Etzioni 2010). These models would be a nice addition to those
implemented in this paper, and if effective, they would improve further our results with
respect to the baselines which don’t use selectional preferences.

Contrary to WordNet-based models, distributional preferences do not rely on a
hand-built resource. Their coverage and generalization ability depend on the corpus
from which the distributional similarity model was computed. This fact makes this
approach more versatile in domain adaptation scenarios, as more specific and test-set
focused generalization corpora could be used to modify, enrich, or even replace the
original corpus.

2.3 PropBank

In this work we use the semantic roles defined in PropBank. The Proposition Bank
(Palmer, Gildea, and Kingsbury 2005) emerged as a primary resource for research in
SRL. It provides semantic role annotation for all verbs in the Penn Treebank corpus.
PropBank takes a “theory-neutral” approach to the designation of core semantic roles.
Each verb has a frameset listing its allowed role labelings in which the arguments are
designated by number (starting from 0). Each numbered argument is provided with an
English language description specific to that verb. The most frequent roles are Arg0 and
Arg1 and, generally, Arg0 stands for the prototypical agent and Arg1 corresponds to the
prototypical patient or theme of the proposition. The rest of arguments (Arg2 to Arg5)
do not generalize across verbs, that is, they have verb specific interpretations.

Apart from the core numbered roles, there are 13 labels to designate adjuncts:
AM-ADV (general-purpose), AM-CAU (cause), AM-DIR (direction), AM-DIS (dis-
course marker), AM-EXT (extent), AM-LOC (location), AM-MNR (manner), AM-MOD
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Table 1
Example of verb-role lexical SP models for write, listed in alphabetical order. Number of heads
indicates the number of head words attested, Unique heads indicates the number of distinct
head words attested, and Examples lists some of the heads in alphabetical order.

Verb-role Number of Unique Examples
heads heads

write-Arg0 98 84 Angrist anyone baker ball bank Barlow Bates ...
write-Arg1 97 69 abstract act analysis article asset bill book ...
write-Arg2 7 7 bank commander hundred jaguar Kemp member ...
write-AM-LOC 2 2 paper space
write-AM-TMP 1 1 month

(modal verb), AM-NEG (negation marker), AM-PNC (purpose), AM-PRD (predication),
AM-REC (reciprocal), and AM-TMP (temporal).

3. Selectional Preference Models for Argument Classification

Our approach for applying selectional preferences to semantic role classification is
discriminative. That is, the SP-based models provide a score for every possible role
label given a verb (or preposition), the head word of the argument, and the selectional
preferences for the verb (or preposition). These scores can be used to directly assign the
most probable role or to codify new features to train enriched semantic role classifiers.

In this section we first present all the variants for acquiring selectional preferences
used in our study, and then present the method to apply them to semantic role classifi-
cation. We selected several variants that have been successful in some previous works.

3.1 Lexical SP Model

In order to implement the lexical model we gathered all heads w of arguments filling
a role r of a predicate p and obtained freq(p, r, w) from the corresponding training data
(cf. Section 4.1). Table 1 shows a sample of the heads of arguments attested in the
corpus for the verb write. The lexical SP model can be simply formalized as follows:

SPlex(p, r, w0) = freq(p, r, w0) (8)

3.2 WordNet-Based SP Models

We instantiated the model based on (Resnik 1993b) presented in the previous sec-
tion (SPRes, cf. Equation (3)) using the implementation of Agirre and Martinez (2001).
Tables 2 and 3 show the synsets5 that generalize best the head words in Table 1
for write-Arg0 and write-Arg1, according to the weight assigned to those synsets by
Equation (1). According to this model, and following basic intuition, the words attested
as being Arg0s of write are best generalized by semantic classes such as living things,

5 The WordNet terminology for concepts is synset. In this paper we use concept, synset, and semantic class
interchangeably.
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Table 2
Excerpt from the selectional preferences for write-Arg0 according to SPRes, showing the synsets
that generalize best the head words in Table 1. Weight lists the weight assigned to those synsets
by Equation (1). Description includes the words and glosses in the synset.

Synset Weight Description

n#00002086 5.875 life form organism being living thing any living entity
n#00001740 5.737 entity something anything having existence (living or nonliving)
n#00009457 4.782 object physical object a physical (tangible and visible) entity;
n#00004123 4.351 person individual someone somebody mortal human soul

a human being;

Table 3
Excerpt from the selectional preferences for write-Arg1 according to SPRes, showing the synsets
that generalize best the head words in Table 1. Weight lists the weight assigned to those synsets
by Equation (1). Description includes the words and glosses in the synset.

Synset Weight Description

n#00019671 7.956 communication something that is communicated between people
or groups

n#04949838 4.257 message content subject matter substance what a communication
that . . .

n#00018916 3.848 relation an abstraction belonging to or characteristic of two entities
n#00013018 3.574 abstraction a concept formed by extracting common features

from examples

entities, physical objects, and human beings, whereas Arg1s by communication, mes-
sage, relation, and abstraction.

Resnik’s method performs well among Wordnet-based methods, but we realized
that it tends to overgeneralize. For instance, in Table 2, the concept for “entity” (one of
the unique beginners of the WordNet hierarchy) has a high weight. This means that a
head like “grant” would be assigned Arg0. In fact, any noun which is under concept
n#00001740 (entity) but not under n#04949838 (message) would be assigned Arg0. This
observation led us to speculate on an alternative method which would try to generalize
as little as possible.

Our intuition is that general synsets can fit several selectional preferences at the
same time. For instance, the <entity> class, as a superclass of most words, would be a
correct generalization for the selectional preferences of all agent, patient, and instrument
roles of a predicate like break. On the contrary, specific concepts are usually more useful
for characterizing selectional preferences, as in the <tool> class for the instrument role
of break. The priority of using specific synsets over more general ones is, thus, justified
in the sense that they may better represent the most relevant semantic characteristics of
the selectional preferences.

The alternative method (SPwn) is based on the depth of the concepts in the WordNet
hierarchy and the frequency of the nouns. The use of the depth in hierarchies to model
the specificity of concepts (the deeper the more specific) is not new (Rada et al. 1989;
Sussna 1993; Agirre and Rigau 1996). Our method tries to be conservative with respect
to generalization: When we check which SP is a better fit for a given target head, we
always prefer the SP that contains the most specific generalization for the target head
(the lowest synset which is a hypernym of the target word).
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Table 4
Excerpt from the selectional preferences for write-Arg0 according to SPwn, showing from deeper
to shallower the synsets in WordNet which are connected to head words in Table 1. Depth lists
the depth of synsets in WordNet. Description includes the words and glosses in the synset.

Synset Depth Freq. Description

n#01967203 9 1 humanoid human being any living or extinct member of the . . .
n#07603319 8 1 spy undercover agent a secret agent hired by a state to . . .
n#07151308 8 1 woman a human female who does housework
n#06183656 8 1 Federal Reserve the central bank of the US

Table 5
Excerpt from the selectional preferences for write-Arg1 according to SPwn, showing from deeper
to shallower the synsets in WordNet which are connected to head words in Table 1. Depth lists
the depth of synsets in WordNet. Description includes the words and glosses in the synset.

Synset Depth Freq. Description

n#05403815 13 1 information formal accusation of a crime
n#05401516 12 1 accusation accusal a formal charge of wrongdoing brought . . .
n#04925620 11 1 charge complaint a pleading describing some wrong or offense
n#04891230 11 1 memoir an account of the author’s personal experiences

More concretely, we model selectional preferences as a multiset6 of synsets, storing
all hypernyms of the heads seen in the training data for a certain role of a given
predicate, that is:

Smul(p, r) =
⊎

w∈Seen(p,r)

hyp(w) (9)

where Seen(p, r) are all the argument heads for predicate p and role r, and hyp(w) returns
all the synsets and hypernyms of w, including hypernyms of hypernyms recursively up
to the top synsets.

For any given synset s, let d(s) be the depth of the synset in the WordNet hierarchy,
and let 1Smul(p,r)(s) be the multiplicity function which returns how many times s is con-
tained in the multiset Smul(p, r). We define a partial order among synsets a, b ∈ Smul(p, r)
as follows: ord(a) > ord(b) iff d(a) > d(b) or d(a) = d(b) ∧ 1Smul(p,r)(a) > 1Smul(p,r)(b).
Tables 4 and 5 show the most specific synsets (according to their depth) for write-Arg0
and write-Arg1.

We can then measure the goodness of fit of the selectional preference for a word as
the rank in the partial order of the first hypernym of the head that is also present in the
selectional preference. For that, we introduce SPwn(p, r, w), which following the previous
notation is defined as:

SPwn(p, r, w) = arg max
s∈hyp(w)∩Smul(p,r)

ord(s) (10)

6 Multisets are similar to sets, but allow for repeated members.
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Table 6
Most similar words for Texas and December according to Lin (1998).

Texas Florida 0.249, Arizona 0.236, California 0.231, Georgia 0.221, Kansas 0.217,
Minnesota 0.214, Missouri 0.214, Michigan 0.213, Colorado 0.208, North
Carolina 0.207, Oklahoma 0.207, Arkansas 0.205, Alabama 0.205, Nebraska
0.201, Tennessee 0.197, New Jersey 0.194, Illinois 0.189, Virginia 0.188,
Kentucky 0.188, Wisconsin 0.188, Massachusetts 0.184, New York 0.183

December June 0.341, October 0.340, November 0.333, April 0.330, February 0.329,
September 0.328, July 0.323, January 0.322, August 0.317, may 0.305, March
0.250, Spring 0.147, first quarter 0.135, mid-December 0.131, month 0.130,
second quarter 0.129, mid-November 0.128, fall 0.125, summer 0.125,
mid-October 0.121, autumn 0.121, year 0.121, third quarter 0.119

In case of ties, the role coming first in alphabetical order would be returned. Note that,
similar to the Resnik model (cf. Section 2.1), this model implicitly deals with the word
ambiguity problem.

As with any other approximation to measure specificity of concepts, the use of
depth has some issues, as some deeply rooted stray synsets would take priority. For
instance, Table 4 shows that synset n#01967203 for human being is the deepest synset. In
practice, when we search the synsets of a target word in the SPwn models following Eq.
(10), the most specific synsets (specially stray synsets) are not found, and synsets higher
in the hierarchy are used.

3.3 Distributional SP Models

All our distributional SP models are based on Equation (7). We have used several vari-
ants for sim(w0, w), as presented subsequently, but in all cases, we used the frequency
freq(p, r, w) as the weight in the equation. Given the availability of public resources for
distributional similarity, rather than implementing sim(w0, w) afresh we used (1) the pre-
compiled similarity measures by Lin (1998),7 and (2) the software for semantic spaces
by Padó and Lapata (2007).

In the first case, Lin computed the similarity numbers for an extensive vocabulary
based on his own similarity formula (cf. Equation (6) in Figure 1) run over a large
parsed corpus comprising journalism texts from different sources: WSJ (24 million
words), San Jose Mercury (21 million words) and AP Newswire (19 million words).
The resource includes, for each word in the vocabulary, its most similar words with
the similarity weight. In order to get the similarity for two words, we can check the
entry in the thesaurus for either word. We will refer to this similarity measure as
simpre

Lin. Table 6 shows the most similar words for Texas and December according to this
resource.

For the second case, we applied the software to the British National Corpus to
extract co-occurrences, using the optimal parameters as described in Padó and Lapata
(2007, page 179): word-based space, medium context, log-likelihood association, and

7 http://www.cs.ualberta.ca/∼lindek/downloads.htm.
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Table 7
Summary of distributional similarity measures used in this work.

Similarity measure Source

simcos cosine BNC
simJac Jaccard BNC
simLin Lin BNC

simpre
Lin Lin Pre-computed

simpre
Lin×cos cosine (2nd order) Pre-computed

simpre
Lin×Jac Jaccard (2nd order) Pre-computed

2,000 basis elements. We tested Jaccard, cosine, and Lin’s measure for similarity, yielding
simJac, simcos, and simLin, respectively.

In addition to measuring the similarity of two words directly, that is, using the co-
occurrence vectors of each word as in Section 2, we also tried a variant which we will
call second-order similarity. In this case each word is represented by a vector which
contains all similar words with weights, where those weights come from first order
similarity. That is, in order to obtain the second-order vector for word w, we need to
compute its first order similarity with all other words in the vocabulary. The second-
order similarity of two words is then computed according to those vectors. For this, we
just need to change the definition of T and �T in the similarity formulas in Figure 1: Now
T(w) would return the list of words which are taken to be similar to w, and �T(w) would
return the same list but as a vector with weights.

This approximation is computationally expensive, as we need to compute the
square matrix of similarities for all word pairs in the vocabulary, which is highly time-
consuming. Fortunately, the pre-computed similarity scores of Lin (1998) (which use
simLin) are readily available, and thus the second-order similarity vectors can be easily
computed. We used Jaccard and cosine to compute the similarity of the vectors, and we
will refer to these similarity measures as simpre

Lin×Jac and simpre
Lin×cos hereinafter. Due to the

computational complexity, we did not compute second order similarity for the semantic
space software of Padó and Lapata (2007).

Table 7 summarizes all similarity measures used in this study, and the corpus or
pre-computed similarity list used to build them.

3.4 Selectional Preferences for Prepositions

All the previously described models have been typically applied to verb-role selectional
preferences for NP arguments. Applying them to general semantic role labeling may
not be straightforward, however, and may require some extensions and adaptations.
For instance, not all argument candidates are noun phrases. Common arguments with
other syntactic types include prepositional, adjectival, adverbial, and verb phrases. Any
candidate argument without a nominal head cannot be directly treated by the models
described so far.
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Table 8
Example of prep-role lexical models for the preposition from, listed in alphabetical order.

Prep-role Number of Unique Examples
heads heads

from-Arg0 32 30 Abramson agency association barrier cut ...
from-Arg1 173 118 accident ad agency appraisal arbitrage ...
from-Arg2 708 457 academy account acquisition activity ad ...
from-Arg3 396 165 activity advertising agenda airport ...
from-Arg4 5 5 europe Golenbock system Vizcaya west
from-AM-ADV 19 17 action air air conception datum everyone ...
from-AM-CAU 5 4 air air design experience exposure
from-AM-DIR 79 71 agency alberta amendment america arson ...
from-AM-LOC 20 17 agency area asia body bureau orlando ...
from-AM-MNR 29 28 agency Carey company earnings floor ...
from-AM-TMP 33 21 april august beginning bell day dec. half ...

A particularly interesting case is that of prepositional phrases.8 Prepositions define
relations between the preposition attachment point and the preposition complement.
Prepositions are ambiguous with respect to these relations, which allows us to talk
about preposition senses. The Preposition Project (Litkowski and Hargraves 2005, 2006)
is an effort that produced a detailed sense inventory for English prepositions, which
was later used in a preposition sense disambiguation task at SemEval-2007 (Litkowski
and Hargraves 2007). Sense labels are defined as semantic relations, similar to those of
semantic role labels. In a more recent work, Srikumar and Roth (2011) presented a joint
model for extended semantic role labeling in which they show that determining the
sense of the preposition is mutually related to the task of labeling the argument role of
the prepositional phrase. Following the previous work, we also think that prepositions
define implicit selectional preferences, and thus decided to explore the use of preposi-
tional preferences with the aim of improving the selection of the appropriate semantic
roles. Addressing other arguments with non-nominal heads has been intentionally left
for further work.

The most straightforward way of including prepositional information in SP models
would be to add the preposition as an extra parameter of the SP. Initial experiments
revealed sparseness problems with collecting the 〈verb, preposition, NP-head, role〉
4-tuples from the training set. A simpler approach consists of completely disregarding
the verb information while collecting the prepositional preferences. That is, the selec-
tional preference for a preposition p and role r is defined as the union of all nouns w
found as heads of noun phrases embedded in prepositional phrases headed by p and
labeled with semantic role r. Then, one can apply any of the variants described in the
previous sections to calculate SP(p, r, w). Table 8 shows a sample of the lexical model for
the preposition from, organized according to the roles it plays.

These simple prep-role preferences largely avoided the sparseness problem while
still being able to capture relevant information to distinguish the appropriate roles in
many PP arguments. In particular, they proved to be relevant to distinguish between
adjuncts of the type “[in New York]Location” vs. “[in Winter]Temporal.” Nonetheless, we

8 Prepositional phrase is the second most frequent type of syntactic constituent for semantic arguments
(13%), after noun phrases (45%).
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are aware that not taking into account verb information also introduces some lim-
itations. In particular, the simplification could damage the performance on PP core
arguments, which are verb-dependent.9 For instance, our prepositional preferences
would not be able to suggest appropriate roles for the following two PP arguments:
“increase [ from seven cents a share]Arg3” and “receive [ from the funds]Arg2,” because
the two head nouns (cents and funds) are semantically very similar. Assigning the
correct roles in these cases clearly depends on the information carried by the verbs.
Arg3 is the starting point for the predicate increase, whereas Arg2 refers to the source for
receive.

Our perspective on making this simple definition of prep-role SPs was practical and
just a starting point to play with the argument preferences introduced by prepositions.
A more complex model, distinguishing between prepositional phrases in adjunct and
core argument positions, should be able to model the linguistics better yet alleviate the
sparseness problem, and would hopefully produce better results.

The combination scheme for applying verb-role and prep-role is also very simple.
Depending on the syntactic type of the argument we apply one or the other model, both
in learning and testing:

� When the argument is a noun phrase, we use verb-role selectional
preferences.

� When the argument is a prepositional phrase, we use prep-role
selectional preferences.

We thus use a straightforward method to combine both kinds of SPs. More complex
possibilities like doing mixtures of both SPs are left for future work.

3.5 Role Classification with SP Models

Selectional preference models can be directly used to perform role classification. Given
a target predicate p and noun phrase candidate argument with head w, we simply select
the role r of the predicate which best fits the head according to the SP model. This
selection rule is formalized as:

ROLE(p, w) = arg max
r∈Roles(p)

SP(p, r, w) (11)

with Roles(p) being the set of all roles applicable to the predicate p, and SP(p, r, w)
the goodness of fit of the selectional preference model for the head w, which can be
instantiated with all the variants mentioned in the previous subsections, including
the lexical model (Equation (8)) WordNet-based SP models (Equations (3) and (10)),
and distributional SP models (Equation (7)), using different similarity models as in
Table 7. Ties were broken returning the role coming first according to alphabetical
order. Note that in the case of SPwn (Equation 10) we need to use arg min rather than
arg max.

9 The percentage of prepositional phrases in core argument position is 48%, slightly lower than in adjunct
position (52%).
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Note that if the candidate argument is a prepositional phrase with preposition p′

and embedded NP head word w, the classification rule uses the prep-role SP model,
that is:

ROLE(p, p′, w) = arg max
r∈Roles(p′ )

SP(p′, r, w)

4. Experiments with Selectional Preferences in Isolation

In this section we evaluate the ability of selectional preference models to discriminate
among different roles. For that, SP models will be used in isolation, according to the clas-
sification rule in Equation (11), to predict role labels for a set of (predicate, argument-head)
pairs. That is, we are interested in the discriminative power of the semantic information
carried by the SPs, factoring out any other feature commonly used by the state-of-the-
art SRL systems. The data sets used and the experimental results are presented in the
following.

4.1 Data Sets

The data used in this work are the benchmark corpus provided by the CoNLL-2005
shared task on SRL (Carreras and Màrquez 2005). The data set, of over 1 million tokens,
comprises PropBank Sections 02–21 for training, and Sections 24 and 23 for develop-
ment and testing, respectively. The Selectional Preferences implemented in this study
are not able to deal with non-nominal argument heads, such us those of NEG, DIS,
MOD (i.e., SPs never predict NEG, DIS, or MOD roles); but, in order to replicate the
same evaluation conditions of typical PropBank-based SRL experiments all arguments
are evaluated. That is, our SP models don’t return any prediction for those, and the
evaluation penalizes them accordingly.

The predicate–role–head triples (p, r, w) for generalizing the selectional preferences
are extracted from the arguments of the training set, yielding 71,240 triples, from which
5,587 different predicate-role selectional preferences (p, r) are derived by instantiating
the different models in Section 3. Tables 9 and 10 show additional statistics about some
of the most (and least) frequent verbs and prepositions in these tuples.

The test set contains 4,134 pairs (covering 505 different predicates) to be classified
into the appropriate role label. In order to study the behavior on out-of-domain data,
we also tested on the PropBanked part of the Brown corpus (Marcus et al. 1994). This
corpus contains 2,932 (p, w) pairs covering 491 different predicates.

4.2 Results

The performance of each selectional preference model is evaluated by calculating
the customary precision (P), recall (R), and F1 measures.10 For all experiments re-
ported in this paper, we checked for statistical significance using bootstrap resampling
(100 samples) coupled with one-tailed paired t-test (Noreen 1989). We consider a result
significantly better than another if it passes this test at the 99% confidence interval.

10 P = Correct/Predicted ∗ 100, R = Correct/Gold ∗ 100, where Correct is the number of correct predictions,
Predicted is the number of predictions, and Gold is the total number of gold annotations.
F1 = 2PR/(P + R) is the harmonic mean of P and R.
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Table 9
Statistics of the three most and least frequent verbs in the training set. Role frame lists the types
of arguments seen in training for each verb; Heads indicates the total number of arguments for
the verb; Heads per role shows the average number of head words for each role; and Unique
heads per role lists the average number of unique head words for each verb’s role.

Verb Role frame Heads Heads Unique heads
per role per role

say Arg0,Arg1,Arg3,AM-ADV, AM-LOC, 7,488 1,069 371
AM-MNR, AM-TMP, AM-LOC,AM-MNR

have Arg0,Arg1,AM-ADV,AM-LOC 3,487 498 189
AM-MNR,AM-NEG,AM-TMP

make Arg0,Arg1,Arg2,AM-ADV 2,207 315 143
AM-LOC,AM-MNR,AM-TMP

... ... ... ... ...
accrete Arg1 1 1 1
accede Arg0 1 1 1
absolve Arg0 1 1 1

Table 10
Statistics of the three most and least frequent prepositions in the training set. Role frame lists
the types of arguments seen in training for each preposition; Heads indicates the total number
of arguments for the preposition; Heads per role shows the average number of head words for
each role; and Unique heads per role lists the average number of unique head words for each
preposition’s role.

Preposition Role frame Heads Heads Unique heads
per role per role

in Arg0,Arg1,Arg2,Arg3,Arg4,Arg5 6,859 403 81
AM-ADV,AM-CAU,AM-DIR,AM-DIS,
AM-EXT,AM-LOC,AM-MNR,AM-NEG,
AM-PNC,AM-PRD,AM-TMP

to Arg0,Arg1,Arg2,Arg3,Arg4, 3,495 233 94
AM-ADV,AM-CAU,AM-DIR,AM-DIS,
AM-EXT,AM-LOC,AM-MNR,AM-PNC,
AM-PRD,AM-TMP

for Arg0,Arg1,Arg2,Arg3,Arg4, 2,935 225 74
AM-ADV,AM-CAU,AM-DIR,AM-DIS,
AM-LOC,AM-MNR,AM-PNC,AM-TMP

... ... ... ... ...
beside Arg2, AM-LOC 2 1 1
atop Arg2, AM-DIR 2 1 1
aboard AM-LOC 1 1 1

Tables 11 and 12 list the results of the various selectional preference models in
isolation. Table 11 shows the results for verb-role SPs, and Table 12 lists the results
for the combination of verb-role and preposition-role SPs as described in Section 3.4.11

It is worth noting that the results of Tables 11 and 12 are calculated over exactly the

11 Note that the results reported here are not identical to those we reported in Zapirain, Agirre, and
Màrquez (2009). The differences are two-fold: (a) in our previous experiments we discarded roles such
as MOD, DIS, and NEG, whereas here we evaluate on all roles, and (b) our previous work used only the
subset of the data that could be mapped to VerbNet (around 50%), whereas here we inspect all tuples.
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Table 11
Results for verb-role SPs in the development partition of WSJ, the test partition of WSJ, and the
Brown corpus. For each experiment, we show precision (P), recall (R), and F1. Values in boldface
font are the highest in the corresponding column. F1 values marked with † are significantly
lower than the highest F1 score in the same column.

Verb-role SPs

Development WSJ Test Brown Test
P R F1 P R F1 P R F1

lexical 73.94 21.81 33.69† 70.75 26.66 39.43† 59.39 05.51 10.08†

SPRes 43.65 35.70 39.28† 45.07 37.11 40.71† 36.34 27.58 31.33†
SPwn 53.09 43.35 47.73† 55.44 45.58 50.03† 41.76 31.58 35.96†

SPsimLin
53.88 44.35 48.65† 52.27 45.13 48.66† 48.30 32.08 38.56†

SPsimJac
48.40 45.53 46.92† 48.85 46.38 47.58† 42.10 34.34 37.82†

SPsimcos 52.37 49.26 50.77† 53.13 50.44 51.75† 43.24 35.27 38.85†

SPsimpre
Lin

60.29 59.54 59.91 59.93 59.38 59.65 50.79 48.39 49.56
SPsimpre

Lin×Jac
60.56 56.97 58.71 61.76 58.63 60.16 51.97 42.39 46.69†

SPsimpre
Lin×cos

60.22 56.64 58.37 61.12 58.12 59.63 51.92 42.35 46.65†

Table 12
Results for combined verb-role and prep-role SPs in the development partition of WSJ, the test
partition of WSJ, and the Brown corpus. For each experiment, we show precision (P), recall (R),
and F1. Values in boldface font are the highest in the corresponding column. F1 values marked
with † are significantly lower from the highest F1 score in the same column.

Preposition-role and Verb-role SPs

Development WSJ Test Brown Test
P R F1 P R F1 P R F1

lexical 82.05 39.17 53.02† 82.98 43.77 57.31† 68.47 13.60 22.69†

SPRes 63.72 53.09 57.93† 63.47 53.24 57.91† 55.12 44.15 49.03†
SPwn 71.72 59.68 65.15† 65.70 63.88 64.78† 60.08 48.10 53.43†

SPsimLin
63.84 54.58 58.85† 63.75 56.40 59.85† 54.27 39.96 46.04†

SPsimJac
61.75 61.13 61.44† 61.83 61.40 61.61† 55.42 53.45 54.42†

SPsimcos 64.81 64.17 64.49† 64.67 64.22 64.44† 56.56 54.54 55.53†

SPsimpre
Lin

67.78 67.10 67.44† 68.34 67.87 68.10† 58.43 56.35 57.37†
SPsimpre

Lin×Jac
69.90 69.20 69.55 70.82 70.33 70.57 62.37 60.15 61.24

SPsimpre
Lin×cos

69.47 68.78 69.12 70.28 69.80 70.04 62.36 60.14 61.23

same example set. PP arguments are treated by the verb-role SPs by just ignoring the
preposition and considering the head noun of the NP immediately embedded in the PP.

It is worth mentioning that none of the SP models is able to predict the role when
facing a head word missing from the model. This is especially noticeable in the lexical
model, which can only return predictions for words seen in the training data and is

649



Computational Linguistics Volume 39, Number 3

penalized in recall. WordNet based models, which have a lower word coverage com-
pared to distributional similarity–based models, are also penalized in recall.

In both tables, the lexical row corresponds to the baseline lexical match method.
The following rows correspond to the WordNet-based selectional preference models.
The distributional models follow, including the results obtained by the three similarity
formulas on the co-occurrences extracted from the BNC (simJac, simcos simLin), and the
results obtained when using Lin’s pre-computed similarities directly (simpre

Lin) and as a
second-order vector (simpre

Lin×Jac and simpre
Lin×cos).

First and foremost, this experiment proves that splitting SPs into verb- and
preposition-role SPs yields better results. The comparison of Tables 11 and 12 shows
that the improvements are seen for both precision and recall, but especially remarkable
for recall. The overall F1 improvement is of up to 10 points. Unless stated otherwise, the
rest of the analysis will focus on Table 12.

As expected, the lexical baseline attains a very high precision in all data sets, which
underscores the importance of the lexical head word features in argument classification.
Its recall is quite low, however, especially in Brown, confirming and extending Pradhan,
Ward, and Martin (2008), who also report a similar performance drop for argument
classification on out-of-domain data. All our selectional preference models improve
over the lexical matching baseline in recall, with up to 24 absolute percentage points
in the WSJ test data set and 47 absolute percentage points in the Brown corpus. This
comes at the cost of reduced precision, but the overall F-score shows that all selectional
preference models are well above the baseline, with up to 13 absolute percentage
points on the WSJ data sets and 39 absolute percentage points on the Brown data set.
The results, thus, show that selectional preferences are indeed alleviating the lexical
sparseness problem.12

As an example, consider the following head words of potential arguments of the
verb wear found in the test set: doctor, men, tie, shoe. None of these nouns occurred as
heads of arguments of wear in the training data, and thus the lexical feature would
be unable to predict any role for them. Using selectional preferences, we successfully
assigned the A0 role to doctor and men, and the A1 role to tie and shoe.

Regarding the selectional preference variants, WordNet-based and first-order distri-
butional similarity models attain similar levels of precision, but the former have lower
recall and F1. The performance loss on recall can be explained by the limited lexical
coverage of WordNet when compared with automatically generated thesauri. Examples
of words missing in WordNet include abbreviations (e.g., Inc., Corp.) and brand names
(e.g., Texaco, Sony).

The comparison of the WordNet-based models indicates that our proposal for a
lighter method of WordNet-based selectional preference was successful, as our simpler
variant performs better than Resnik’s method. In manual analysis, we realized that
Resnik’s model tends to always predict the most frequent roles whereas our model
covers a wider role selection. Resnik’s tendency to overgeneralize makes more frequent
roles cover all the vocabulary, and the weighting system penalizes roles with fewer
occurrences.

12 We verified that the lexical model shows higher classification accuracy than all the more elaborate SP
models on the subset of cases covered by both the lexical and the SP models. In this situation, if we aimed
at constructing the best role classifier with SPs alone we could devise a back-off strategy, in the style of
Chambers and Jurafsky (2010), which uses the predictions of the lexical model when present and one of
the SP models if not. As presented in Section 5, however, our main goal is to integrate these SP models
in a real end-to-end SRL system, so we keep their analysis as independent predictors for the moment.
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The results for distributional models indicate that the SPs using Lin’s ready-made
thesaurus (simpre

Lin) outperforms Padó and Lapata’s distributional similarity model (Padó
and Lapata 2007) calculated over the BNC (simLin) in both Tables 11 and 12. This might
be due to the larger size of the corpus used by Lin, but also by the fact that Lin used a
newspaper corpus, compared with the balanced BNC corpus. Further work would be
needed to be more conclusive, and, if successful, could improve further the results of
some SP models.

Among the three similarity metrics using Padó and Lapata’s software, the cosine
seems to perform consistently better. Regarding the comparison between first-order and
second-order using pre-computed similarity models, the results indicate that second-
order is best when using both the verb-role and prep-role models (cf. Table 12), although
the results for verb-roles are mixed (cf. Table 11). Jaccard seems to provide slightly better
results than cosine for second-order vectors.

In summary, the use of separate verb-role and prep-role models produces the best
results, and second-order similarity is highly competitive. As far as we know, this is
the first time that prep-role models and second-order models are applied to selectional
preference modeling.

5. Semantic Role Classification Experiments

In this section we advance the use of SP in SRL one step further and show that selec-
tional preferences are able to effectively improve performance of a state-of-the-art SRL
system. More concretely, we integrate the information of selectional preference models
in a SRL system and show significant improvements in role classification, especially
when applied to out-of-domain corpora.13

We will use some of the selectional preference models presented in the previous
section. We will focus on the combination of verb-role and prep-role models. Regarding
the similarity models, we will choose the best two performing models from each of
the three families that we tried, namely, the two WordNet models, the two best models
based on the BNC corpus (simJac,simcos), and the two best models based on Lin’s precom-
puted similarity metrics (sim2

Jac,sim2
cos). We left the exploration of other combinations for

future work.

5.1 Integrating Selectional Preferences in Role Classification

For these experiments, we modified the SwiRL SRL system, a state-of-the-art semantic
role labeling system (Surdeanu et al. 2007). SwiRL ranked second among the systems
that did not implement model combination at the CoNLL-2005 shared task and fifth
overall (Carreras and Màrquez 2005). Because the focus of this section is on role classi-
fication, we modified the SRC component of SwiRL to use gold argument boundaries,
that is, we assume that semantic role identification works perfectly. Nevertheless, for a
realistic evaluation, all the features in the role classification model are generated using
actual syntactic trees generated by the Charniak parser (Charniak 2000).

The key idea behind our approach is model combination: We generate a battery of
base models using all resources available and we combine their outputs using multi-
ple strategies. Our pool of base models contains 13 different models: The first is the

13 The data sets used for the experiments reported in this section are exactly the ones described in
Section 4.1.

651



Computational Linguistics Volume 39, Number 3

unmodified SwiRL SRC, the next six are the selected SP models from the previous
section, and the last six are variants of SwiRL SRC. In each variant, the feature set of
the unmodified SwiRL SRC model is extended with a single feature that models the
choice of a given SP, for example, SRC+SPres contains an extra feature that indicates the
choice of Resnik’s SP model.14

We combine the outputs of these base models using two different strategies: (a)
majority voting, which selects the label predicted by most models, and (b) meta-
classification, which uses a supervised model to learn the strengths of each base model.
For the meta-classification model, we opted for a binary classification approach: First,
for each constituent we generate n data points, one for each distinct role label proposed
by the pool of base models; then we use a binary meta-classifier to label each candidate
role as either correct or incorrect. We trained the meta-classifier on the usual PropBank
training partition, using 10-fold cross-validation to generate outputs for the base
models that require the same training material. At prediction time, for each candidate
constituent we selected the role label that was classified as correct with the highest
confidence.

The binary meta-classifier uses the following set of features:

� Labels proposed by the base models, for example, the feature SRC+SPres=Arg0

indicates that the SRC+SPres base model proposed the Arg0 label. We add
13 such features, one for each base model. Intuitively, this feature allows
the meta-classifier to learn the strengths of each base model with respect
to role labels: SRC+SPres should be trusted for the Arg0 role, and so on.

� Boolean value indicating agreement with the majority vote, for example, the
feature Majority=true indicates that the majority of the base models
proposed the same label as the one currently considered by the
meta-classifier.

� Number of base models that proposed this data point’s label. To reduce sparsity,
for each number of base models, N, we generate N distinct features
indicating that the number of base models that proposed this label is
larger than k, where k ∈ [0, N). For example, if two base models proposed
the label under consideration, we generate the following two features:
BaseModelNumber>0 and BaseModelNumber>1. This feature provides finer
control over the number of votes received by a label than the majority
voter, for example, the meta-classifier can learn to trust a label if more
than two base models proposed it, even if the majority vote disagrees.

� List of actual base models that proposed this data point’s label. We store a
distinct feature for each base model that proposed the current label, and
also a concatenation of all these base model names. The latter feature is
designed to allow the meta-classifier to learn preferences for certain
combinations of base models. For example, if two base models, SPres and
SPwn, proposed the label under consideration, we generate three features:
Base=SPres, Base=SPwn, and Base=SPres+SPwn.

14 Adding more than one SP output as a feature in SwiRL’s SRC model did not improve performance in
development over the single-SP SRC model. Our conjecture is that the large number of features in SRC
has the potential to drown the SP-based features. This may be accentuated when there are more SP-based
features because their signal is divided among them due to their overlap. We have also tried to add the
input features of the SP models directly to the SRC model but this also proved to be unsuccessful during
development.
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Table 13
Results for the combination approaches. Accuracy shows the overall results. Core and Adj
contain F1 results restricted to the core numbered roles and adjuncts, respectively. SRC is
SwiRL’s standalone SRC model; +SPx stands for the SRC model extended with a feature given by
the corresponding SP model. Values in boldface font are the highest in the corresponding
column. Accuracy values marked with † are significantly lower than the highest accuracy score
in the same column.

WSJ test Brown test
Acc. Core F1 Adj. F1 Acc. Core F1 Adj. F1

SRC 90.83† 93.25 81.31 79.52 84.42 57.76

+SPRes 90.76† 93.17 81.08 79.86† 84.52 59.24

+SPwn 90.56† 92.88 81.11 79.73† 84.26 59.69

+SPsimJac
90.86† 93.37 80.30 79.83† 84.43 59.54

+SPsimcos 90.87† 93.33 80.92 80.50† 85.14 60.16

+SPsimpre
Lin×Jac

90.95† 93.03 82.75 80.75† 85.62 59.63

+SPsimpre
Lin×cos

91.23† 93.78 80.56 80.48† 84.95 61.01

Meta-classifier 92.43 94.62 84.00 81.94 86.25 63.36

Voting 92.36 94.57 83.68 82.15 86.37 63.78

5.2 Results for Semantic Role Classification

Table 13 compares the performance of both combination approaches against the stand-
alone SRC model. In the table, the SRC+SP∗ models stand for SRC classifiers enhanced
with one feature from the corresponding SP. The meta-classifier shown in the table com-
bines the output of all the 13 base models introduced previously. We implemented the
meta-classifier using Support Vector Machines (SVMs)15 with a quadratic polynomial
kernel, and C = 0.01 (tuned in the development set).16 Lastly, Table 13 shows the results
of the voting strategy, over the same set of base models.

In the columns we show overall classification accuracy and F1 results for both core
arguments (Core) and adjunct arguments (Adj.). Note that for the overall SRC scores, we
report classification accuracy, defined as ratio of correct predictions over total number
of arguments to be classified. The reason for this is that the models in this section always
return a label for all arguments to be classified, and thus accuracy, precision, recall, and
F1 are all equal.

Table 13 indicates that four out of the six SRC+SP∗ models perform better than the
standalone SRC model in domain (WSJ), and all of them outperform SRC out of domain
(Brown). The improvements are small, however, and, generally, not statistically signifi-
cant. On the other hand, the meta-classifier outperforms the original SRC model both
in domain (17.4% relative error reduction; 1.60 points of accuracy improvement) and
out of domain (13.4% relative error reduction; 2.42 points of accuracy improvement),
and the differences are statistically significant. This experiment proves our claim that
SPs can be successfully used to improve semantic role classification. It also underscores
the fact that combining SRC and SPs is not trivial, however. Our hypothesis is that this

15 http://svmlight.joachims.org.
16 We have also trained the meta-classifier with other learning algorithms (e.g., logistic regression with

L2 regularization) and we obtained similar but slightly lower results.
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is caused by the large performance disparity (20 F1 points in domain and 18 out of
domain) between the original SRC model and the standalone SP methods.

Interestingly, the meta-classifier performs only marginally better than the voting ap-
proach in domain and slightly worse out of domain. We believe that this is another effect
of the above observation: Given the weaker SP-based features, the meta-classifier does
not learn much beyond a majority vote, which is exactly what the simpler, unsuper-
vised voting method models. Nevertheless, regardless of the combination method, this
experiment emphasizes that infusing SP information in the SRC task is beneficial.

Table 13 also shows that our approach yields consistent improvements for both
core and adjunct arguments. Out of domain, we see a bigger accuracy improvement
for adjunct arguments (6.02 absolute points) vs. core arguments (1.83 points, for the
voting model). This is to be expected, as most core arguments fall under the Arg0 and
Arg1 classes, which can typically be disambiguated based on syntactic information (i.e.,
subject vs. object). On the other hand, there are no syntactic hints for adjunct arguments,
so the system learns to rely more on SP information in this case.

Regarding the performance of individual combinations of SRC and SP methods
(e.g., SRC+SPRes), the differences among SP models in Table 13 are much smaller
than in Table 12. SPsimpre

Lin×cos
and SPsimpre

Lin×Jac
yield the best results in both cases, and

distributional methods are slightly stronger than WordNet-based methods. SPRes and
SPwn perform similarly when combined, with a small lead for Resnik’s method. The
smaller differences and changes in the rank among SP methods are due to the complex
interactions when combining SP models with the SRC system.

Table 14
Precision (P), recall (R), and F1 results per argument type for the standalone SRC model and
the meta-classifier, in the two test data sets (WSJ and Brown). Due to space limitations, the
AM- prefix has been dropped from the labels of all adjuncts. When classifying all arguments
(last row), the F1 score is an accuracy score because in this scenario P = R = F1. We checked for
statistical significance for the overall F1 scores (All row). Values in boldface font indicate the
highest F1 score in the corresponding row and block. F1 values marked with † are significantly
lower than the corresponding highest F1 score.

WSJ test Brown test

SRC Meta-classifier SRC Meta-classifier
P R F1 P R F1 P R F1 P R F1

Arg0 93.6 96.7 95.1 95.1 97.4 96.2 87.6 89.3 88.4 89.4 91.0 90.2
Arg1 93.3 94.5 93.9 94.2 95.7 95.0 84.3 90.6 87.3 86.2 91.9 89.0
Arg2 86.0 82.6 84.3 87.8 87.4 87.6 52.7 56.8 54.7 55.9 59.9 57.8
Arg3 77.6 63.4 69.8 82.4 68.3 74.7 36.4 19.0 25.0 45.8 26.2 33.3
Arg4 86.8 78.6 82.5 89.5 81.0 85.0 59.4 34.5 43.7 67.9 34.5 45.8
Core 92.9 93.6 93.3 94.2 95.1 94.6 82.6 86.3 84.4 84.6 87.9 86.3
ADV 58.5 51.4 54.7 64.4 52.3 57.7 45.1 24.3 31.6 51.9 25.7 34.4
CAU 61.1 71.0 65.7 80.0 77.4 78.7 64.7 45.8 53.7 84.6 45.8 59.5
DIR 46.2 25.0 32.4 68.8 45.8 55.0 64.7 45.8 53.7 73.9 44.5 55.6
DIS 84.3 82.7 83.5 95.6 82.7 88.7 52.6 27.0 35.7 54.5 32.4 40.7
EXT 50.0 12.5 20.0 50.0 12.5 20.0 0.0 0.0 0.0 0.0 0.0 0.0
LOC 85.2 80.9 83.0 85.0 84.7 84.8 67.8 61.2 64.3 68.3 68.7 68.5
MNR 55.8 54.1 55.0 68.9 61.7 65.1 47.4 38.9 42.7 59.2 49.3 53.8
PNC 51.9 37.8 43.8 62.5 40.5 49.2 51.7 39.5 44.8 53.3 42.1 47.1
TMP 93.6 95.9 94.7 92.8 95.9 94.4 79.0 78.1 78.5 84.1 83.2 83.7
Adj 83.1 79.6 81.3 86.2 81.9 84.0 64.9 52.1 57.8 69.8 58.0 63.4
All – – 90.8† – – 92.4 – – 79.5† – – 81.9
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Lastly, Table 14 shows a breakdown of the results by argument type for the orig-
inal SRC model and the meta-classifier (results are also presented over all numbered
arguments, Core, adjuncts, and Adj). This comparison emphasizes the previous obser-
vation that SPs are more useful for arguments that are independent of syntax than for
arguments that are usually tied to certain syntactic constructs (i.e., Arg0 and Arg1). For
example, in domain the meta-classifier improves Arg0 classification with 1.1 F1 points,
but it boosts the classification performance for causative arguments (AM-CAU) with 13
absolute points. A similar behavior is observed out of domain. For example, whereas
Arg0 classification is improved with 1.7 points, the classification of manner arguments
(AM-MNR) is improved by 11 points. All in all, with two exceptions, selectional prefer-
ences improve classification accuracy for all argument types, both in and out of domain.

The previous experiments showed that a meta-classifier (and a voting approach)
over a battery of base models improves over the performance of each individual clas-
sifier. Given that half of our base models are all relatively minor changes of the same
original classifier (SwiRL), however, it would be desirable to ensure that the overall
performance gain of the meta-classification system is due to the infusion of semantic
information that is missing in the baseline SRC, and not to a regularization effect coming
from the ensemble of classifiers. The qualitative analysis presented in Section 6 will
reinforce this hypothesis.

5.3 Results for End-to-End Semantic Role Labeling

Lastly, we investigate the contribution of SPs in an end-to-end SRL system. As discussed
before, our approach focuses on argument classification, a subtask of complete SRL,
because this component suffers in the presence of lexical data sparseness (Pradhan,
Ward, and Martin 2008). To understand the impact of SPs on the complete SRL task we
compared two SwiRL models: one that uses the original classification model (the SRC
line in Table 13) and another that uses our meta-classifier model (the Meta-classifier
line in Table 13). To implement this experiment we had to modify the publicly down-
loadable SwiRL model, which performs identification and classification jointly, using a
single multi-class model. We changed this framework to a pipeline model, which first
performs argument identification (i.e., is this constituent an argument or not?), followed
by argument classification (i.e., knowing that this constituent is an argument, what is
its label?).17 We used the same set of features as the original SwiRL system and the
original model to identify argument boundaries. This pipeline model allowed us to
easily plug in different classification models, which offers a simple platform to evaluate
the contribution of SPs in an end-to-end SRL system.

Table 15 compares the original SwiRL pipeline (SwiRL in the table) with the pipeline
model where the classification component was replaced with the meta-classifier previ-
ously introduced (SwiRL w/ meta). The latter model backs off to the original classifi-
cation model for candidates that are not covered by our current selectional preferences
(i.e., are not noun phrases or prepositional phrases containing a noun phrase as the
second child). We report results for the test partitions of WSJ and Brown in the same
table. Note that these results are not directly comparable with the results in Tables 13
and 14, because in those initial experiments we used gold argument boundaries whereas

17 This pipeline model performs slightly worse than the original SwiRL on the WSJ data and slightly better
on Brown.
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Table 15
Precision (P), recall (R), and F1 results per argument for the end-to-end semantic role labeling
task. We compared two models: the original SwiRL model and the one where the classification
component was replaced with the meta-classifier introduced at the beginning of the section. We
used the official CoNLL-2005 shared-task scorer to produce these results. We checked for
statistical significance for the overall F1 scores (All row). Values in boldface font indicate the
highest F1 score in the corresponding row and block. F1 values marked with † are significantly
lower than the corresponding highest F1 score.

WSJ test Brown test

SwiRL SwiRL w/ meta SwiRL SwiRL w/ meta
P R F1 P R F1 P R F1 P R F1

Arg0 87.0 81.6 84.2 87.8 81.9 84.8 86.6 81.3 83.9 87.3 81.7 84.4
Arg1 79.1 71.8 75.3 79.4 72.1 75.6 70.2 64.6 67.3 71.1 65.2 68.0
Arg2 70.0 56.6 62.6 69.2 58.3 63.3 41.8 42.7 42.2 42.3 44.6 43.4
Arg3 72.4 43.9 54.7 72.6 44.5 55.2 36.4 12.9 19.0 34.6 14.5 20.5
Arg4 73.3 61.8 67.0 73.8 60.8 66.7 48.8 25.6 33.6 44.4 25.6 32.5
ADV 59.4 50.6 54.6 59.5 50.0 54.4 49.0 38.2 42.9 49.9 38.5 43.5
CAU 61.5 43.8 51.2 66.0 45.2 53.7 58.7 35.5 44.3 59.1 34.2 43.3
DIR 44.7 20.0 27.6 50.0 22.6 30.9 59.0 27.2 37.2 61.3 25.9 36.5
DIS 76.1 63.8 69.4 77.0 63.8 69.7 58.8 41.0 48.3 59.7 41.3 48.9
EXT 72.7 50.0 59.3 72.7 50.0 59.3 20.0 8.1 11.5 21.4 8.1 11.8
LOC 64.7 52.9 58.2 64.8 55.4 59.7 48.3 37.7 42.3 46.8 40.5 43.5
MNR 59.1 52.0 55.3 61.4 51.7 56.2 53.8 47.3 50.3 55.9 48.3 51.8
PNC 47.1 34.8 40.0 46.4 33.9 39.2 51.8 26.4 35.0 52.4 26.7 35.1
TMP 78.7 71.4 74.9 78.4 71.5 73.8 59.7 60.6 60.2 61.0 61.2 61.1
All 79.7 70.9 75.0† 80.0 71.3 75.4 71.8 64.2 67.8† 72.4 64.6 68.4

Table 15 shows results for an end-to-end model, which includes predicted argument
boundaries.

Table 15 shows that the use of selectional preferences improves overall results when
using predicted argument boundaries as well. Selectional preferences improve F1 scores
for four out of five core arguments in both WSJ and Brown, for six out of nine modifier
arguments in WSJ, and for seven out of nine modifier arguments in Brown. Notably, the
SPs improve results for the most common argument types (Arg0 and Arg1). All in all,
SPs yield a 0.4 F1 point improvement in WSJ and 0.6 F1 point improvement in Brown.
These improvements are small but they are statistically significant. We consider these re-
sults encouraging, especially considering that only a small percentage of arguments are
actually inspected by selectional preferences. This analysis is summarized in Table 16,
which lists how many argument candidates are inspected by the system in its different
stages. The table indicates that the vast majority of argument candidates are filtered
out by the argument identification component, which does not use SPs. Because of this,
even though approximately 50% of the role classification decisions can be reinforced
with SPs, only 4.5% and 3.6% of the total number of argument candidates in WSJ and
Brown, respectively, are actually inspected by the classification model that uses SPs.

6. Analysis and Discussion

We conducted a complementary manual analysis to further verify the usefulness of the
semantic information provided by the selectional preferences. We manually inspected
100 randomly selected classification cases, 50 examples in which the meta-classifier is
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Table 16
Counts for argument candidates for the two test partitions on the end-to-end semantic role
labeling task. The Predicted non-arguments line indicates how many candidate arguments are
classified as non-arguments by the argument identification classifier. The Incompatible with SPs
line indicates how many candidates were classified as arguments but cannot be modeled by our
current SPs (i.e., they are not noun phrases or prepositional phrases containing a noun phrase as
the second child). Lastly, the Compatible with SPs line lists how many candidates were both
classified as likely arguments and can be modeled by the SPs.

WSJ test Brown test

Predicted non-arguments 158,310 184,958
Incompatible with SPs 5,739 11,167
Compatible with SPs 7,691 7,867
Total 171,740 203,992

correct and the baseline SRC (SwiRL) is wrong, and 50 where the meta-classifier chooses
the incorrect classifier and the SRC is right. Interestingly, we observed that the majority
of cases have a clear linguistic interpretation, shedding light on the reasons why the
meta-classifier using SP information manages to correct some erroneous predictions of
the original SRC model, but also on the limitations of selectional preferences.

Regarding the success of the meta-classifier, the studied cases generally correspond
to low frequency verb–argument head pairs, in which the baseline SRC might have
had problems with generalization. In 29 of the cases (∼58%), the syntactic information
is not enough to disambiguate the proper role, tends to indicate a wrong role label,
or it confuses the SRC because it contains errors. Most of the semantically based SP
predictions are correct, however, so the meta-classifier does select the correct role label.
In another 15 cases (∼30%) the source of the baseline SRC error is not clear, but still,
several SP models suggest the correct role, giving the opportunity to the meta-classifier
to make the right choice. Finally, in the remaining six cases (∼12%) a “chance effect” is
observed: The failure of the baseline SRC model does not have a clear interpretation and,
moreover, most SP predictions are actually wrong. In these situations, several labels are
predicted with the same confidence, and the meta-classifier selects the correct one by
chance.

Figure 2 shows four real examples in which we see the importance of the infor-
mation provided by the selectional preferences. In example (a), the verb flash never
occurs in training with the argument head word news. The syntactic structure alone
strongly suggests Arg0, because the argument is an NP just to the left of a verb in active
form. This is probably why the baseline SRC incorrectly predicts Arg0. Some semantic
information is needed to know that the word news is not the agent of the predicate
(Arg0), but rather the theme (thing shining, Arg1). Selectional preferences make this
work perfectly, because all variants predict the correct label by signaling that news is
much more compatible with flash in Arg1 position rather than Arg0.

In example (b), the predicate promise expects a person as Arg1 (person promised to,
Recipient) and an action as Arg2 (promised action, Theme). Moreover, the presence of
Arg2 is obligatory. The syntactic structure is correct but does not provide the semantic
(Arg1 should be a person) or structural information (the assignment of Arg1 would have
required an additional Arg2) needed to select the appropriate role. SwiRL does not have
it either, and it assigns the incorrect Arg1 label. Most SP models correctly predict that
investigation is more similar to the heads of Arg2 arguments of promise than to the
heads of Arg1 arguments, however.
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(a) Several traders could be seen shaking their heads when (([the news]Arg0⇒Arg1)NP

( flashed)VP)S .

(b) Italian President Francesco Cossiga (promised ([a quick investigation into
whether Olivetti broke Cocom rules]Arg1⇒Arg2)NP)VP.

(c) Annual payments (will more than double ([from (a year ago)NP]TMP⇒Arg3)PP to
about $240 million · · · )VP · · ·

(d) Procter & Gamble Co. plans to (begin ((testing (next month)NP)VP)S ([a superco.
detergent that · · · washload]Arg0⇒Arg1)NP)VP .

Figure 2
Examples of incorrect SwiRL role assignments fixed by the meta-classifier. In each sentence, the
verb is emphasized in italics and the head word for the selectional preferences is boldfaced. The
argument under focus is marked within square brackets. x ⇒ y means that the incorrect label x
assigned by the baseline SwiRL model is corrected into role label y by the combined system.
Finally, examples also contain simplified syntactic annotations from the test set predicted
syntactic layer, which are used for the discussion in the text.

In example (c) we see the application of prep-role selectional preferences. In that
sentence, the baseline SRC is likely confused by the content word feature of the PP
“from a year ago” (Surdeanu et al. 2003). In PropBank, “year” is a strong indicator
of a temporal adjunct (AM-TMP). The predicate double, however, describes the Arg3
argument as “starting point” of the action and it is usually introduced by the preposition
from. This is very common also for other motion verbs (go, rise, etc.), resulting in the
from-Arg3 selectional preference containing a number of heads of temporal expressions,
in particular many more instances of the word year than the from-AM-TMP selectional
preference. As a consequence, the majority of SP models predict the correct Arg3 label.

Finally, example (d) highlights that selectional preferences increase robustness in
front of parsing errors. In this example, the NP “a superco. detergent” is incorrectly
attached to “begin” instead of the predicate testing by the syntactic parser. This produces
many incorrect features derived from syntax (syntactic frame, path, etc.) that may con-
fuse the baseline SRC model, which ends up producing an incorrect Arg0 assignment.
Most of the SP models, however, predict that detergent is not a plausible Agent for test
(“examiner”), but instead it fits best with the Arg1 position (“examined”).

Nevertheless, selectional preferences have a significant limitation: They do not
model syntactic structures, which often give strong hints for classification. In fact, the
vast majority of the situations where the meta-classifier performs worse than the origi-
nal SRC model are cases that are syntax-driven, hence situations that are incompletely
addressed by the current SP models. Even though the SRC and the SRC+SP models
have features that model syntax, they can be overwhelmed by the SP features and
standalone models, which leads to incorrect meta-classification results. Figure 3 shows a
few representative examples in this category. In the first example in the figure, the meta-
classifier changes the correctly assigned label Arg2 to Arg1, because most SP models
favor the Arg1 label for the argument “test.” In the PropBank training corpus, however,
the argument following the verb fail is labeled Arg2 in 79% of the cases. Because the
SP models do not take into account syntax or positional information, this syntactic
preference is lost. Similarly, SPs do not model the fact that the verb buy is seldom
preceded by an Arg1 argument, or the argument immediately following the verb precede
tends to be Arg1, hence the incorrect classifications in Figure 3 (b) and (c). All these
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(a) Some “circuit breakers” installed after the October 1987 crash (failed ([their first
test ]Arg2⇒Arg1)NP)VP...

(b) Many fund managers argue that now’s ([the time]TMP⇒Arg1)NP (to buy)VP)S .

(c) Telephone volume was up sharply, but it was still at just half the level of the
weekend (preceding ([Black Monday ]Arg1⇒TMP)NP)VP .

Figure 3
Examples of incorrect assignments by the meta-classifier. In each sentence, the verb is
emphasized in italics and the head word for the selectional preferences is boldfaced. The
argument under focus is marked within square brackets. x ⇒ y means that the correct
x label assigned by the baseline model is wrongly converted into y by the meta-classifier.
As in Figure 2, examples also contain simplified syntactic annotations taken from the test
set predicted syntactic layer.

examples are strong motivation for SP models that model both lexical and syntactic
preferences. We will address such models in future work.

7. Conclusions

Current systems usually perform SRL in two pipelined steps: argument identification
and argument classification. Whereas identification is mostly syntactic, classification
requires semantic knowledge to be taken into account. In this article we have shown
that the lexical heads seen in training data are too sparse to assign the correct role,
and that selectional preferences are able to generalize those lexical heads. In fact, we
show for the first time that the combination of the predictions of several selectional
preference models with a state-of-the-art SRC system yields significant improvements in
both in-domain and out-of-domain test sets. These improvements to role classification
translate into small but statistically significant improvements in an end-to-end semantic
role labeling system. We find these results encouraging considering that in the complete
semantic role labeling task only a small percentage of argument candidates are affected
by our modified role classification model. The experiments were carried out over the
well-known CoNLL-2005 data set, based on PropBank.

We applied several selectional preference models, based on WordNet and distribu-
tional similarity. Our experiments show that all models outperform the pure lexical
matching approach, with distributional methods performing better that WordNet-based
methods, and second-order similarity models being the best. In addition to the tradi-
tional selectional preferences for verbs, we introduce the use of selectional preferences
for prepositions, which are applied to classifying prepositional phrases. The combi-
nation of both types of selectional preferences improves over the use of selectional
preferences for verbs alone.

The analysis performed over the cases where the base SRC system and the com-
bined system differed showed that the selectional preferences are specially helpful when
syntactic information is either incorrect or insufficient to disambiguate the correct role.
The analysis also highlighted that the limitations of selectional preferences for modeling
syntactic structures introduce some errors in the combined model. Those errors could
be addressed if the SP models included some syntactic information.

Our research leaves the door open for tighter integration of semantic and syntactic
information for Semantic Role Labeling. We introduced selectional preferences in the
SRC system as simple features, but models which extend syntactic structures with
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selectional preferences (or vice versa) could overcome some of the errors that our system
introduced. Extending the use of selectional preferences to other syntactic types beyond
noun phrases and prepositional phrases would be also of interest. In addition, the
method for combining selectional preferences for verbs and prepositions was naive,
and we expect that a joint model of verb and preposition preferences for prepositional
phrases would improve results further. Finally, individual selectional preference meth-
ods could be improved and newer methods incorporated, which could further improve
the results.

Acknowledgments
The authors would like to thank the three
anonymous reviewers for their detailed
and insightful comments on the submitted
version of this manuscript, which helped
us to improve it significantly in this revision.
This work was partially funded by
the Spanish Ministry of Science and
Innovation through the projects OpenMT-2
(TIN2009-14675-C03) and KNOW2
(TIN2009-14715-C04-04). It also received
financial support from the Seventh
Framework Programme of the EU
(FP7/2007- 2013) under grant agreements
247762 (FAUST) and 247914 (MOLTO).
Mihai Surdeanu was supported by the Air
Force Research Laboratory (AFRL) under
prime contract no. FA8750-09-C-0181.
Any opinions, findings, and conclusion
or recommendations expressed in this
material are those of the authors and do
not necessarily reflect the view of the
Air Force Research Laboratory (AFRL).

References
Agirre, Eneko, Timothy Baldwin, and

David Martinez. 2008. Improving
parsing and PP attachment performance
with sense information. In Proceedings
of ACL-08: HLT, pages 317–325,
Columbus, OH.

Agirre, Eneko, Kepa Bengoetxea, Koldo
Gojenola, and Joakim Nivre. 2011.
Improving dependency parsing with
semantic classes. In Proceedings of the
49th Annual Meeting of the Association
for Computational Linguistics: Human
Language Technologies, pages 699–703,
Portland, OR.

Agirre, Eneko and David Martinez. 2001.
Learning class-to-class selectional
preferences. In Proceedings of the 2001
Workshop on Computational Natural
Language Learning (CoNLL-2001),
pages 1–8, Toulouse.

Agirre, Eneko and German Rigau. 1996.
Word sense disambiguation using

conceptual density. In Proceedings of the
16th Conference on Computational
Linguistics - Volume 1, COLING ’96,
pages 16–22, Stroudsburg, PA.

Baroni, Marco and Alessandro Lenci.
2010. Distributional memory: A general
framework for corpus-based semantics.
Computational Linguistics, 36(4):673–721.

Bergsma, Shane, Dekang Lin, and Randy
Goebel. 2008. Discriminative learning of
selectional preference from unlabeled text.
In Proceedings of EMNLP, pages 59–68,
Honolulu, HI.

Boas, H. C. 2002. Bilingual framenet
dictionaries for machine translation.
In Proceedings of the Third International
Conference on Language Resources and
Evaluation (LREC), pages 1,364–1,371,
Las Palmas de Gran Canaria.

Brockmann, Carsten and Mirella Lapata.
2003. Evaluating and combining
approaches to selectional preference
acquisition. In Proceedings of the 10th
Conference of the European Chapter of the
Association of Computational Linguistics
(EACL-2003), pages 27–34, Budapest.

Carreras, X. and L. Màrquez. 2004.
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Padó, Sebastian, Ulrike Padó, and Katrin Erk.
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