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Extraposition grammars are an extension of definite clause grammars, and are similarly 
defined in terms of logic clauses. The extended formalism makes it easy to describe left 
extraposition of constituents, an important feature of natural language syntax. 

1. Introduction 

This paper presents a grammar formalism for natu- 
ral language analysis, called extraposition grammars 
(XGs),  based on the subset of predicate calculus 
known as definite, or Horn, clauses. It is argued that 
certain important  linguistic phenomena,  collectively 
known in t ransformational  grammar as left extra- 
position, can be described better in XGs than in earlier 
grammar formalisms based on definite clauses. 

The XG formalism is an extension of the definite 
clause grammar (DCG) [6] formalism, which is itself a 
restriction of Colmerauer 's  formalism of metamorphosis 
grammars (MGs) [2]. Thus XGs and MGs may be 
seen as two alternative extensions of the same basic 
formalism, DCGs. 

The argument for XGs will start with a comparison 
with DCGs.  I should point out, however,  that the 
motivation for the development  of XGs came from 
studying large MGs for natural language [4,7]. 

The relationship between MGs and DCGs is analo- 
gous to that between type-0 grammars and context-  
free grammars. So, some of the linguistic phenomena 
which are seen as rewriting one sequence of constitu- 
ents into another might be described better in a MG 
than in a DCG. However,  it will be shown that re- 
writings such as the one involved in left extraposition 
cannot easily be described in either of the two formal- 
isms. 

Left extraposition has been used by grammarians to 
describe the form of interrogative sentences and rela- 
tive clauses, at least in languages such as English, 
French, Spanish and Portuguese. The importance of 
these constructions, even in simplified subsets of natu- 
ral language, such as those used in database interfaces, 
suggests that a grammar formalism should be able to 

express them in a clear and concise manner. This is the 
purpose of XGs. 

2. Grammars in Logic 

This section summarises the concepts  of definite 
clause grammars (DCGs) ,  and of the underlying sys- 
tem of logic, definite clauses, needed for the rest of the 
paper. A fuller discussion can be found elsewhere [6]. 

A definite clause has either the form 

P:-QI,"',Qn" 
to be read as " P  is true if Q 1 . . . . .  Qn are true", or the 
form 

P .  

to be read as " P  is true". P is the head of the clause, 
Q1 . . . . .  Qn are goals, forming the body of the clause. 
The symbols P, Q 1 . . . . .  Qn stand for literals. A literal 
has a predicate symbol, and possibly some arguments 
(in parentheses, separated by commas),  e.g. 

father(X,Y) false number(O) 

A literal is to be interpreted as denoting a relation 
between its arguments; e.g. " fa ther (X,Y)"  denotes the 
relation ' fa ther '  between X and Y. 

Arguments are terms, standing for partially speci- 
fied objects. Terms may be 

• variables, denoting unspecified objects 
(variable names are capitalised): 

X Case Agreement 
• atomic symbols, denoting specific objects: 

plural [ ] 3 

• compound terms, denoting complex objects: 

s(NP,VP) succ(succ(O)) 

A compound term has a functor and some arguments, 
which are terms. Compound  terms are best seen as 
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trees, e.g. 

/ 

NP 

S SUCC 

\ I 
VP succ 

I 
0 

A particular type of term, the list, has a simplified 
notation. The binary functor  ' ' makes up non-  
empty lists, and the atom '[ ]' denotes the empty list. 
In the special list notation, 

[a ,b ]  [X I Y] 

represent respectively the terms 

. ( a , . ( b , [  3) .(X,Y) 

Putting these concepts together, the clause 

grandfather(X,Z) : -  fa ther(X,Y) ,  parent(Y,Z). 

may be read as "X  is grandfather of Z if X is father of 
Y and Y is a parent of Z";  the clause 

father( john ,mary). 

may be read as " John  is father of Mary"  (note the use 
of lower case for the constants in the clause). 

A set of definite clauses forms a program. A pro- 
gram defines the relations denoted by the predicates 
appearing on the head of clauses. When using a defi- 
nite clause interpreter, such as P R O L O G  [9], a goal 
s tatement  

?-19 . 

specifies that the relation instances that match P are 
required. 

Now, any context-free rule, such as 

sentence --> noun_phrase, verb_phrase. 

(I use ' , '  for concatenation, and ' . '  to terminate a rule) 
may be translated into a definite clause 

s e n t e n c e ( 5 0 , S )  : -  n 0 u n _ p h r a s e ( S 0 , S 1 ) ,  

ve r b_ph ra se  ( S1 ,S ). 

which says: " there  is a sentence between points SO 
and S in a string if there is a noun phrase between 
points SO and S1, and a verb phrase between points S1 
and S". A context-free rule like 

determiner - ->  [ the ] .  

(where the square brackets mark a terminal) can be 
translated into 

determiner(SO,S) :- connects(SO,the,S). 

which may be read as "there is a determiner between 
points SO and S in a string if SO is joined to S by the 
word ' the ' " .  The predicate 'connects '  is used to relate 
terms denoting points in a string to the words which 
join those points. Depending on the application, differ- 
ent definitions of 'connects '  might be used. In particu- 
lar, if a point in a string is represented by the list of 
words after that point, ' connects '  has the very simple 
definition 

connects([Word I 53,Word,S). 

which may be read as "a string point represented by a 
list of words with first element Word and rest S is 
connected by the word Word to the string point repre- 
sented by list S." 

DCGs  are the natural extension of context-free 
grammars (CFGs)  obtained through the translation 
into definite clauses outlined above. A D C G  non- 
terminal may have arguments,  of the same form as 
those of a predicate, and a terminal may be any term. 
For  instance, the rule 

sentence(s(NP,VP)) --> noun_phrase(NP,N), 

verb_phrase(VP,N). 

states: " A  sentence with structure 

s 
/ \ 

NP VP 

is made of a noun phrase with structure NP and num- 
ber N (which can be either 'singular'  or 'plural ') ,  fol- 
lowed by a verb phrase with structure VP agreeing 
with the number N".  A D C G  rule is just "syntact ic  
sugar" for a definite clause. The clause for the exam- 
ple above is 

sentence(s(NP,VP),SO,S) :-  

noun phrase(NP,N,SO,S1), 

verb_phrase(VP,N,Sl ,S). 

In general, a D C G  non-terminal with n arguments is 
translated into a predicate of n + 2  arguments, the last 
two of which are the string points, as in the translation 
of context-free rules into definite clauses. 

The main idea of DCGs  is then that grammar sym- 
bols can be general  logic terms rather than just atomic 
symbols. This makes DCGs  a general-purpose gram- 
mar formalism, capable of describing any type-0 lan- 
guage. The first grammar formalism with logic terms 
as grammar symbols was Colmerauer 's  metamorphosis 
grammars [2]. Where a D C G  is a C F G  with logic 
terms for grammar symbols, a MG is a somewhat re- 
stricted type-0 grammar with logic terms for grammar 
symbols. However ,  the very simple translation of 
DCGs  into definite clauses presented above does not 
carry over directly to MGs. 

3. Left Extraposition 

Roughly speaking, left  extraposit ion occurs in a 
natural language sentence when a subconst i tuent  of 
some constituent is missing, and some other constitu- 
ent, to the left of the incomplete one, represents the 
missing constituent in some way. It is useful to think 
that an empty consti tuent,  the trace, occupies the 
"ho le"  left by the missing consti tuent,  and that the 
consti tuent  to the left, which represents the missing 
part, is a marker,  indicating that a constituent to its 
right contains a trace [1]. One can then say that the 
constituent in whose place the trace stands has been 
extraposed to the left, and, in its new position, is rep- 
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sentence --> noun_phrase, verb phrase. 

noun_phrase --> proper_noun. 
noun_phrase --> determiner, noun, re la t i ve .  
noun_phrase --> determiner, noun, prep_phrase. 
noun_phrase --> trace. 

trace --> [ ]. 

verb_phrase --> verb, noun_phrase. 
verb_phrase --> verb. 

re la t i ve  --> [ ]. 
re la t i ve  --> rel_pronoun, sentence. 

prep_phrase --> preposi t ion,  noun_phrase. 

Figure 4.1. CFG for relative clauses. 

(1) 

resented by the marker. For  instance, relative clauses 
are formed by a marker, which in the simpler cases is 
just a relative pronoun, followed by a sentence where 
some noun phrase has been replaced by a trace. This 
is represented in the following annotated surface struc- 
ture: 

The man that/  [sdohn met t i] is a grammarian. 

In this example, t stands for the trace, ' tha t '  is the 
surface form of the marker, and the connection be- 
tween the two is indicated by the common index i. 

The concept of left extraposition plays an essential 
role, directly or indirectly, in many formal descriptions 
of relative and interrogative clauses. Related to this 
concept,  there are several "global constraints",  the 
"island constraints",  that have been introduced to 
restrict the situations in which left extraposition can 
be applied. For instance, the Ross complex-NP con- 
straint [8], implies that any relative pronoun occurring 
outside a given noun phrase cannot  be bound to a 
trace occurring inside a relative clause which is a sub- 
constituent of the noun phrase. This means that it is 
not possible to have a configuration like 

Xl "" [np "'" [rel X2 [s "'" t2 "'" tl "'" 3] "'" ] 

Note that here I use the concept of left extraposi- 
tion in a loose sense, without relating it to transforma- 
tions as in transformational grammar. In XGs, and also 
in other formalisms for describing languages (for in- 
stance the context-free rule schemas of Gazdar  [5]), 
the notion of transformation is not used, but a concep- 
tual operation of some kind is required for instance to 
relate a relative pronoun to a "hole"  in the structural 
representat ion of the consti tuent following the pro- 
noun. 

4. Limitations of Other  Formalisms 

To describe a fragment of language where left ex- 
traposition occurs, one might start with a CFG which 
gives a rough approximation of the fragment.  The 
grammar may then be refined by adding arguments to 

f u l l  sentence --> sentence(ni l ) .  

sentence(HoleO) --> 
noun_phrase(HoleO,Holel), verb_phrase(Holel). 

noun_phrase(Hole,Hole) --> proper_noun. 
noun_phrase(Hole,Hole) --> 

determiner, noun, re la t i ve .  
noun_phrase(HoleO,Hole) --> 

determiner, noun, prep_phrase(HoleO,Hole). 
noun_phrase(trace,nil) --> trace. 

trace --> [ ] .  

verb_phrase(Hole) --> 
verb, noun_phrase(Hole,nil). 

verb_phrase(nil) --> verb. 

re la t i ve  --> [ ] .  
re la t i ve  --> 

rel_pronoun, sentence(trace). 

prep_phrase(HoleO,Hole) --> 
preposi t ion,  noun_phrase(HoleO,Hole). 

Figure 4.2. DCG for relative clauses. 

(2) 

non-terminals, to carry extraposed constituents across 
phrases. This method is analogous to the introduction 
of "der ived" rules by Gazdar  [5]. Take for example 
the CFG in Figure 4.1. In this grammar it is possible 
to use rule (1) to expand a noun phrase into a trace, 
even outside a relative clause. To prevent this, I will 
add arguments to all non-terminals from ~vhich a n o u n  
phrase might be extraposed. The modified grammar,  
now a DCG,  is given in Figure 4.2. A variable 
'Hole. . . '  will have the value ' t race '  if an extraposed 
noun phrase occurs somewhere to the right, 'nil '  other- 
wise. The parse tree of Figure 4.3 shows the variable 
values when the grammar of Figure 4.2 is used to ana- 
lyse the noun phrase "the man that John met".  

Intuitively, we either can see noun phrases moving 
to the left, leaving traces behind, or traces appearing 
from markers and moving to the right. In a phrase 
"noun  ph rase (Ho le l ,Ho le2 ) " ,  Ho le l  will have the 
value ' t race '  when a trace occurs somewhere to the 
right of the left end of the phrase. In that case, Hole2 
will be 'nil '  if the noun phrase contains the trace, 
' t race '  if the trace appears to the right of the right end 
of this noun phrase. Thus, rule (2) in Figure 4.2 speci- 
fies that a noun phrase expands into a trace if a trace 
appears from the left, and as this trace is now placed, 
it will not be found further to the right. 

The non-terminal 'relative'  has no arguments, be- 
cause the complex-NP constraint prevents noun phras- 
es from moving out of a relative clause. However,  that 
constraint does not apply to prepositional phrases, so 
' p r e p p h r a s e '  has arguments.  The non-terminal  
' sentence '  (and consequent ly  'verb phrase ' )  has a 
single argument, because in a relative clause the trace 
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noun_phrase(nt l ,nt l )  

determiner noun re la t ive 

re l_pronoun sentence (trace) 

noun_ p hrase (trace ,trace) 

I 
proper_noun 

the man that John 

ve rb_phra se ( t r ace )  

verb noun_phrase( t race,nt l )  

I 
t race 

I 
met [] 

Figure 4.3. DCG parse tree. 

must occur in the sentence immediately to the right of 
the relative pronoun. 

It is obvious that in a more extensive grammar,  

many non-terminals  would need extraposit ion argu- 
ments, and the increased complication would make the 

grammar larger and less readable. 

Colmerauer 's  MG formalism allows an alternative 
way to express left extraposition. It involves the use 
of rules whose left-hand side is a non-terminal  fol- 
lowed by a string of "dum my"  terminal symbols which 
do not occur in the input vocabulary. An example of 
such a rule is: 

r e l _ m a r k e r ,  [ t ]  - ->  r e l _ p r o n o u n .  

Its meaning is that 'rel pronoun '  can be analysed as a 

'rel marker '  provided that the terminal ' t '  is added to 
the front of the input remaining after the rule applica- 

tion. Subsequent rule applications will have to cope 

explicitly with such dummy terminals. This method 
has been used in several published grammars [2, 4, 7], 

but in a large grammar it has the same (if not worse) 

problems of size and clarity as the previous method. 
It also suffers from a theoretical problem: in general, 
the language defined by such a grammar will contain 

extra sentences involving the dummy terminals. For  
parsing, however, no problem arises, because the input 
sentences are not supposed to contain dummy termi- 

nals. These inadequacies of MGs were the main moti- 
vation for the development of XGs. 

5. In forma l  Descr ip t ion  of  X G s  

To describe left extraposition, we need to relate 
non-contiguous parts of a sentence. But neither DCGs  
nor MGs have means of representing such a relation- 
ship by specific grammar rules. Rather;  the relation- 
ship can only be described implicitly, by adding extra 
information to many unrelated rules in the grammar. 
That is, one cannot  look at a grammar and find a set 
of rules specific to the constructions which involve left 
extraposition. 

With extraposition grammars, I attempt to provide 
a formalism in which such rules can be written. 

In this informal introduction to the XG formalism, 
I will avoid the extra complications of non-terminal  
arguments. So, in the discussion that follows, we may 
look at XGs as an extension of CFGs.  

Sometimes it is easier to look at grammar rules in 
the left-to-right, or synthesis, direction. I will say then 
that a rule is being used to expand or rewrite a string. 
In other cases, it is easier to look at a rule in the right- 
to-left, or analysis, direction. I will say then that the 
rule is being used to analyse a string. 

Let  us first look at the following XG fragment: 

sentence - ->  noun_phrase,  ve rb_ph rase .  

noun phrase - ->  d e t e r m i n e r ,  noun,  r e l a t i v e .  

noun_phrase - ->  t r a c e .  

r e l a t i v e  - ->  [ ] .  

r e l a t i v e  - ->  re l  marker ,  sen tence .  

r e l _ m a r k e r  . . .  t r a c e  - ->  r e l _ p r o n o u n .  
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the mouse 

the 

rel_marker the cat chased trace 

mouse  r e l _ p r o n o u n  the  cat  c h a s e d  

squeaks 

squeaks 

Figure 5.1. Applying an XG rule. 

Al l  rules  bu t  the  las t  a re  con t ex t - f r ee .  The  las t  rule  
~xpresses  the  e x t r a p o s i t i o n  in s imple  re la t ive  c lauses .  
I t  s ta tes  tha t  a re la t ive  p r o n o u n  is to be  a n a l y s e d  as a 
m a r k e r ,  f o l l o w e d  b y  s o m e  u n k n o w n  c o n s t i t u e n t s  
( d e n o t e d  by  ' . . . ' ) ,  f o l l owed  by  a t race .  This  is s h o w n  
in F igu re  5.1. As  in the  D C G  e x a m p l e  of  the  p rev ious  
sec t ion ,  the  e x t r a p o s e d  noun  ph ra se  is e x p a n d e d  in to  a 
t race .  H o w e v e r ,  i n s t e a d  of  the  t r ace  be ing  r e w r i t t e n  
in to  the  e m p t y  s t r ing,  the  t race  is used  as pa r t  of  the  
ana lys i s  of  ' re l  m a r k e r ' .  

The  d i f f e r ence  b e t w e e n  X G  rules  and  D C G  rules  is 
t hen  tha t  the  l e f t - h a n d  side of  an X G  rule m a y  con t a in  
seve ra l  symbols .  W h e r e  a D C G  rule is seen  as ex-  
p ress ing  the e x p a n s i o n  of  a s ingle n o n - t e r m i n a l  in to  a 
s t r ing,  an  X G  rule is seen  as expanding together severa l  
n o n - c o n t i g u o u s  symbo l s  in to  a str ing.  M o r e  p rec i se ly ,  
an X G  rule has  the  gene ra l  fo rm 

s 1 . . . s  2 etc.  Sk_ 1 . . . s  k --> r. (3) 

H e r e  each  segment  s i ( s e p a r a t e d  f rom o t h e r  s egmen t s  
by  ' . . . ' )  is a s equence  of  t e rmina l s  and  n o n - t e r m i n a l s  
(wr i t t en  in D C G  no ta t ion ,  wi th  ' , '  for  c o n c a t e n a t i o n ) .  
The  f irst  s y m b o l  in s 1, the  leading symbol ,  is r e s t r i c t e d  
to  be  a non - t e rmina l .  The  r i g h t - h a n d  side r is as in a 
D C G  rule.  

L e a v i n g  as ide  the  cons t r a in t s  d i scussed  in the  nex t  
sec t ion ,  the  m e a n i n g  of  a rule  l ike (3)  is t ha t  any  se-  
quence  of  symbo l s  of  the  fo rm 

SlXqS2X 2 etc.  s k _ q X k _ l S  k 

with  a r b i t r a r y  xi 's ,  can  be  r e w r i t t e n  in to  r x q x 2 . . . x  k_  1. 

T h i n k i n g  p r o c e d u r a l l y ,  one  can  say  tha t  a n o n -  
t e rmina l  m a y  be  e x p a n d e d  b y  m a t c h i n g  it to  the  l ead -  
ing s y m b o l  on  the  l e f t - h a n d  side of  a rule,  and  the  res t  
of  the  l e f t - h a n d  s ide  is " p u t  a s i d e "  to  wa i t  for  the  
de r i va t i on  of  symbo l s  which  m a t c h  each  of  i ts symbo l s  
in sequence .  This  s equence  of  symbo l s  can  be  in t e r -  
r u p t e d  by  a r b i t r a r y  s t r ings ,  p a i r e d  to  the  o c c u r r e n c e s  
of  ' . . . '  on  the  l e f t - h a n d  side of  the  rule.  

6. XG D e r i v a t i o n s  

W h e n  severa l  X G  rules  a re  invo lved ,  the  d e r i v a t i o n  
of  a su r face  s t r ing b e c o m e s  more  c o m p l i c a t e d  t han  in 
the  s ingle  rule  e x a m p l e  of  the  p r e v i o u s  sec t ion ,  b e -  
cause  rule a p p l i c a t i o n s  i n t e r ac t  in the  w a y  now to be  

desc r ibed .  

To r e p r e s e n t  the  i n t e r m e d i a t e  s tages  in an X G  de-  

r iva t ion ,  I will  use  bracketed  strings, m a d e  up of  

• t e r m i n a l  symbo l s  

• n o n - t e r m i n a l  s y m b o l s  

• the  open bracket  < 

• the  close bracket  > 

A b r a c k e t e d  s t r ing  is balanced if the  b r a c k e t s  in it  
b a l a n c e  in the  usual  way.  

Now,  an  X G  rule  

u 1 . . . u  2. .. etc . . . .  u n --> v. 

can  be  a pp l i e d  to b r a c k e t e d  s t r ing  s if 

s = xOUlXlU 2 etc.  Xn_qUnX n 

and  each  of  the  gaps x 1 . . . . .  Xn-1  is ba l anced .  The  
subs t r i ng  of  s b e t w e e n  x 0 and  x n is the  span of the  
rule app l i ca t ion .  The  a p p l i c a t i o n  r ewr i t e s  s in to  new 
s t r ing  t, r ep l ac ing  Ul b y  v f o l l o w e d  b y  n-1 open  b r a c k -  
ets ,  and  r ep l ac ing  each  of  u 2 . . . . .  u n by  a c lose  b r a c k -  
et ;  in shor t ,  s is r e p l a c e d  b y  

x 0 v < <  ... < x  1 > x 2 >  ... Xn_ l > x  n 

The  r e l a t i on  b e t w e e n  the  or ig ina l  s t r ing s and  the  
de r i ve d  s t r ing  t is a b b r e v i a t e d  as s = >  t. In  the  new 
s t r ing  t, the  subs t r i ng  b e t w e e n  x 0 and  x n is the  result 
of  the  app l i ca t ion .  In  pa r t i cu la r ,  the  a p p l i c a t i o n  of  a 
rule  wi th  a s ingle s e gme n t  in i ts l e f t - h a n d  side is no 
d i f f e r en t  f rom w h a t  it  w o u l d  be  in a t y p e - 0  g rammar .  

T a k i n g  aga in  the  rule 

re l_marker . . .  t race  - ->  rel_pronoun. 

i ts  a p p l i c a t i o n  to  

re l  marker John likes t race  

p r o d u c e s  

rel_pronoun < John likes > 

A f t e r  this  rule app l i ca t i on ,  it is no t  pos s ib l e  to  a p p l y  
any  rule wi th  a s e g m e n t  m a t c h i n g  ins ide  a b r a c k e t e d  
p o r t i o n  and  a n o t h e r  s e g m e n t  m a t c h i n g  ou t s ide  it. The  
use of  the  a b o v e  rule has  d iv ided  the  s t r ing in to  two  
i so l a t ed  po r t i ons ,  each  of  which  mus t  be  i n d e p e n d e n t l y  
e x p a n d e d .  

G i v e n  an  X G  wi th  in i t ia l  s y m b o l  s, a s e n t e n c e  t is 
in the  l anguage  d e f i n e d  by  the  X G  if the re  is a se-  
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a S  bs 

a S  

a s  

[] 

bs 

~x b "I~ 

J x c  

bs 

[] 

CS 

CS 

i X C  l a  

Conventions: 

o =  rule appl icat ion 

( n o d e )  

x = n o n - t e r m i n a l  

x = t e r m i n a l  

[ ] =  emptg  s t r ing  

c s  

[] 

a a b b c c 

Figure 7.1. Derivation graph for "aabbcc". 

quence of rule applications that transforms s into a 
string from which t can be obtained by deleting all 
brackets. 

I shall refer to the restrictions on XG rule applica- 
tion which I have just described as the bracketing 
constraint. The effect of the bracketing constraint is 
independent of the order of application of rules, be- 
cause if two rules are used in a derivation, the brack- 
ets introduced by each of them must be compatible in 
the way described above. As brackets are added and 
never deleted, it is clear that the order of application 
is irrelevant. For  similar reasons, any two applications 
in a derivation where the rules involved have more 
than one segment in their left-hand sides, one and only 
one of the two following situations arises: 

• the span of neither application intersects the result 
of the other; 

• the result of one of the applications is contained 
entirely in a gap of the other application - the ap- 
plications are nested. 

If one follows to the letter the definitions in this 
section, then checking, in a parsing procedure, whether 
an XG rule may be applied, would require a scan of 
the whole intermediate string. However,  we will see in 
Section 10 that this check may be done "on  the f ly" 
as brackets are introduced, with a cost independent of 
the length of the current intermediate string in the 
derivation. 

7. D e r i v a t i o n  Graphs  

In the same way as parse trees are used to visualise 
context-free derivations, I use derivation graphs to 
represent XG derivations. 

In a derivation graph, as in a parse tree, each node 
corresponds to a rule application or to a terminal sym- 
bol in the derived sentence, and the edges leaving a 
node correspond to the symbols in the right-hand side 
of that node 's  rule. In a derivation graph, however,  a 
node can have more than one incoming edge - in fact, 
one such edge for each of the symbols on the left- 
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hand side of the rule corresponding to that node. Of 
these edges, only the one corresponding to the leading 
symbol  is used to define the left- to-right order of the 
symbols in the sentence whose derivation is represent-  
ed by the graph. If one deletes from a derivation graph 
all except  the first of the incoming edges to every 
node, the result is a tree analogous to a parse tree. 

For  example,  Figure 7.1 shows the derivation graph 
for the string " a a b b c c "  according to the XG: 

S - - >  a s ,  b s ,  cs .  

as - - >  [ ] .  

as . . .  xb  - - >  [ a ] ,  a s .  

bs - - >  [ ] .  

bs . . .  x c  - - >  x b ,  [ b ] ,  bs .  

cs - - >  [ ] .  

CS - -> XC, [C ] ,  CS. 

This X G  defines the language formed by the set of all 
strings 

anbncn for n_> 0. 

The example shows, incidentally, that  XGs,  even with- 
out arguments,  are strictly more powerful  than CFGs,  
since the language described is not context-free.  

The topology of derivation graphs reflects clearly 
the bracket ing constraint .  Assume the following two 
convent ions  for  the drawing of a der ivat ion graph, 
which are followed in all the graphs shown here: 

• the edges entering a node are ordered clockwise 
following the sequence of the corresponding sym- 
bols in the lef t-hand side of the rule for that node; 

• the edges issuing f rom a node are ordered counter-  
clockwise following the sequence of the corre-  
sponding symbols in the right-hand side of the rule 
for the node. 

Then the derivation graph obeys the bracketing const-  
raint if and only if it can be drawn, following the con- 
ventions, without any edges crossing. 1 The example of 
Figure 7.2 shows this clearly. In this figure, the closed 
path  formed by edges 1, 2, 3, and 4 has the same ef- 
fect  as a matching pair of brackets  in a b racke ted  
string. 

It  is also worth noting that  nested rule applications 
appear  in a derivation graph as a configuration like the 
one depicted in Figure 7.3. 

8. X G s  and Lef t  E x t r a p o s i t i o n  

We saw in Figure 4.2 a D C G  for (some) relative 
clauses. The X G  of Figure 8.1 describes essentially 
the same language fragment ,  showing how easy it is to 
describe left extraposit ion in an XG. In that grammar,  
the sentence 

1 In some of the examples of this article, edges cross to make 
the graphs more readable, but such crossings could be trivially 
avoided. 

5 - - >  a ,  b ,  c ,  

a . . .  c - - >  [ x ] .  

b ... d - - >  [g ] .  

d. 

s 

a b c d 

x y 

S -~> 

S -T_> 

a b c d => x < b > d => ? (blocks) 

a b c d = >  a g < c > = >  ? 

Figure 7.2. Relating derivations to derivation graphs. 

Figure 7.3. Nested rule applications. 

The mouse that the cat chased squeaks. 

has the derivation graph shown in Figure 8.2. The left 
extraposi t ion implicit in the structure of the sentence 
is represented in the derivation graph by the applica- 
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S 

det  n o u n  re l  

rE 

r s 

I e-.----- 

lp 

np vp 

det  noun re l  v e r b  

+ i ° 
[] t 

T 
v e r b  

d e t  

np 

r 

re[  

r e lp  

5 

t 

vp 

= determiner 

= noun_phrase 
= r e I _ m a r k e r  

= r e l a t i v e  

= r e l _ p r o n o u n  

= s e n t e n c e  

= trace 

= verb_phrase 

the  mouse  that  the  cat  c h a s e d  squeaks  

Figure 8.2. Example of derivation graph for the XG in Figure 8.1. 

sentence --> noun_phrase, verb_phrase.  

noun_phrase - ->  proper_noun. 
noun_phrase - ->  de terminer ,  noun, r e l a t i v e .  
noun_phrase - ->  de terminer ,  noun, prep_phrase. 
noun_phrase - ->  t race .  

verb_phrase - ->  verb,  noun_phrase. 
verb_phrase - ->  verb.  

r e l a t i v e  - -> [ ] .  
r e l a t i v e  - ->  re ]  marker,  sentence. 

re l_marker  . . .  t race  - ->  re l_pronoun.  

prep_phrase - ->  p r e p o s i t i o n ,  noun_phrase. 

Figure 8.1. XG for relative clauses. 

(4) 

tion of the rule for ' re l__marker ' ,  at the node marked 
(*) in the figure. One can say that the left extraposi-  
tion has been  " r eve r sed"  in the derivation by the use 
of this rule, which may be looked at as repositioning 
' t r ace '  to the right, thus " revers ing"  the extraposi t ion 
of the original sentence.  

In the rest of this paper ,  I of ten refer  to a consti tu- 
ent being repositioned into a bracketed  string (or into a 
f ragment  of der ivat ion graph) ,  to mean  that  a rule 
having that  const i tuent  as a non-leading symbol  in the 
le f t -hand side has been  applied,  and the symbol  
matches  some symbol  in the string (or corresponds  to 
some edge in the f ragment) .  For  example,  in Figure 
8.2 the trace ' t '  is reposi t ioned into the subgraph with 
root  's ' .  

9. Using the Bracketing Constraint 

In the example  of Figure 8.2, there is only one 
application of a n o n - D C G  rule, at the place marked  
(*). However ,  we have seen that  when a derivat ion 
contains several applications of such rules, the applica- 
tions must obey  the bracket ing constraint .  The use of 
the constraint  in a g rammar  is be t ter  explained with an 
example.  F rom the sentences 

The mouse squeaks. 

The cat  l i k e s  f i s h .  

The cat  chased the mouse. 
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S 

det  noun t e l  

the mouse 

r s 

det  noun re l  

r s 

r e lp  

I 
tha t  the 

+ 
t 

relp 

- - I  ~ l  ~ 

eat  that  c h a s e d  

verb np 

t 

likes 

verb np 

det  noun 
I 

[1 

Fish 

vp 

verb 

tel 

[] 

squeaks 

Figure 9.1. Violat ion of the complex-NP constraint .  

the g rammar  of Figure 8.1 can derive the following 
string, which violates the complex-NP constraint: 

* The mouse t h a t  the ca t  t h a t  chased l i k e s  f i s h  squeaks.  

The der ivat ion of this ungrammat ica l  string can be 
be t te r  unders tood  if we compare  it with a sentence  
outside the fragment:  

The mouse, t h a t  the  ca t  which chased i t  l i k e s  f i s h ,  

squeaks.  

where the pronoun ' i t '  takes the place of the incorrect 
trace. 

The derivation graph for that un-English string is 
shown in Figure 9.1. In the graph, (*) and (**) mark 
two nested applications of the rule for 'rel marker ' .  
The string is un-English because the higher ' re lat ive '  
(marked  ( + )  in the graph)  binds a trace occurring 
inside a sentence which is par t  of the subordina ted  
'noun___.phrase' ( +  +) .  

Now, using the bracket ing constraint  one can neat-  
ly express the complex-NP constraint.  It  is only neces- 

sary to change the second rule for ' re lat ive '  in Figure 
8.1 to 

r e l a t i v e  - ->  open, r e l _ m a r k e r ,  sen tence ,  c l ose .  (5) 

and add the rule 

open . . .  c l ose  - ->  [ ] .  (6)  

With this modified grammar,  it is no longer possible to 
violate the complex-NP constraint,  because no constit-  
uent  can be reposi t ioned f rom outside into the gap 
created by the application of rule (6) to the result of 
applying the rule for relatives (5). 

The non-terminals  ' open '  and 'c lose '  bracket  a sub- 
derivation 

. . .  open X c lose  . . .  => < X > . . .  

prevent ing any const i tuent  f rom being reposi t ioned 
f rom outside that  subder ivat ion  into it. Figure 9.2 
shows the use of rule (6) in the derivation of the sen- 
tence 

The mouse t h a t  the  ca t  t h a t  l i k e s  f i s h  chased squeaks.  

This is based on the same three simple sentences as 
the ungrammat ica l  string of Figure 9.1, which the 
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d e t  noun 

open 

t e l  

s 
__....----,0---.---_. 

det noun "-"--"T'el 

the mouse 

open r s 

[] 

t / 
:[p 

J 

that the cat thal ttke~ 

verb 

det noun rel  

verb 

C l o s e  

[] 

_ _ _ _ _ . _ i !  

J 

l J  

Fish chased 

cl, 

i 
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J 

vp 

verb 

pse 

squeaks 

Figure 9.2. Implementation of the complex-NP constraint. 

reader  can now try to derive in the modified grammar,  
to see how the bracket ing constraint  prevents  the de- 
rivation. 

10. XGs  as Logic Programs 

In the previous sections, I avoided the complicat ion 
of non-terminal  arguments.  Although it would be pos- 
sible to describe fully the operat ion of XGs  in terms of 
derivations on bracketed strings, it is much simpler to 
complete  the explanation of XGs  using the translation 
of X G  rules into definite clauses. In fact,  a rigorous 
defini t ion of X G s  independent ly  of definite clauses 
would require a formal  apparatus  very similar to the 
one needed to formalise defini te clause p rograms  in 
the first place, and so it would fall outside the scope 
of the present  paper.  The interested reader  will find a 
full discussion of those issues in two articles by Col-  
merauer  [2,3]. 

Like a D C G ,  a general X G  is no more than a con- 
venient  notat ion for  a set of definite clauses. An X G  
non-terminal  of arity n corresponds to an n + 4  place 
predicate  (with the same name) .  Of  the extra  four  
arguments ,  two are used to represent  string positions 
as in DCGs ,  and the other  two are used to represent  
positions in an extraposition list, which carries symbols 
to be reposit ioned.  

Each e lement  of the extraposi t ion list represents  a 
symbol  being reposi t ioned as a 4-tuple 

x(context, type, symbol, xlist) 

where context is either 'gap ' ,  if the symbol  was preced-  
ed by ' . . . '  in the rule where it originated, or 'nogap ' ,  if 
the symbol  was preceded by ' , ' ;  type may be ' te rminal '  
or 'nonterminal ' ,  with the obvious meaning;  symbol is 
the symbol  proper;  xlist is the remainder  of  the extra-  
posit ion list (an empty  list being represented  by  '[ ] ') .  
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An XG rule is translated into a clause for the pred- 
icate corresponding to the leading symbol of the rule. 
In the case where the XG rule has just a single symbol 
on the left-hand side, the translation is very similar to 
that of DCG rules. For example, the rule 

sentence --> noun_phrase, verbphrase. 

translates into 

sentence(S0,S,X0,X) : -  

noun_phrase(S0,S1 ,X0 ,Xl ) ,  

verb_phrase(S1 ,S,Xl ,X). 

A terminal t in the right-hand side of a rule translates 
into a call to the predicate ' terminal ' ,  defined below, 
whose role is analogous to that of 'connects '  in DCGs. 
For example, the rule 

rel_pronoun --> [ that ]  . 

translates into 

re]_pronoun (S0,S,X0,X) : -  

terminal (that ,SO ,S ,XO ,X ). 

The translation of a rule with more than one symbol in 
the left-hand side is a bit more complicated. Informal- 
ly, each symbol after the first is made into a 4-tuple as 
described above, and fronted to the extraposition list. 
Thus, for example, the rule 

rel_marker . . .  trace --> rel_pronoun. 

translates into 

rel_marker(SO,S,XO,x(gap,nonterminal ,trace,X)) :- 
rel_pronoun ( SO, S, XO, X ). 

Furthermore,  for each distinct non-leading non-  
terminal nt (with arity n) in the left-hand side of a rule 
of the XG, the translation includes the clause 

n/(Vl . . . . .  Vn,S,S,XO,X) :-  

v i r tua l  (n/(Vl . . . . .  Vn) ,XO,X). 

where 'vir tual(C,X0,X) ' ,  defined later, can be read as 
"C is the constituent between X0 and X in the extra- 
position list", and the variables Vi transfer the argu- 
ments of the symbol in the extraposition list to the 
predicate which translates that symbol. 

For example, the rule 

marker(Var), [ the] . . .  [of.whom], trace(Var) --> 
[whose]. 

which can be used in a more complex grammar of 
relative clauses to transform "whose X" into " the X of 
whom",  corresponds to the clauses: 

marker(Var,SO,S,XO, 
x ( nogap, terminal,  the, 
x(gap,terminal ,of ,  
x(nogap ,terminal ,whom, 
x(nogap,nonterminal , trace(Var), 
x ) ) ) )  ) : -  

termi hal (whose ,SO, S ,XO, X ). 

trace(Var,S,S,XO,X) :- v ir tual( trace(Var),XO,X). 

Finally, the two auxiliary predicates 'virtual '  and 
' terminal '  are defined as follows:- 

v i r tua l (NT,  x(C,nonterminal,NT,X), X). 

terminal(T,  SO, S, X, X) : -  
gap(X), connects(SO, T, S). 

terminal(T,  S, S, x(C, terminal ,T,X) ,  X). 

gap(x(gap,T,S,X)). 
gap([ ] ) .  

where 'connects '  is as for DCOs.  

These definitions need some comment.  The first 
clause for ' terminal '  says that, provided the current 
extraposition list allows a gap to appear in the deriva- 
tion, terminal symbol T may be taken from the posi- 
tion SO in the source string, where T connects SO to 
some new position S. The second clause for ' terminal '  
says that if the next symbol in the current extraposi- 
tion list is a terminal T, then this symbol can be taken 
as if it occurred at S in the source string. The clause 
for 'virtual '  allows a non-terminal  to be "read off 
f rom" the extraposition list. 

* re lat ive(6,9,X,X) 
* open(6,6,x(gap,nt , t race,x(gap,nt ,c lose, [ ] ) ) ,  

x(gap,nt ,c lose,x(gap,nt , t race,  
x (gap,n t ,c lose , [ ] ) ) ) )  

* rel_marker(6,7,x(gap,nt,c lose,x(gap,nt, t race, 
x(gap,nt,close 
x(gap,nt, trace 
x(gap,nt, trace 

rel_pronoun(6,7,X 
[ that ]  

sentence(7,9,x(gap 
x(gap,nt, trace 
x(gap,nt,close 

, [ ] ) ) ) ,  
,x(gap,nt,close, 
, x (gap ,n t ,c lose , [ ] ) ) ) ) )  
,X) 

,n t , t race,x(gap,nt ,c lose,  
, x (gap ,n t , c lose , [ ] ) ) ) ) ,  
,x(gap,nt , t race, 

x (gap,n t ,c lose , [ ] ) ) ) )  
* noun_phrase(7,7,x(gap,nt,trace,x(gap,nt,close, 

x (gap,n t , t race ,x (gap,n t ,c lose , [ ] ) ) ) ) ,  
x(gap,nt ,c lose,x(gap,nt , t race, 
x (gap,n t ,c lose , [ ] ) ) ) )  

* t race(7,7,x(gap,nt , t race,x(gap,nt ,c lose,  
x (gap,n t , t race ,x (gap,n t ,c lose , [ ] ) ) ) ) ,  
x(gap,nt ,c lose,x(gap,nt , t race,  
x (gap,n t ,c lose , [ ] ) ) ) )  

* verb_phrase(7,9,X,X) 
* verb(7,8,X,X) 

[ l i kes ]  
* noun_phrase(8,9,X,X) 
* determiner(8,8,X,X) 
* noun(8,9,X,X) 

[ f i sh ]  
* re lat ive(9,9,X,X) 
* c lose(9,9,x(gap,nt ,c lose,x(gap,nt , t race,  

x (gap ,n t ,c lose , [ ] ) ) ) ,  
x (gap,n t , t race,x(gap,n t ,c lose, [ ] ) ) )  

Figure 10.1. Derivation of " that  likes fish". 

Figure 10.1 shows a fragment of the analysis in 
Figure 9.2, but now in terms of the translation of XG 
rules into definite clauses. Points on the sentence are 
labelled as follows: 
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the mouse that the cat that l ikes f ish chased squeaks 

I 2 3 4 5 6 7 8 9 10 11 

The nodes of the analysis fragment ,  for the relative 
clause " tha t  likes fish",  are represented by the corre-  
sponding goals, indented in p ropor t ion  to their dis- 
tance f rom the root of the graph. The following con- 
ventions are used to simplify the figure: 

• The leaves ( terminals)  of the graph are listed 
directly; 

• the values of the ext raposi t ion a rguments  are 
explictly represen ted  only for  those goals that  
add or delete something to the extraposi t ion list; 
for the other goals, the two identical values are 
represented by the variable 'X ' ;  

• the goals for ' terminal '  and 'vir tual '  are left out 
as they can be easily recons t ruc ted  f rom the 
other goals and the definitions above;  

• 'nonterminal '  is abbrevia ted  as 'n t ' .  

The definite clause p rogram cor responding  to the 
grammar  for this example is listed in Appendix  II. 

The example  shows clearly how the bracket ing  
constraint  works. Symbols are placed in the extraposi-  
tion list by rules with more than one symbol  in the 
lef t -hand side, and removed by calls to 'vir tual ' ,  on a 
f irst- in-last-out  basis; that  is, the extraposi t ion list is a 
stack. But this proper ty  of the extraposi t ion list is 
exact ly  what  is needed to balance  " o n  the f ly"  the 
auxiliary brackets  in the intermediate steps of a deri- 
vation. 

Being no more than a logic program,  an X G  can be 
used for analysis and for synthesis in the same way as 
a DCG.  For  instance, to determine whether  a string s 
with initial point initial and final point final is in the 
language defined by the X G  of Figure 8.1, one tries to 
prove the goal s ta tement  

?-sentence(initial, final,[ 3,[ 3). 

As for DCGs,  the string s can be represented in sever-  
al ways. If it is represented as a list, the above goal 
would be written 

?-sentence(s,[ ] , [  ] , [  ]) .  

The last two arguments  of the goal are '[ ]' to mean 
that  the overall  ext raposi t ion  list goes f rom '[ ] '  to 
'[ ]'; i.e., it is the empty  list. Thus, no const i tuent  can 
be reposi t ioned into or out of the top level ' sentence ' .  

11. C o n c l u s i o n s  and Further W o r k  

In this paper  I have p roposed  an extension of 
DCGs.  The motivat ion for this extension was to pro-  
vide a simple formal  device to describe the structure of 
such important  natural  language construct ions as rela- 
tive clauses and interrogative sentences. In t ransforma-  
tional grammar,  these constructions have usually been  
analysed in terms of left extraposit ion,  together  with 
global constraints,  such as the complex-NP constraint ,  

which restrict the range of the extraposit ion.  Global  
constraints are not explicit in the g rammar  rules, but 
are given externally to be enforced across rule applica- 
tions. These external  global constraints  cause theoret -  
ical difficulties, because the formal  propert ies  of the 
resulting systems are far f rom evident,  and practical  
difficulties, because  they lead to obscure  g rammars  
and prevent  the use of any reasonable  parsing algor- 
ithm. 

DCGs ,  although they provide the basic machinery  
for  a clear descr ipt ion of languages and their  s truc-  
tures, lack a mechanism to describe simply left extra-  
posi t ion and the associa ted  restr ict ions.  M G s  can 
express the rewrite of several symbols  in a single rule, 
but the symbols must  be contiguous, as in a type-0  
g rammar  rule. This is still not enough to describe left 
ex t rapos i t ion  without  compl ica t ing the rest  of  the 
grammar.  XGs  are an answer to those limitations. 

An X G  has the same fundamenta l  p rope r ty  as a 
D C G ,  that  it is no more  than a convenient  notat ion 
for the clauses of an ordinary logic program. X G s  and 
their  t ransla t ion into defini te clauses have  been  de- 
signed to meet  three requirements:  (i) to be a princi- 
pled extension of DCGs ,  which can be in terpreted as a 
g rammar  formal ism independent ly  of  its t ransla t ion 
into definite clauses; (ii) to provide for simple descrip- 
t ion of left extraposi t ion and related restrictions; (iii) 
to be comparable  in efficiency with DCGS when exec- 
uted by P R O L O G .  It  turns out that  these requirements  
are not contradictory,  and that  the resulting design is 
extremely simple. The restrictions on extraposi t ion are 
natural ly  expressed  in te rms of scope,  and scope is 
expressed in the formalism by "bracke t ing  ou t "  sub- 
derivat ions cor responding  to ba lanced  strings. The 
notion of bracketed  string derivat ion is int roduced in 
order  to describe ext rapos i t ion  and bracke t ing  inde- 
pendent ly  of  the t ransla t ion of X G s  into logic pro-  
grams. 

Some questions about  X G s  have not been tackled 
in this paper.  First, f rom a theoretical  point  of view it 
would be necessary to complete  the independent  char-  
acterisat ion of XGs  in terms of bracketed  strings, and 
show rigorously that  the translat ion of X G s  into logic 
programs correct ly renders this independent  character-  
isation of the semantics of XGs.  As pointed out be-  
fore, this formalisat ion does not offer  any substantial  
problems.  

Next,  it is not clear whether  XGs  are as general as 
they could be. For  instance,  it might be possible to 
extend them to handle right extraposi t ion of consti tu- 
ents, which, al though less common  than left extraposi-  
tion, can be used to describe quite f requent  English 
constructions,  such as the gap be tween  head noun and 
relative clause in: 

What f i l e s  are there that were created today? 
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It  may  however  be possible to describe such situations 
in terms of left extraposi t ion of some other consti tuent  
(e.g. the verb  phrase " a r e  t he re"  in the example  
above).  

Finally, I have been looking at what  t rans forma-  
tions should be applied to an X G  developed as a clear 
description of a language, so that the resulting gram- 
mar  could be used more efficiently in parsing. In par-  
ticular, I have been trying to generalise results on det- 
erministic parsing of con tex t - f ree  languages into ap-  
propriate  principles of t ransformation.  
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Appendix I. Translating XGs 

The following P R O L O G  program (for the D E C - 1 0  
P R O L O G  system) defines a predicate ' g rammar(F i le ) '  
which translates and stores the X G  rules contained in 
File. The symbol ' ' as a predicate or functor  argu- 
ment  denotes an " a n o n y m o u s "  variable, i.e. each such 
occurrence stands for a separate  variable with a single 
occurrence. 

% Def in i t ion of the grammar rule operators 

• - op(1OO1,xfy,( . . . )) .  
• - op(t2OO,xfx,(-->)). 

% Process the XG in Fi le 

grammar(File) :- 
seeing(Old), 
see(Fi le) ,  
consume, 
seen, 
see(Old). 

% Loop unt i l  end of f i l e  

consume :- 
repeat, 

read(X), 
( X=end of f i l e ,  !; 

process(X), 
fa i l  ). 

% Process a grammar rule 

process((L-->R)) :- !, 
expandlhs(L,SO,S,HO,H,P), 
expandrhs(R,SO,S,HO,H,Q), 
assertz((P :- Q)), !. 

% Execute a command 

process(( :- G)) :- !, 
G. 

% Store a normal clause 

process((P :- Q)) :- 
assertz((P :- Q)). 

% Store a uni t  clause 

process(P) :- 
assertz(P). 

% Translate an XG rule 
% Translate the left-hand side 

expandlhs(T,SO,S,HO,HI,Q) :- 
f l a t t e n ( T , [ P I L ] , [ ] ) ,  
f ront(L,HI ,H),  
tag(P,SO,S,HO,H,Q). 

f la t ten((X. . .Y) ,LO,L)  :- !, 
f lat ten(X,LO,[gapl  L I ] ) ,  
f l a t ten (Y ,L I ,L ) .  

f lat ten((X,Y),LO,L) :- !, 
f latten(X,LO,[nogap I L I ] ) ,  
f l a t ten (Y ,L I ,L ) .  

f l a t t e n ( X , [ X l L ] , L ) .  

f ront ( [ ] ,H,H) .  
f ront( [K,X I L],HO,H) :- 

case(X,K,HI,H), 
front(L,HO,H1). 

case([TITs],K,HO,x(K,terminal,T,H)) :- !, 
unwind(Ts,HO,H). 

case(Nt,K,H,x(K,nonterminal,Nt,H)) :- 
v i r tua l_ ru le (Nt ) .  

% Create the clause 
% Nt(S,S,XO,X) :- virtual(Nt,XO,X) 
% for extraposed symbol Nt 

v i r tua l  rule(Nt) :- 
functor(Nt,F,N), 
functor(Y,F,N), 
tag(Y,S,S,Hx,Hy,P), 

( c lause(P,v i r tual(  , , ), ), !; 
asserta((P :- v i r tual(Y,Hx,Hy)))  ). 

% Translate the right-hand side 

expandrhs((XI,X2),SO,S,HO,H,Y) :- !, 
expandrhs(XI,SO,SI,HO,HI,Y1), 
expandrhs(X2,SI,S,HI,H,Y2), 
and(YI,Y2,Y). 

expandrhs((X1;X2),SO,S,HO,H,(Y1;Y2)) :- !, 
expandor(X1,SO,S,HO,H,Y1), 
expandor(X2,SO,S,HO,H,Y2). 

expandrhs({X},S,S,H,H,X) :- . 
expandrhs(L,SO,S,HO,H,G) :- i s l i s t ( L ) ,  !, 

expandlist(L,SO,S,HO,H,G). 
expandrhs(X,SO,S,HO,H,Y) :- 

tag(X,SO,S,HO,H,Y). 

expandor(X,SO,S,HO,H,Y) :- 
expandrhs(X,SOa,S,HOa,H,Ya), 

( S\==SOa, !, SO=SOa, Yb=Ya; and(SO=SOa,Ya,Yb) ), 
( H\==HOa, !, HO=HOa, Y=Yb; and(HO=HOa,Yb,Y) ). 

expandl is t ( [ ] ,S,S,H,H,t rue).  
expandlist([X],SO,S,HO,H,terminal(X,SO,S,HO,H) ) :- !. 
expandlist([XIL],SO,S,HO,H, 
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(terminal(X,SO,SI,HO,H1),Y)) :- 
expandlist(L,S1,S,HI,H,Y). 

tag(P,AI,A2,A3,A4,Q) :- 
P=..[FIArgsO], 
conc(ArgsO,[AI,A2,A3,A4],Args), 
Q=..[FIArgs]. 

and(true,P,P) :- !. 
and(P,true,P) :- !. 
and(P,Q,(p,Q)). 

i s l i s t ( [  I ])- 
i s l i s t ( [ ] ) .  

unwind([],H,H) :- !. 
unwind([TITs],HO,x(nogap,terminal ,T,H)) 

unwind(Ts,HO,H). 

conc([],L,L) :- !. 
conc([XlL1] ,L2, [XIL3])  :- 

conc(LI,L2,L3). 

A p p e n d i x  II. Def in i te  c lauses for the  g r a m m a r  
used in Figure 9.2 

sentence(SO,S,XO,X) :- 
noun_phrase(SO,Sl,XO,X1), 
verb_phrase(SI,S,X1,X). 

noun_phrase(SO,S,XO,X) :- 
proper_noun(SO,S,XO,X). 

noun_phrase(SO,S,XO,X) :- 
determiner(SO,SI,XO,Xl), 
noun(S1,S2,X1,X2), 
relative(S2,S,X2,X). 

noun_phrase(SO,S,XO,X) :- 
determiner(SO,S1,XO,Xl), 
noun(SI,S2,XI,X2), 
prep_phrase(S2,S,X2,X). 

noun_phrase(SO,S,XO,X) :- 
trace(SO,S,XO,X). 

verb_phrase(SO,S,XO,X) :- 
verb(SO,Sl,XO,X1), 
noun_phrase(SI,S,Xl,X). 

verb_phrase(SO,S,XO,X) :- 
verb(SO,S,XO,X). 

relative(SO,SO,X,X). 
relative(SO,S,XO,X) :- 

open(SO,Sl,XO,Xl), 
rel_marker(Sl,S2,Xl,X2), 
sentence(S2,S3,X2,X3), 
close(S3,S,X3,X). 

trace(SO,SO,XO,X) :- 
virtual(trace,XO,X). 

rel_marker(SO,S,XO,x(gap,nonterminal,trace,X)) :- 
rel_pronoun(SO,S,XO,X). 

prep_phrase(SO,S,XO,X) :- 
preposition(SO,S1,XO,Xl), 
noun_phrase(S1,S,XI,X). 

open(SO,SO,X,x(gap,nonterminal,close,X)). 

close(SO,SO,XO,X) :- 
virtual(close,XO,X). 
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