
Extraposition Grammars
F e r n a n d o P e r e i r a

D e p a r t m e n t of A r c h i t e c t u r e
U n i v e r s i t y of Ed inburgh

Ed inburgh EH1 1JZ S C O T L A N D

Extraposition grammars are an extension of definite clause grammars, and are similarly
defined in terms of logic clauses. The extended formalism makes it easy to describe left
extraposition of constituents, an important feature of natural language syntax.

1. Introduction

This paper presents a grammar formalism for natu-
ral language analysis, called extraposition grammars
(XGs), based on the subset of predicate calculus
known as definite, or Horn, clauses. It is argued that
certain important linguistic phenomena, collectively
known in t ransformational grammar as left extra-
position, can be described better in XGs than in earlier
grammar formalisms based on definite clauses.

The XG formalism is an extension of the definite
clause grammar (DCG) [6] formalism, which is itself a
restriction of Colmerauer 's formalism of metamorphosis
grammars (MGs) [2]. Thus XGs and MGs may be
seen as two alternative extensions of the same basic
formalism, DCGs.

The argument for XGs will start with a comparison
with DCGs. I should point out, however, that the
motivation for the development of XGs came from
studying large MGs for natural language [4,7].

The relationship between MGs and DCGs is analo-
gous to that between type-0 grammars and context-
free grammars. So, some of the linguistic phenomena
which are seen as rewriting one sequence of constitu-
ents into another might be described better in a MG
than in a DCG. However, it will be shown that re-
writings such as the one involved in left extraposition
cannot easily be described in either of the two formal-
isms.

Left extraposition has been used by grammarians to
describe the form of interrogative sentences and rela-
tive clauses, at least in languages such as English,
French, Spanish and Portuguese. The importance of
these constructions, even in simplified subsets of natu-
ral language, such as those used in database interfaces,
suggests that a grammar formalism should be able to

express them in a clear and concise manner. This is the
purpose of XGs.

2. Grammars in Logic

This section summarises the concepts of definite
clause grammars (DCGs) , and of the underlying sys-
tem of logic, definite clauses, needed for the rest of the
paper. A fuller discussion can be found elsewhere [6].

A definite clause has either the form

P:-QI,"',Qn"
to be read as " P is true if Q 1 Qn are true", or the
form

P .

to be read as " P is true". P is the head of the clause,
Q1 Qn are goals, forming the body of the clause.
The symbols P, Q 1 Qn stand for literals. A literal
has a predicate symbol, and possibly some arguments
(in parentheses, separated by commas), e.g.

father(X,Y) false number(O)

A literal is to be interpreted as denoting a relation
between its arguments; e.g. " fa ther (X,Y)" denotes the
relation ' fa ther ' between X and Y.

Arguments are terms, standing for partially speci-
fied objects. Terms may be

• variables, denoting unspecified objects
(variable names are capitalised):

X Case Agreement
• atomic symbols, denoting specific objects:

plural [] 3

• compound terms, denoting complex objects:

s(NP,VP) succ(succ(O))

A compound term has a functor and some arguments,
which are terms. Compound terms are best seen as

Copyright 1981 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 1 / 0 4 0 2 4 3 - 1 4 5 0 1 . 0 0

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 243

Fernando Pereira Extraposi t ion Grammars

trees, e.g.

/

NP

S SUCC

\ I
VP succ

I
0

A particular type of term, the list, has a simplified
notation. The binary functor ' ' makes up non-
empty lists, and the atom '[]' denotes the empty list.
In the special list notation,

[a ,b] [X I Y]

represent respectively the terms

. (a , . (b , [3) .(X,Y)

Putting these concepts together, the clause

grandfather(X,Z) : - fa ther(X,Y) , parent(Y,Z).

may be read as "X is grandfather of Z if X is father of
Y and Y is a parent of Z"; the clause

father(john ,mary).

may be read as " John is father of Mary" (note the use
of lower case for the constants in the clause).

A set of definite clauses forms a program. A pro-
gram defines the relations denoted by the predicates
appearing on the head of clauses. When using a defi-
nite clause interpreter, such as P R O L O G [9], a goal
s tatement

?-19 .

specifies that the relation instances that match P are
required.

Now, any context-free rule, such as

sentence --> noun_phrase, verb_phrase.

(I use ' , ' for concatenation, and ' . ' to terminate a rule)
may be translated into a definite clause

s e n t e n c e (5 0 , S) : - n 0 u n _ p h r a s e (S 0 , S 1) ,

ve r b_ph ra se (S1 ,S).

which says: " there is a sentence between points SO
and S in a string if there is a noun phrase between
points SO and S1, and a verb phrase between points S1
and S". A context-free rule like

determiner - -> [the] .

(where the square brackets mark a terminal) can be
translated into

determiner(SO,S) :- connects(SO,the,S).

which may be read as "there is a determiner between
points SO and S in a string if SO is joined to S by the
word ' the ' " . The predicate 'connects ' is used to relate
terms denoting points in a string to the words which
join those points. Depending on the application, differ-
ent definitions of 'connects ' might be used. In particu-
lar, if a point in a string is represented by the list of
words after that point, ' connects ' has the very simple
definition

connects([Word I 53,Word,S).

which may be read as "a string point represented by a
list of words with first element Word and rest S is
connected by the word Word to the string point repre-
sented by list S."

DCGs are the natural extension of context-free
grammars (CFGs) obtained through the translation
into definite clauses outlined above. A D C G non-
terminal may have arguments, of the same form as
those of a predicate, and a terminal may be any term.
For instance, the rule

sentence(s(NP,VP)) --> noun_phrase(NP,N),

verb_phrase(VP,N).

states: " A sentence with structure

s
/ \

NP VP

is made of a noun phrase with structure NP and num-
ber N (which can be either 'singular' or 'plural ') , fol-
lowed by a verb phrase with structure VP agreeing
with the number N". A D C G rule is just "syntact ic
sugar" for a definite clause. The clause for the exam-
ple above is

sentence(s(NP,VP),SO,S) :-

noun phrase(NP,N,SO,S1),

verb_phrase(VP,N,Sl ,S).

In general, a D C G non-terminal with n arguments is
translated into a predicate of n + 2 arguments, the last
two of which are the string points, as in the translation
of context-free rules into definite clauses.

The main idea of DCGs is then that grammar sym-
bols can be general logic terms rather than just atomic
symbols. This makes DCGs a general-purpose gram-
mar formalism, capable of describing any type-0 lan-
guage. The first grammar formalism with logic terms
as grammar symbols was Colmerauer 's metamorphosis
grammars [2]. Where a D C G is a C F G with logic
terms for grammar symbols, a MG is a somewhat re-
stricted type-0 grammar with logic terms for grammar
symbols. However , the very simple translation of
DCGs into definite clauses presented above does not
carry over directly to MGs.

3. Left Extraposition

Roughly speaking, left extraposit ion occurs in a
natural language sentence when a subconst i tuent of
some constituent is missing, and some other constitu-
ent, to the left of the incomplete one, represents the
missing constituent in some way. It is useful to think
that an empty consti tuent, the trace, occupies the
"ho le" left by the missing consti tuent, and that the
consti tuent to the left, which represents the missing
part, is a marker, indicating that a constituent to its
right contains a trace [1]. One can then say that the
constituent in whose place the trace stands has been
extraposed to the left, and, in its new position, is rep-

244 American Journal of Computat ional Linguistics, Volume 7, Number 4, October-December 1981

Fernando Pereira Extraposition Grammars

sentence --> noun_phrase, verb phrase.

noun_phrase --> proper_noun.
noun_phrase --> determiner, noun, re la t i ve .
noun_phrase --> determiner, noun, prep_phrase.
noun_phrase --> trace.

trace --> [].

verb_phrase --> verb, noun_phrase.
verb_phrase --> verb.

re la t i ve --> [].
re la t i ve --> rel_pronoun, sentence.

prep_phrase --> preposi t ion, noun_phrase.

Figure 4.1. CFG for relative clauses.

(1)

resented by the marker. For instance, relative clauses
are formed by a marker, which in the simpler cases is
just a relative pronoun, followed by a sentence where
some noun phrase has been replaced by a trace. This
is represented in the following annotated surface struc-
ture:

The man that/ [sdohn met t i] is a grammarian.

In this example, t stands for the trace, ' tha t ' is the
surface form of the marker, and the connection be-
tween the two is indicated by the common index i.

The concept of left extraposition plays an essential
role, directly or indirectly, in many formal descriptions
of relative and interrogative clauses. Related to this
concept, there are several "global constraints", the
"island constraints", that have been introduced to
restrict the situations in which left extraposition can
be applied. For instance, the Ross complex-NP con-
straint [8], implies that any relative pronoun occurring
outside a given noun phrase cannot be bound to a
trace occurring inside a relative clause which is a sub-
constituent of the noun phrase. This means that it is
not possible to have a configuration like

Xl "" [np "'" [rel X2 [s "'" t2 "'" tl "'" 3] "'"]

Note that here I use the concept of left extraposi-
tion in a loose sense, without relating it to transforma-
tions as in transformational grammar. In XGs, and also
in other formalisms for describing languages (for in-
stance the context-free rule schemas of Gazdar [5]),
the notion of transformation is not used, but a concep-
tual operation of some kind is required for instance to
relate a relative pronoun to a "hole" in the structural
representat ion of the consti tuent following the pro-
noun.

4. Limitations of Other Formalisms

To describe a fragment of language where left ex-
traposition occurs, one might start with a CFG which
gives a rough approximation of the fragment. The
grammar may then be refined by adding arguments to

f u l l sentence --> sentence(ni l) .

sentence(HoleO) -->
noun_phrase(HoleO,Holel), verb_phrase(Holel).

noun_phrase(Hole,Hole) --> proper_noun.
noun_phrase(Hole,Hole) -->

determiner, noun, re la t i ve .
noun_phrase(HoleO,Hole) -->

determiner, noun, prep_phrase(HoleO,Hole).
noun_phrase(trace,nil) --> trace.

trace --> [] .

verb_phrase(Hole) -->
verb, noun_phrase(Hole,nil).

verb_phrase(nil) --> verb.

re la t i ve --> [] .
re la t i ve -->

rel_pronoun, sentence(trace).

prep_phrase(HoleO,Hole) -->
preposi t ion, noun_phrase(HoleO,Hole).

Figure 4.2. DCG for relative clauses.

(2)

non-terminals, to carry extraposed constituents across
phrases. This method is analogous to the introduction
of "der ived" rules by Gazdar [5]. Take for example
the CFG in Figure 4.1. In this grammar it is possible
to use rule (1) to expand a noun phrase into a trace,
even outside a relative clause. To prevent this, I will
add arguments to all non-terminals from ~vhich a n o u n
phrase might be extraposed. The modified grammar,
now a DCG, is given in Figure 4.2. A variable
'Hole. . . ' will have the value ' t race ' if an extraposed
noun phrase occurs somewhere to the right, 'nil ' other-
wise. The parse tree of Figure 4.3 shows the variable
values when the grammar of Figure 4.2 is used to ana-
lyse the noun phrase "the man that John met".

Intuitively, we either can see noun phrases moving
to the left, leaving traces behind, or traces appearing
from markers and moving to the right. In a phrase
"noun ph rase (Ho le l ,Ho le2) " , Ho le l will have the
value ' t race ' when a trace occurs somewhere to the
right of the left end of the phrase. In that case, Hole2
will be 'nil ' if the noun phrase contains the trace,
' t race ' if the trace appears to the right of the right end
of this noun phrase. Thus, rule (2) in Figure 4.2 speci-
fies that a noun phrase expands into a trace if a trace
appears from the left, and as this trace is now placed,
it will not be found further to the right.

The non-terminal 'relative' has no arguments, be-
cause the complex-NP constraint prevents noun phras-
es from moving out of a relative clause. However, that
constraint does not apply to prepositional phrases, so
' p r e p p h r a s e ' has arguments. The non-terminal
' sentence ' (and consequent ly 'verb phrase ') has a
single argument, because in a relative clause the trace

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 245

Fernando Pereira Extraposition Grammars

noun_phrase(nt l ,nt l)

determiner noun re la t ive

re l_pronoun sentence (trace)

noun_ p hrase (trace ,trace)

I
proper_noun

the man that John

ve rb_phra se (t r ace)

verb noun_phrase(t race,nt l)

I
t race

I
met []

Figure 4.3. DCG parse tree.

must occur in the sentence immediately to the right of
the relative pronoun.

It is obvious that in a more extensive grammar,

many non-terminals would need extraposit ion argu-
ments, and the increased complication would make the

grammar larger and less readable.

Colmerauer 's MG formalism allows an alternative
way to express left extraposition. It involves the use
of rules whose left-hand side is a non-terminal fol-
lowed by a string of "dum my" terminal symbols which
do not occur in the input vocabulary. An example of
such a rule is:

r e l _ m a r k e r , [t] - -> r e l _ p r o n o u n .

Its meaning is that 'rel pronoun ' can be analysed as a

'rel marker ' provided that the terminal ' t ' is added to
the front of the input remaining after the rule applica-

tion. Subsequent rule applications will have to cope

explicitly with such dummy terminals. This method
has been used in several published grammars [2, 4, 7],

but in a large grammar it has the same (if not worse)

problems of size and clarity as the previous method.
It also suffers from a theoretical problem: in general,
the language defined by such a grammar will contain

extra sentences involving the dummy terminals. For
parsing, however, no problem arises, because the input
sentences are not supposed to contain dummy termi-

nals. These inadequacies of MGs were the main moti-
vation for the development of XGs.

5. In forma l Descr ip t ion of X G s

To describe left extraposition, we need to relate
non-contiguous parts of a sentence. But neither DCGs
nor MGs have means of representing such a relation-
ship by specific grammar rules. Rather; the relation-
ship can only be described implicitly, by adding extra
information to many unrelated rules in the grammar.
That is, one cannot look at a grammar and find a set
of rules specific to the constructions which involve left
extraposition.

With extraposition grammars, I attempt to provide
a formalism in which such rules can be written.

In this informal introduction to the XG formalism,
I will avoid the extra complications of non-terminal
arguments. So, in the discussion that follows, we may
look at XGs as an extension of CFGs.

Sometimes it is easier to look at grammar rules in
the left-to-right, or synthesis, direction. I will say then
that a rule is being used to expand or rewrite a string.
In other cases, it is easier to look at a rule in the right-
to-left, or analysis, direction. I will say then that the
rule is being used to analyse a string.

Let us first look at the following XG fragment:

sentence - -> noun_phrase, ve rb_ph rase .

noun phrase - -> d e t e r m i n e r , noun, r e l a t i v e .

noun_phrase - -> t r a c e .

r e l a t i v e - -> [] .

r e l a t i v e - -> re l marker , sen tence .

r e l _ m a r k e r . . . t r a c e - -> r e l _ p r o n o u n .

246 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Fernando Pereira Extraposition Grammars

the mouse

the

rel_marker the cat chased trace

mouse r e l _ p r o n o u n the cat c h a s e d

squeaks

squeaks

Figure 5.1. Applying an XG rule.

Al l rules bu t the las t a re con t ex t - f r ee . The las t rule
~xpresses the e x t r a p o s i t i o n in s imple re la t ive c lauses .
I t s ta tes tha t a re la t ive p r o n o u n is to be a n a l y s e d as a
m a r k e r , f o l l o w e d b y s o m e u n k n o w n c o n s t i t u e n t s
(d e n o t e d by ' . . . ') , f o l l owed by a t race . This is s h o w n
in F igu re 5.1. As in the D C G e x a m p l e of the p rev ious
sec t ion , the e x t r a p o s e d noun ph ra se is e x p a n d e d in to a
t race . H o w e v e r , i n s t e a d of the t r ace be ing r e w r i t t e n
in to the e m p t y s t r ing, the t race is used as pa r t of the
ana lys i s of ' re l m a r k e r ' .

The d i f f e r ence b e t w e e n X G rules and D C G rules is
t hen tha t the l e f t - h a n d side of an X G rule m a y con t a in
seve ra l symbols . W h e r e a D C G rule is seen as ex-
p ress ing the e x p a n s i o n of a s ingle n o n - t e r m i n a l in to a
s t r ing, an X G rule is seen as expanding together severa l
n o n - c o n t i g u o u s symbo l s in to a str ing. M o r e p rec i se ly ,
an X G rule has the gene ra l fo rm

s 1 . . . s 2 etc. Sk_ 1 . . . s k --> r. (3)

H e r e each segment s i (s e p a r a t e d f rom o t h e r s egmen t s
by ' . . . ') is a s equence of t e rmina l s and n o n - t e r m i n a l s
(wr i t t en in D C G no ta t ion , wi th ' , ' for c o n c a t e n a t i o n) .
The f irst s y m b o l in s 1, the leading symbol , is r e s t r i c t e d
to be a non - t e rmina l . The r i g h t - h a n d side r is as in a
D C G rule.

L e a v i n g as ide the cons t r a in t s d i scussed in the nex t
sec t ion , the m e a n i n g of a rule l ike (3) is t ha t any se-
quence of symbo l s of the fo rm

SlXqS2X 2 etc. s k _ q X k _ l S k

with a r b i t r a r y xi 's , can be r e w r i t t e n in to r x q x 2 . . . x k_ 1.

T h i n k i n g p r o c e d u r a l l y , one can say tha t a n o n -
t e rmina l m a y be e x p a n d e d b y m a t c h i n g it to the l ead -
ing s y m b o l on the l e f t - h a n d side of a rule, and the res t
of the l e f t - h a n d s ide is " p u t a s i d e " to wa i t for the
de r i va t i on of symbo l s which m a t c h each of i ts symbo l s
in sequence . This s equence of symbo l s can be in t e r -
r u p t e d by a r b i t r a r y s t r ings , p a i r e d to the o c c u r r e n c e s
of ' . . . ' on the l e f t - h a n d side of the rule.

6. XG D e r i v a t i o n s

W h e n severa l X G rules a re invo lved , the d e r i v a t i o n
of a su r face s t r ing b e c o m e s more c o m p l i c a t e d t han in
the s ingle rule e x a m p l e of the p r e v i o u s sec t ion , b e -
cause rule a p p l i c a t i o n s i n t e r ac t in the w a y now to be

desc r ibed .

To r e p r e s e n t the i n t e r m e d i a t e s tages in an X G de-

r iva t ion , I will use bracketed strings, m a d e up of

• t e r m i n a l symbo l s

• n o n - t e r m i n a l s y m b o l s

• the open bracket <

• the close bracket >

A b r a c k e t e d s t r ing is balanced if the b r a c k e t s in it
b a l a n c e in the usual way.

Now, an X G rule

u 1 . . . u 2. .. etc u n --> v.

can be a pp l i e d to b r a c k e t e d s t r ing s if

s = xOUlXlU 2 etc. Xn_qUnX n

and each of the gaps x 1 Xn-1 is ba l anced . The
subs t r i ng of s b e t w e e n x 0 and x n is the span of the
rule app l i ca t ion . The a p p l i c a t i o n r ewr i t e s s in to new
s t r ing t, r ep l ac ing Ul b y v f o l l o w e d b y n-1 open b r a c k -
ets , and r ep l ac ing each of u 2 u n by a c lose b r a c k -
et ; in shor t , s is r e p l a c e d b y

x 0 v < < ... < x 1 > x 2 > ... Xn_ l > x n

The r e l a t i on b e t w e e n the or ig ina l s t r ing s and the
de r i ve d s t r ing t is a b b r e v i a t e d as s = > t. In the new
s t r ing t, the subs t r i ng b e t w e e n x 0 and x n is the result
of the app l i ca t ion . In pa r t i cu la r , the a p p l i c a t i o n of a
rule wi th a s ingle s e gme n t in i ts l e f t - h a n d side is no
d i f f e r en t f rom w h a t it w o u l d be in a t y p e - 0 g rammar .

T a k i n g aga in the rule

re l_marker . . . t race - -> rel_pronoun.

i ts a p p l i c a t i o n to

re l marker John likes t race

p r o d u c e s

rel_pronoun < John likes >

A f t e r this rule app l i ca t i on , it is no t pos s ib l e to a p p l y
any rule wi th a s e g m e n t m a t c h i n g ins ide a b r a c k e t e d
p o r t i o n and a n o t h e r s e g m e n t m a t c h i n g ou t s ide it. The
use of the a b o v e rule has d iv ided the s t r ing in to two
i so l a t ed po r t i ons , each of which mus t be i n d e p e n d e n t l y
e x p a n d e d .

G i v e n an X G wi th in i t ia l s y m b o l s, a s e n t e n c e t is
in the l anguage d e f i n e d by the X G if the re is a se-

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 247

Fernando Pereira Extraposition Grammars

a S bs

a S

a s

[]

bs

~x b "I~

J x c

bs

[]

CS

CS

i X C l a

Conventions:

o = rule appl icat ion

(n o d e)

x = n o n - t e r m i n a l

x = t e r m i n a l

[] = emptg s t r ing

c s

[]

a a b b c c

Figure 7.1. Derivation graph for "aabbcc".

quence of rule applications that transforms s into a
string from which t can be obtained by deleting all
brackets.

I shall refer to the restrictions on XG rule applica-
tion which I have just described as the bracketing
constraint. The effect of the bracketing constraint is
independent of the order of application of rules, be-
cause if two rules are used in a derivation, the brack-
ets introduced by each of them must be compatible in
the way described above. As brackets are added and
never deleted, it is clear that the order of application
is irrelevant. For similar reasons, any two applications
in a derivation where the rules involved have more
than one segment in their left-hand sides, one and only
one of the two following situations arises:

• the span of neither application intersects the result
of the other;

• the result of one of the applications is contained
entirely in a gap of the other application - the ap-
plications are nested.

If one follows to the letter the definitions in this
section, then checking, in a parsing procedure, whether
an XG rule may be applied, would require a scan of
the whole intermediate string. However, we will see in
Section 10 that this check may be done "on the f ly"
as brackets are introduced, with a cost independent of
the length of the current intermediate string in the
derivation.

7. D e r i v a t i o n Graphs

In the same way as parse trees are used to visualise
context-free derivations, I use derivation graphs to
represent XG derivations.

In a derivation graph, as in a parse tree, each node
corresponds to a rule application or to a terminal sym-
bol in the derived sentence, and the edges leaving a
node correspond to the symbols in the right-hand side
of that node 's rule. In a derivation graph, however, a
node can have more than one incoming edge - in fact,
one such edge for each of the symbols on the left-

248 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Fernando Pereira Extraposition Grammars

hand side of the rule corresponding to that node. Of
these edges, only the one corresponding to the leading
symbol is used to define the left- to-right order of the
symbols in the sentence whose derivation is represent-
ed by the graph. If one deletes from a derivation graph
all except the first of the incoming edges to every
node, the result is a tree analogous to a parse tree.

For example, Figure 7.1 shows the derivation graph
for the string " a a b b c c " according to the XG:

S - - > a s , b s , cs .

as - - > [] .

as . . . xb - - > [a] , a s .

bs - - > [] .

bs . . . x c - - > x b , [b] , bs .

cs - - > [] .

CS - -> XC, [C] , CS.

This X G defines the language formed by the set of all
strings

anbncn for n_> 0.

The example shows, incidentally, that XGs, even with-
out arguments, are strictly more powerful than CFGs,
since the language described is not context-free.

The topology of derivation graphs reflects clearly
the bracket ing constraint . Assume the following two
convent ions for the drawing of a der ivat ion graph,
which are followed in all the graphs shown here:

• the edges entering a node are ordered clockwise
following the sequence of the corresponding sym-
bols in the lef t-hand side of the rule for that node;

• the edges issuing f rom a node are ordered counter-
clockwise following the sequence of the corre-
sponding symbols in the right-hand side of the rule
for the node.

Then the derivation graph obeys the bracketing const-
raint if and only if it can be drawn, following the con-
ventions, without any edges crossing. 1 The example of
Figure 7.2 shows this clearly. In this figure, the closed
path formed by edges 1, 2, 3, and 4 has the same ef-
fect as a matching pair of brackets in a b racke ted
string.

It is also worth noting that nested rule applications
appear in a derivation graph as a configuration like the
one depicted in Figure 7.3.

8. X G s and Lef t E x t r a p o s i t i o n

We saw in Figure 4.2 a D C G for (some) relative
clauses. The X G of Figure 8.1 describes essentially
the same language fragment , showing how easy it is to
describe left extraposit ion in an XG. In that grammar,
the sentence

1 In some of the examples of this article, edges cross to make
the graphs more readable, but such crossings could be trivially
avoided.

5 - - > a , b , c ,

a . . . c - - > [x] .

b ... d - - > [g] .

d.

s

a b c d

x y

S -~>

S -T_>

a b c d => x < b > d => ? (blocks)

a b c d = > a g < c > = > ?

Figure 7.2. Relating derivations to derivation graphs.

Figure 7.3. Nested rule applications.

The mouse that the cat chased squeaks.

has the derivation graph shown in Figure 8.2. The left
extraposi t ion implicit in the structure of the sentence
is represented in the derivation graph by the applica-

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 249

Fernando Pereira Extraposition Grammars

S

det n o u n re l

rE

r s

I e-.-----

lp

np vp

det noun re l v e r b

+ i °
[] t

T
v e r b

d e t

np

r

re[

r e lp

5

t

vp

= determiner

= noun_phrase
= r e I _ m a r k e r

= r e l a t i v e

= r e l _ p r o n o u n

= s e n t e n c e

= trace

= verb_phrase

the mouse that the cat c h a s e d squeaks

Figure 8.2. Example of derivation graph for the XG in Figure 8.1.

sentence --> noun_phrase, verb_phrase.

noun_phrase - -> proper_noun.
noun_phrase - -> de terminer , noun, r e l a t i v e .
noun_phrase - -> de terminer , noun, prep_phrase.
noun_phrase - -> t race .

verb_phrase - -> verb, noun_phrase.
verb_phrase - -> verb.

r e l a t i v e - -> [] .
r e l a t i v e - -> re] marker, sentence.

re l_marker . . . t race - -> re l_pronoun.

prep_phrase - -> p r e p o s i t i o n , noun_phrase.

Figure 8.1. XG for relative clauses.

(4)

tion of the rule for ' re l__marker ' , at the node marked
(*) in the figure. One can say that the left extraposi-
tion has been " r eve r sed" in the derivation by the use
of this rule, which may be looked at as repositioning
' t r ace ' to the right, thus " revers ing" the extraposi t ion
of the original sentence.

In the rest of this paper , I of ten refer to a consti tu-
ent being repositioned into a bracketed string (or into a
f ragment of der ivat ion graph) , to mean that a rule
having that const i tuent as a non-leading symbol in the
le f t -hand side has been applied, and the symbol
matches some symbol in the string (or corresponds to
some edge in the f ragment) . For example, in Figure
8.2 the trace ' t ' is reposi t ioned into the subgraph with
root 's ' .

9. Using the Bracketing Constraint

In the example of Figure 8.2, there is only one
application of a n o n - D C G rule, at the place marked
(*). However , we have seen that when a derivat ion
contains several applications of such rules, the applica-
tions must obey the bracket ing constraint . The use of
the constraint in a g rammar is be t ter explained with an
example. F rom the sentences

The mouse squeaks.

The cat l i k e s f i s h .

The cat chased the mouse.

250 A m e r i c a n J o u r n a l o f C o m p u t a t i o n a l L ingu is t i cs , V o l u m e 7, N u m b e r 4, O c t o b e r - D e c e m b e r 1981

Fernando Pereira Extraposition Grammars

S

det noun t e l

the mouse

r s

det noun re l

r s

r e lp

I
tha t the

+
t

relp

- - I ~ l ~

eat that c h a s e d

verb np

t

likes

verb np

det noun
I

[1

Fish

vp

verb

tel

[]

squeaks

Figure 9.1. Violat ion of the complex-NP constraint .

the g rammar of Figure 8.1 can derive the following
string, which violates the complex-NP constraint:

* The mouse t h a t the ca t t h a t chased l i k e s f i s h squeaks.

The der ivat ion of this ungrammat ica l string can be
be t te r unders tood if we compare it with a sentence
outside the fragment:

The mouse, t h a t the ca t which chased i t l i k e s f i s h ,

squeaks.

where the pronoun ' i t ' takes the place of the incorrect
trace.

The derivation graph for that un-English string is
shown in Figure 9.1. In the graph, (*) and (**) mark
two nested applications of the rule for 'rel marker ' .
The string is un-English because the higher ' re lat ive '
(marked (+) in the graph) binds a trace occurring
inside a sentence which is par t of the subordina ted
'noun___.phrase' (+ +) .

Now, using the bracket ing constraint one can neat-
ly express the complex-NP constraint. It is only neces-

sary to change the second rule for ' re lat ive ' in Figure
8.1 to

r e l a t i v e - -> open, r e l _ m a r k e r , sen tence , c l ose . (5)

and add the rule

open . . . c l ose - -> [] . (6)

With this modified grammar, it is no longer possible to
violate the complex-NP constraint, because no constit-
uent can be reposi t ioned f rom outside into the gap
created by the application of rule (6) to the result of
applying the rule for relatives (5).

The non-terminals ' open ' and 'c lose ' bracket a sub-
derivation

. . . open X c lose . . . => < X > . . .

prevent ing any const i tuent f rom being reposi t ioned
f rom outside that subder ivat ion into it. Figure 9.2
shows the use of rule (6) in the derivation of the sen-
tence

The mouse t h a t the ca t t h a t l i k e s f i s h chased squeaks.

This is based on the same three simple sentences as
the ungrammat ica l string of Figure 9.1, which the

American Journal of Computational Linguistics, V o l u m e 7, N u m b e r 4, O c t o b e r - D e c e m b e r 1981 251

Fernando Pereira Extraposition Grammars

d e t noun

open

t e l

s
__....----,0---.---_.

det noun "-"--"T'el

the mouse

open r s

[]

t /
:[p

J

that the cat thal ttke~

verb

det noun rel

verb

C l o s e

[]

_ _ _ _ _ . _ i !

J

l J

Fish chased

cl,

i
P

J

vp

verb

pse

squeaks

Figure 9.2. Implementation of the complex-NP constraint.

reader can now try to derive in the modified grammar,
to see how the bracket ing constraint prevents the de-
rivation.

10. XGs as Logic Programs

In the previous sections, I avoided the complicat ion
of non-terminal arguments. Although it would be pos-
sible to describe fully the operat ion of XGs in terms of
derivations on bracketed strings, it is much simpler to
complete the explanation of XGs using the translation
of X G rules into definite clauses. In fact, a rigorous
defini t ion of X G s independent ly of definite clauses
would require a formal apparatus very similar to the
one needed to formalise defini te clause p rograms in
the first place, and so it would fall outside the scope
of the present paper. The interested reader will find a
full discussion of those issues in two articles by Col-
merauer [2,3].

Like a D C G , a general X G is no more than a con-
venient notat ion for a set of definite clauses. An X G
non-terminal of arity n corresponds to an n + 4 place
predicate (with the same name) . Of the extra four
arguments , two are used to represent string positions
as in DCGs , and the other two are used to represent
positions in an extraposition list, which carries symbols
to be reposit ioned.

Each e lement of the extraposi t ion list represents a
symbol being reposi t ioned as a 4-tuple

x(context, type, symbol, xlist)

where context is either 'gap ' , if the symbol was preced-
ed by ' . . . ' in the rule where it originated, or 'nogap ' , if
the symbol was preceded by ' , ' ; type may be ' te rminal '
or 'nonterminal ' , with the obvious meaning; symbol is
the symbol proper; xlist is the remainder of the extra-
posit ion list (an empty list being represented by '[] ') .

252 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Fernando Pereira Extraposition Grammars

An XG rule is translated into a clause for the pred-
icate corresponding to the leading symbol of the rule.
In the case where the XG rule has just a single symbol
on the left-hand side, the translation is very similar to
that of DCG rules. For example, the rule

sentence --> noun_phrase, verbphrase.

translates into

sentence(S0,S,X0,X) : -

noun_phrase(S0,S1 ,X0 ,Xl) ,

verb_phrase(S1 ,S,Xl ,X).

A terminal t in the right-hand side of a rule translates
into a call to the predicate ' terminal ' , defined below,
whose role is analogous to that of 'connects ' in DCGs.
For example, the rule

rel_pronoun --> [that] .

translates into

re]_pronoun (S0,S,X0,X) : -

terminal (that ,SO ,S ,XO ,X).

The translation of a rule with more than one symbol in
the left-hand side is a bit more complicated. Informal-
ly, each symbol after the first is made into a 4-tuple as
described above, and fronted to the extraposition list.
Thus, for example, the rule

rel_marker . . . trace --> rel_pronoun.

translates into

rel_marker(SO,S,XO,x(gap,nonterminal ,trace,X)) :-
rel_pronoun (SO, S, XO, X).

Furthermore, for each distinct non-leading non-
terminal nt (with arity n) in the left-hand side of a rule
of the XG, the translation includes the clause

n/(Vl Vn,S,S,XO,X) :-

v i r tua l (n/(Vl Vn) ,XO,X).

where 'vir tual(C,X0,X) ' , defined later, can be read as
"C is the constituent between X0 and X in the extra-
position list", and the variables Vi transfer the argu-
ments of the symbol in the extraposition list to the
predicate which translates that symbol.

For example, the rule

marker(Var), [the] . . . [of.whom], trace(Var) -->
[whose].

which can be used in a more complex grammar of
relative clauses to transform "whose X" into " the X of
whom", corresponds to the clauses:

marker(Var,SO,S,XO,
x (nogap, terminal, the,
x(gap,terminal ,of ,
x(nogap ,terminal ,whom,
x(nogap,nonterminal , trace(Var),
x))))) : -

termi hal (whose ,SO, S ,XO, X).

trace(Var,S,S,XO,X) :- v ir tual(trace(Var),XO,X).

Finally, the two auxiliary predicates 'virtual ' and
' terminal ' are defined as follows:-

v i r tua l (NT, x(C,nonterminal,NT,X), X).

terminal(T, SO, S, X, X) : -
gap(X), connects(SO, T, S).

terminal(T, S, S, x(C, terminal ,T,X) , X).

gap(x(gap,T,S,X)).
gap([]) .

where 'connects ' is as for DCOs.

These definitions need some comment. The first
clause for ' terminal ' says that, provided the current
extraposition list allows a gap to appear in the deriva-
tion, terminal symbol T may be taken from the posi-
tion SO in the source string, where T connects SO to
some new position S. The second clause for ' terminal '
says that if the next symbol in the current extraposi-
tion list is a terminal T, then this symbol can be taken
as if it occurred at S in the source string. The clause
for 'virtual ' allows a non-terminal to be "read off
f rom" the extraposition list.

* re lat ive(6,9,X,X)
* open(6,6,x(gap,nt , t race,x(gap,nt ,c lose, [])) ,

x(gap,nt ,c lose,x(gap,nt , t race,
x (gap,n t ,c lose , []))))

* rel_marker(6,7,x(gap,nt,c lose,x(gap,nt, t race,
x(gap,nt,close
x(gap,nt, trace
x(gap,nt, trace

rel_pronoun(6,7,X
[that]

sentence(7,9,x(gap
x(gap,nt, trace
x(gap,nt,close

, []))) ,
,x(gap,nt,close,
, x (gap ,n t ,c lose , [])))))
,X)

,n t , t race,x(gap,nt ,c lose,
, x (gap ,n t , c lose , [])))) ,
,x(gap,nt , t race,

x (gap,n t ,c lose , []))))
* noun_phrase(7,7,x(gap,nt,trace,x(gap,nt,close,

x (gap,n t , t race ,x (gap,n t ,c lose , [])))) ,
x(gap,nt ,c lose,x(gap,nt , t race,
x (gap,n t ,c lose , []))))

* t race(7,7,x(gap,nt , t race,x(gap,nt ,c lose,
x (gap,n t , t race ,x (gap,n t ,c lose , [])))) ,
x(gap,nt ,c lose,x(gap,nt , t race,
x (gap,n t ,c lose , []))))

* verb_phrase(7,9,X,X)
* verb(7,8,X,X)

[l i kes]
* noun_phrase(8,9,X,X)
* determiner(8,8,X,X)
* noun(8,9,X,X)

[f i sh]
* re lat ive(9,9,X,X)
* c lose(9,9,x(gap,nt ,c lose,x(gap,nt , t race,

x (gap ,n t ,c lose , []))) ,
x (gap,n t , t race,x(gap,n t ,c lose, [])))

Figure 10.1. Derivation of " that likes fish".

Figure 10.1 shows a fragment of the analysis in
Figure 9.2, but now in terms of the translation of XG
rules into definite clauses. Points on the sentence are
labelled as follows:

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 253

Fernando Pereira Extraposition Grammars

the mouse that the cat that l ikes f ish chased squeaks

I 2 3 4 5 6 7 8 9 10 11

The nodes of the analysis fragment , for the relative
clause " tha t likes fish", are represented by the corre-
sponding goals, indented in p ropor t ion to their dis-
tance f rom the root of the graph. The following con-
ventions are used to simplify the figure:

• The leaves (terminals) of the graph are listed
directly;

• the values of the ext raposi t ion a rguments are
explictly represen ted only for those goals that
add or delete something to the extraposi t ion list;
for the other goals, the two identical values are
represented by the variable 'X ' ;

• the goals for ' terminal ' and 'vir tual ' are left out
as they can be easily recons t ruc ted f rom the
other goals and the definitions above;

• 'nonterminal ' is abbrevia ted as 'n t ' .

The definite clause p rogram cor responding to the
grammar for this example is listed in Appendix II.

The example shows clearly how the bracket ing
constraint works. Symbols are placed in the extraposi-
tion list by rules with more than one symbol in the
lef t -hand side, and removed by calls to 'vir tual ' , on a
f irst- in-last-out basis; that is, the extraposi t ion list is a
stack. But this proper ty of the extraposi t ion list is
exact ly what is needed to balance " o n the f ly" the
auxiliary brackets in the intermediate steps of a deri-
vation.

Being no more than a logic program, an X G can be
used for analysis and for synthesis in the same way as
a DCG. For instance, to determine whether a string s
with initial point initial and final point final is in the
language defined by the X G of Figure 8.1, one tries to
prove the goal s ta tement

?-sentence(initial, final,[3,[3).

As for DCGs, the string s can be represented in sever-
al ways. If it is represented as a list, the above goal
would be written

?-sentence(s,[] , [] , []) .

The last two arguments of the goal are '[]' to mean
that the overall ext raposi t ion list goes f rom '[] ' to
'[]'; i.e., it is the empty list. Thus, no const i tuent can
be reposi t ioned into or out of the top level ' sentence ' .

11. C o n c l u s i o n s and Further W o r k

In this paper I have p roposed an extension of
DCGs. The motivat ion for this extension was to pro-
vide a simple formal device to describe the structure of
such important natural language construct ions as rela-
tive clauses and interrogative sentences. In t ransforma-
tional grammar, these constructions have usually been
analysed in terms of left extraposit ion, together with
global constraints, such as the complex-NP constraint ,

which restrict the range of the extraposit ion. Global
constraints are not explicit in the g rammar rules, but
are given externally to be enforced across rule applica-
tions. These external global constraints cause theoret -
ical difficulties, because the formal propert ies of the
resulting systems are far f rom evident, and practical
difficulties, because they lead to obscure g rammars
and prevent the use of any reasonable parsing algor-
ithm.

DCGs , although they provide the basic machinery
for a clear descr ipt ion of languages and their s truc-
tures, lack a mechanism to describe simply left extra-
posi t ion and the associa ted restr ict ions. M G s can
express the rewrite of several symbols in a single rule,
but the symbols must be contiguous, as in a type-0
g rammar rule. This is still not enough to describe left
ex t rapos i t ion without compl ica t ing the rest of the
grammar. XGs are an answer to those limitations.

An X G has the same fundamenta l p rope r ty as a
D C G , that it is no more than a convenient notat ion
for the clauses of an ordinary logic program. X G s and
their t ransla t ion into defini te clauses have been de-
signed to meet three requirements: (i) to be a princi-
pled extension of DCGs , which can be in terpreted as a
g rammar formal ism independent ly of its t ransla t ion
into definite clauses; (ii) to provide for simple descrip-
t ion of left extraposi t ion and related restrictions; (iii)
to be comparable in efficiency with DCGS when exec-
uted by P R O L O G . It turns out that these requirements
are not contradictory, and that the resulting design is
extremely simple. The restrictions on extraposi t ion are
natural ly expressed in te rms of scope, and scope is
expressed in the formalism by "bracke t ing ou t " sub-
derivat ions cor responding to ba lanced strings. The
notion of bracketed string derivat ion is int roduced in
order to describe ext rapos i t ion and bracke t ing inde-
pendent ly of the t ransla t ion of X G s into logic pro-
grams.

Some questions about X G s have not been tackled
in this paper. First, f rom a theoretical point of view it
would be necessary to complete the independent char-
acterisat ion of XGs in terms of bracketed strings, and
show rigorously that the translat ion of X G s into logic
programs correct ly renders this independent character-
isation of the semantics of XGs. As pointed out be-
fore, this formalisat ion does not offer any substantial
problems.

Next, it is not clear whether XGs are as general as
they could be. For instance, it might be possible to
extend them to handle right extraposi t ion of consti tu-
ents, which, al though less common than left extraposi-
tion, can be used to describe quite f requent English
constructions, such as the gap be tween head noun and
relative clause in:

What f i l e s are there that were created today?

254 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

Fernando Pereira Extraposition Grammars

It may however be possible to describe such situations
in terms of left extraposi t ion of some other consti tuent
(e.g. the verb phrase " a r e t he re" in the example
above).

Finally, I have been looking at what t rans forma-
tions should be applied to an X G developed as a clear
description of a language, so that the resulting gram-
mar could be used more efficiently in parsing. In par-
ticular, I have been trying to generalise results on det-
erministic parsing of con tex t - f ree languages into ap-
propriate principles of t ransformation.

Acknowledgements

David Warren and Michael McCord read drafts of
this paper, and their comments led to many improve-
ments, both in content and in form. The comments of
the referees were also very useful. A British Council
Fellowship part ly supported my work in this subject.
The comput ing facilities I used to exper iment with
XGs and to prepare this paper were made available by
British Science Research Council grants.

Appendix I. Translating XGs

The following P R O L O G program (for the D E C - 1 0
P R O L O G system) defines a predicate ' g rammar(F i le) '
which translates and stores the X G rules contained in
File. The symbol ' ' as a predicate or functor argu-
ment denotes an " a n o n y m o u s " variable, i.e. each such
occurrence stands for a separate variable with a single
occurrence.

% Def in i t ion of the grammar rule operators

• - op(1OO1,xfy,(. . .)) .
• - op(t2OO,xfx,(-->)).

% Process the XG in Fi le

grammar(File) :-
seeing(Old),
see(Fi le) ,
consume,
seen,
see(Old).

% Loop unt i l end of f i l e

consume :-
repeat,

read(X),
(X=end of f i l e , !;

process(X),
fa i l).

% Process a grammar rule

process((L-->R)) :- !,
expandlhs(L,SO,S,HO,H,P),
expandrhs(R,SO,S,HO,H,Q),
assertz((P :- Q)), !.

% Execute a command

process((:- G)) :- !,
G.

% Store a normal clause

process((P :- Q)) :-
assertz((P :- Q)).

% Store a uni t clause

process(P) :-
assertz(P).

% Translate an XG rule
% Translate the left-hand side

expandlhs(T,SO,S,HO,HI,Q) :-
f l a t t e n (T , [P I L] , []) ,
f ront(L,HI ,H),
tag(P,SO,S,HO,H,Q).

f la t ten((X. . .Y) ,LO,L) :- !,
f lat ten(X,LO,[gapl L I]) ,
f l a t ten (Y ,L I ,L) .

f lat ten((X,Y),LO,L) :- !,
f latten(X,LO,[nogap I L I]) ,
f l a t ten (Y ,L I ,L) .

f l a t t e n (X , [X l L] , L) .

f ront ([] ,H,H) .
f ront([K,X I L],HO,H) :-

case(X,K,HI,H),
front(L,HO,H1).

case([TITs],K,HO,x(K,terminal,T,H)) :- !,
unwind(Ts,HO,H).

case(Nt,K,H,x(K,nonterminal,Nt,H)) :-
v i r tua l_ ru le (Nt) .

% Create the clause
% Nt(S,S,XO,X) :- virtual(Nt,XO,X)
% for extraposed symbol Nt

v i r tua l rule(Nt) :-
functor(Nt,F,N),
functor(Y,F,N),
tag(Y,S,S,Hx,Hy,P),

(c lause(P,v i r tual(, ,),), !;
asserta((P :- v i r tual(Y,Hx,Hy)))).

% Translate the right-hand side

expandrhs((XI,X2),SO,S,HO,H,Y) :- !,
expandrhs(XI,SO,SI,HO,HI,Y1),
expandrhs(X2,SI,S,HI,H,Y2),
and(YI,Y2,Y).

expandrhs((X1;X2),SO,S,HO,H,(Y1;Y2)) :- !,
expandor(X1,SO,S,HO,H,Y1),
expandor(X2,SO,S,HO,H,Y2).

expandrhs({X},S,S,H,H,X) :- .
expandrhs(L,SO,S,HO,H,G) :- i s l i s t (L) , !,

expandlist(L,SO,S,HO,H,G).
expandrhs(X,SO,S,HO,H,Y) :-

tag(X,SO,S,HO,H,Y).

expandor(X,SO,S,HO,H,Y) :-
expandrhs(X,SOa,S,HOa,H,Ya),

(S\==SOa, !, SO=SOa, Yb=Ya; and(SO=SOa,Ya,Yb)),
(H\==HOa, !, HO=HOa, Y=Yb; and(HO=HOa,Yb,Y)).

expandl is t ([] ,S,S,H,H,t rue).
expandlist([X],SO,S,HO,H,terminal(X,SO,S,HO,H)) :- !.
expandlist([XIL],SO,S,HO,H,

American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981 255

Fernando Pereira Extraposition Grammars

(terminal(X,SO,SI,HO,H1),Y)) :-
expandlist(L,S1,S,HI,H,Y).

tag(P,AI,A2,A3,A4,Q) :-
P=..[FIArgsO],
conc(ArgsO,[AI,A2,A3,A4],Args),
Q=..[FIArgs].

and(true,P,P) :- !.
and(P,true,P) :- !.
and(P,Q,(p,Q)).

i s l i s t ([I])-
i s l i s t ([]) .

unwind([],H,H) :- !.
unwind([TITs],HO,x(nogap,terminal ,T,H))

unwind(Ts,HO,H).

conc([],L,L) :- !.
conc([XlL1] ,L2, [XIL3]) :-

conc(LI,L2,L3).

A p p e n d i x II. Def in i te c lauses for the g r a m m a r
used in Figure 9.2

sentence(SO,S,XO,X) :-
noun_phrase(SO,Sl,XO,X1),
verb_phrase(SI,S,X1,X).

noun_phrase(SO,S,XO,X) :-
proper_noun(SO,S,XO,X).

noun_phrase(SO,S,XO,X) :-
determiner(SO,SI,XO,Xl),
noun(S1,S2,X1,X2),
relative(S2,S,X2,X).

noun_phrase(SO,S,XO,X) :-
determiner(SO,S1,XO,Xl),
noun(SI,S2,XI,X2),
prep_phrase(S2,S,X2,X).

noun_phrase(SO,S,XO,X) :-
trace(SO,S,XO,X).

verb_phrase(SO,S,XO,X) :-
verb(SO,Sl,XO,X1),
noun_phrase(SI,S,Xl,X).

verb_phrase(SO,S,XO,X) :-
verb(SO,S,XO,X).

relative(SO,SO,X,X).
relative(SO,S,XO,X) :-

open(SO,Sl,XO,Xl),
rel_marker(Sl,S2,Xl,X2),
sentence(S2,S3,X2,X3),
close(S3,S,X3,X).

trace(SO,SO,XO,X) :-
virtual(trace,XO,X).

rel_marker(SO,S,XO,x(gap,nonterminal,trace,X)) :-
rel_pronoun(SO,S,XO,X).

prep_phrase(SO,S,XO,X) :-
preposition(SO,S1,XO,Xl),
noun_phrase(S1,S,XI,X).

open(SO,SO,X,x(gap,nonterminal,close,X)).

close(SO,SO,XO,X) :-
virtual(close,XO,X).

R e f e r e n c e s

1. Chomsky , N. Reflections on Language. Pantheon , 1975.

2. Colmerauer , A. "Me tamorphos i s G r a m m a r s . " In Natural Lan-
guage Communication with Computers, L .Bolc (ed.). Springer-
Verlag, 1978. First appeared as an internal report , 'Les Gram -
maires de Me tamorphose ' , in November 1975

3. Colmerauer , A. " L e s Bases Th6or iques de P R O L O G . " Groupe
d ' Intel l igence Artificielle, U. E. R. de Luminy , Universi t6 d 'Aix-
Marseille II, 1979.

4. Dahl, V. " U n Syst6me D6ductif d ' In te r rogat ion de Banques de
Donn6es en Espagnol . " Groupe d ' Intel l igence Artificielle, U.
E. R. de Luminy , Universi t6 d 'Aix-Marsei l le II, 1977.

5. Gazdar , G. "Engl i sh as a Con tex t -F ree L a n g u a g e . " School of
Social Sciences, Univers i ty of Sussex, April, 1979.

6. Pereira, F. and Warren , D. H. D. "Def in i te Clause G r a m m a r s
for L a n g u a g e Ana lys i s - A Survey of the Fo rma l i sm and a
Compar i son with A u g m e n t e d Trans i t ion Ne tworks . " Artificial
Intelligence 13 (1980) 231-278.

7. Pique, J. F. " In te r roga t ion en Francais d ' une Base de Donn6es
Rela t ionnel le ." Groupe d ' Intel l igence Artificielle, U. E. R. de
Luminy , Universi t6 d 'Aix-Marsei l le II, 1978.

8. Ross , J. R. Excerpts f rom 'Cons t ra in t s on Variables in Syntax ' .
In G. H a r m a n (ed.): On Noam Chomsky: Critical Essays, An -
chor Books, 1974.

9. Roussel , P. " P R O L O G : Manue l de R6ference et Ut i l i sa t ion."
Groupe d ' Intel l igence Artificielle, U.E.R. de Luminy , Universi t6
d 'Aix-Marsei l le II, 1975.

Fernando C.N. Pereira is a research associate in the
Department o f Architecture at Edinburgh University, and
also a graduate student in the Department o f Artificial
Intelligence. He received the M.Sc. degree in mathemat-
ics f rom Lisbon University in 1975.

256 American Journal of Computational Linguistics, Volume 7, Number 4, October-December 1981

