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Abstract

Cross-lingual dependency parsing aims
to train a dependency parser for an
annotation-scarce target language by ex-
ploiting annotated training data from an
annotation-rich source language, which is
of great importance in the field of nat-
ural language processing. In this paper,
we propose to address cross-lingual de-
pendency parsing by inducing latent cross-
lingual data representations via matrix
completion and annotation projections on
a large amount of unlabeled parallel sen-
tences. To evaluate the proposed learn-
ing technique, we conduct experiments on
a set of cross-lingual dependency parsing
tasks with nine different languages. The
experimental results demonstrate the effi-
cacy of the proposed learning method for
cross-lingual dependency parsing.

1 Introduction

The natural language processing (NLP) commu-
nity has witnessed an enormous development of
multilingual resources, which draws increasing at-
tention to developing cross-lingual NLP adapta-
tion systems. Cross-lingual dependency parsing
aims to train a dependency parser for a target lan-
guage where labeled data is rare or unavailable
by exploiting the abundant annotated data from a
source language. Cross-lingual dependency pars-
ing can effectively reduce the expensive manual
annotation effort in individual languages and has
been increasingly studied in the multilingual com-
munity. Previous works have demonstrated the
success of cross-lingual dependency parsing for a
variety of languages (Durrett et al., 2012; McDon-
ald et al., 2013; Täckström et al., 2013; Søgaard
and Wulff, 2012).

One fundamental issue of cross-lingual depen-
dency parsing lies in how to effectively transfer the

annotation information from the source language
domain to the target language domain. Due to the
language divergence over the word-level represen-
tations and the sentence structures, simply training
a monolingual dependency parser on the labeled
source language data without adaptation learn-
ing will fail to produce a dependency parser that
works in the target language domain. To tackle
this problem, a variety of works in the literature
have designed better algorithms to exploit the an-
notated resources in the source languages, includ-
ing the cross-lingual annotation projection meth-
ods (Hwa et al., 2005; Smith and Eisner, 2009;
Zhao et al., 2009), the cross-lingual direct trans-
fer with linguistic constraints methods (Ganchev
et al., 2009; Naseem et al., 2010; Naseem et al.,
2012), and the cross-lingual representation learn-
ing methods (Durrett et al., 2012; Täckström et al.,
2012; Zhang et al., 2012).

In this work, we propose a novel representation
learning method to address cross-lingual depen-
dency parsing, which exploits annotation projec-
tions on a large amount of unlabeled parallel sen-
tences to induce latent cross-lingual features via
matrix completion. It combines the advantages
of the cross-lingual annotation projection meth-
ods, which project labeled information into the tar-
get language domain, and the cross-lingual rep-
resentation learning methods, which learn latent
interlingual features. Specifically, we first train
a dependency parser on the labeled source lan-
guage data and use it to infer labels for the un-
labeled source language sentences of the parallel
resources. We then project the annotations from
the source language to the target language via the
word alignments on the parallel sentences. Af-
terwards, we define a set of interlingual features
and construct a word-feature matrix by associat-
ing each word with these language-independent
features. We then use the original labeled source
language data and the predicted (or projected) la-
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beled information on the parallel sentences to fill
in the observed entries of the word-feature matrix,
while matrix completion is performed to fill the
remaining missing entries. The completed word-
feature matrix provides a set of consistent cross-
lingual representation features for the words in
both languages. We use these features as augment-
ing features to train a dependency parsing system
on the labeled data in the source language and per-
form prediction on the test sentences in the tar-
get language. To evaluate the proposed learning
method, we conduct experiments on eight cross-
lingual dependency parsing tasks with nine differ-
ent languages. The experimental results demon-
strate the superior performance of the proposed
cross-lingual transfer learning method, comparing
to other approaches.

2 Related Work

A variety of cross-lingual dependency parsing
methods have been developed in the literature. We
provide a brief review over the related works in
this section.

Much work developed in the literature is based
on annotation projection (Hwa et al., 2005; Liu
et al., 2013; Smith and Eisner, 2009; Zhao et al.,
2009). Basically, they exploit parallel sentences
and first project the annotations of the source lan-
guage sentences to the corresponding target lan-
guage sentences via the word level alignments.
Then, they train a dependency parser in the target
language by using the target language sentences
with projected annotations. The performance of
annotation projection-based methods can be af-
fected by the quality of word-level alignments and
the specific projection schema. Therefore, Hwa
et al. (2005) proposed to heuristically correct or
modify the projected annotations in order to in-
crease the projection performance while Smith
and Eisner (2009) used a more robust projec-
tion method, quasi-synchronous grammar projec-
tion, to address cross-lingual dependency parsing.
Moreover, Liu et al. (2013) proposed to project the
discrete dependency arcs instead of the treebank
as the training set. These works however assume
that the parallel sentences are already available, or
can be obtained by using free machine translation
tools. Instead, Zhao et al. (2009) considered the
cost of machine translation and used a bilingual
lexicon to obtain a translated treebank with pro-
jected annotations from the source language.

A number of works are developed based on
representation learning (Durrett et al., 2012;
Täckström et al., 2012; Zhang et al., 2012; Xiao
and Guo, 2014). In general, these methods first au-
tomatically learn some language-independent fea-
tures and then train a dependency parser in this
interlingual feature space with labeled data in the
source language and apply it on the data in the tar-
get language. Durrett et al. (2012) used a bilingual
lexicon, which can be manually constructed or in-
duced on parallel sentences, to learn language-
independent projection features for cross-lingual
dependency parsing. Täckström et al. (2012)
used unlabeled parallel sentences to induce cross-
lingual word clusterings and used these word clus-
terings as interlingual features. Both (Durrett et
al., 2012) and (Täckström et al., 2012) assumed
that the twelve universal part-of-speech (POS)
tags (Petrov et al., 2012) are available and used
them as the basic interlingual features. Moreover,
Zhang et al. (2012) proposed to automatically map
language-specific POS tags to universal POS tags
to address cross-lingual dependency parsing, in-
stead of using the manually defined mapping rules.
Recently, Xiao and Guo (2014) used a set of bilin-
gual word pairs as pivots to learn interlingual dis-
tributed word representations via deep neural net-
works as augmenting features for cross-lingual de-
pendency parsing.

Some other works are proposed based on mul-
tilingual linguistic constraints (Ganchev et al.,
2009; Gillenwater et al., 2010; Naseem et al.,
2010; Naseem et al., 2012). Basically, they first
construct a set of linguistic constrains and then
train a dependency parsing system by incorporat-
ing the linguistic constraints via posterior regular-
ization. The constraints are expected to bridge the
language differences. Ganchev et al. (2009) au-
tomatically learned the constraints by using par-
allel data while some other works manually con-
structed them by using the universal dependency
rules (Naseem et al., 2010) or the typological fea-
tures (Naseem et al., 2012).

3 Proposed Approach

In this section, we present a novel representa-
tion learning method for cross-lingual dependency
parsing, which combines annotation projection
and matrix completion-based feature representa-
tion learning together to produce effective inter-
lingual features.
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Figure 1: The architecture of the proposed cross-
lingual representation learning framework, which
consists of two steps, cross-lingual annotation pro-
jection and cross-lingual representation learning.

We consider the following cross-lingual depen-
dency parsing setting. We have a large amount
of labeled sentences in the source language and a
set of unlabeled sentences in the target language.
In addition, we also have a large set of auxiliary
unlabeled parallel sentences across the two lan-
guages. We aim to learn interlingual feature rep-
resentations such that a dependency parser trained
in the source language sentences can be applied in
the target language domain. The framework for
the proposed cross-lingual representation learn-
ing system is given in Figure 1. The system has
two steps: cross-lingual annotation projection and
cross-lingual representation learning. We present
each of the two steps below.

3.1 Cross-Lingual Annotation Projection

In the first step, we employ a large amount of un-
labeled parallel sentences to transfer dependency
relations from the source language to the target
language. We first train a lexicalized dependency
parser with the labeled training data in the source
language. Then we use this parser to produce
parse trees on the source language sentences of
the auxiliary parallel data. Simultaneously, we
perform word-level alignments on the unlabeled
parallel sentences using existing alignment tools.
Finally, we project the predicted dependency re-
lations of the source language sentences to their

Figure 2: An example of cross-lingual annotation
projection, where a partial word-level alignment
is shown to demonstrate two cases of annotation
projection.

parallel counterparts in the target language via the
word-level alignments. Instead of projecting the
whole dependency trees, which requires more so-
phisticated algorithms, we simply project each de-
pendency arc on the source sentences to the target
language side.

We now use a specific example in Figure 2 to
illustrate the projection step. This example con-
tains an English sentence and its parallel sentence
in German. The English sentence is fully labeled
with each dependency relation indicated by a solid
directed arc. The dashed lines between the En-
glish sentence and the German sentence show the
alignments between them. For each dependency
arc instance, we consider the following properties:
the parent word, the child word, the parent POS,
the child POS, the dependency direction, and the
dependency distances. The projection of the de-
pendency relations from the source language to the
target language is conducted based on the word-
level alignment. There are two different scenar-
ios. The first scenario is that the two source lan-
guage words involved in the dependency relation
are aligned to two different words in the corre-
sponding target sentence. For example, the En-
glish words “the” and “quota” are aligned to Ger-
man words “die” and “Quote” separately. We then
copy this dependency relation into the target lan-
guage side. The second scenario is that a source
language word is aligned to a word in the target
language sentence and has a dependency relation
with the “<root>” word. For example, the En-
glish word “want” is aligned to “wollen” and it has
a dependency arc with “<root>”. We then project
the dependency relation from the English side to
the German side as well. Moreover, we also di-
rectly project the POS tags of the source language
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Figure 3: Example of how to collect queries for
each specific dependency relation and how to ob-
tain the abstract signatures (adapted from (Durrett
et al., 2012)).

words onto the target language words. Since the
word order for each aligned word pair in parallel
sentences can be different, we recalculate the de-
pendency direction and the dependency distance
for the projected dependency arc instance. Note
the example in Figure 2 only shows a partial word-
level alignment to demonstrate the two cases of the
annotation projection. The word alignment tool
can align more words than shown in the example.

3.2 Cross-Lingual Representation Learning

After cross-lingual annotation projection, we have
a set of projected dependency arc instances in
the target language. However, the sentences in
the target language are not fully labeled. De-
pendency relation related features are not readily
available for all the words in the target language
domain. Hence, in this step, we first generate a set
of interlingual features and then automatically fill
the missing feature values for the target language
words with matrix completion based on the pro-
jected feature values.

3.2.1 Generating Interlingual Features
We use the signature method in (Durrett et al.,
2012) to construct a set of interlingual features
for the words in the source and target language
domains . The signatures proposed in (Dur-
rett et al., 2012) for dependency parsing are
universal across different languages, and have
numerical values that are computed in specific
dependency relations. Here we illustrate the

signature generation process by using an example
in Figure 3, which is adapted from (Durrett et
al., 2012). Note for each dependency relation
between a parent (also known as the head) word
and a child (also known as the dependent) word,
we can collect a number of queries based on
the dependency properties. For example, given
the dependency arc between “want” and “to” in
the English sentence in Figure 3, and assuming
we consider the child word “to”, we produce
queries by considering a non-empty subset of
the dependency properties (the parent POS, the
dependency direction, the dependency distance),
which provides us 7 queries: “VERB→to”, “→to,
RIGHT”, “→to, 1”, “VERB →to, RIGHT”,
“VERB→to, 1”, “→to, RIGHT, 1”, “VERB→to,
RIGHT, 1”, where VERB is the parent POS tag,
RIGHT is the dependency direction and 1 is
the dependency distance. Then we can abstract
the specific queries to generate the signatures
by replacing the considered word (“to”) with its
POS tag (“PRT”), and replacing the parent POS
tag with “PARENT”, the specific dependency
distance with “DIST” and the dependency direc-
tion with “DIR”. This produces the following 7
signatures: “PARENT→[PRT]”, “→[PRT], DIR”,
“→[PRT], DIST”, “PARENT→[PRT], DIST”,
“PARENT→[PRT], DIST”, “→[PRT], DIR,
DIST”, and “PARENT→[PRT], DIR, DIST”,
where the brackets indicate the POS tags are for
the considered word. Similarly, we can perform
the same abstraction process for the parent word
“want” and get another 7 signatures (see Table 1).
Since each signature contains one POS tag and
there are 13 different POS types (12 universal
POS tags and 1 special type for the “<root>”
word), we can get a total of 7 × 2 × 13 = 182
signatures. These signatures are independent of
specific languages, though their numerical values
should be computed in a specific dependency
relation for each considered target word.

A set of interlingual features can then be gener-
ated from these abstractive signatures by consid-
ering different instantiations of their items. For a
given target word with an observed POS tag, it has
14 signatures (see Table 1). For each signature,
we consider all possible instantiations of its other
items given the fixed target word. For example, for
the target word “to”, its signature “→[PRT], DIR”
can be instantiated into 2 features: “→ LEFT” and
“→ RIGHT”. Similarly, its signature “→[PRT],
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Signatures # Features
[PRT]→ DIR 2
[PRT]→ DIST 5
[PRT]→ CHILD 13
[PRT]→ DIR, DIST 10
[PRT]→ CHILD, DIR 26
[PRT]→ CHILD, DIST 65
[PRT]→ CHILD, DIR, DIST 130
→ [PRT], DIR 2
→ [PRT], DIST 5
PARENT→ [PRT] 13
→ [PRT], DIR, DIST 10
PARENT→ [PRT], DIR 26
PARENT→ [PRT], DIST 65
PARENT→ [PRT], DIR, DIST 130
Total 502

Table 1: The number of induced “features” of each
signature for a given word.

DIST” can be instantiated into 5 features since
DIST has 5 different values ({1, 2, 3–5, 6–10,
11+}), and its signature “[PRT]→CHILD” can be
instantiated into 13 features since CHILD denotes
the child word’s POS tags and can have 13 differ-
ent values. Hence as shown in Table 1, we can get
502 features from the 14 signatures.

3.2.2 Learning Feature Values with Matrix
Completion

The signature-based 502 interlingual features to-
gether with the 13 universal POS tag features can
be used as language independent features for all
the words in the vocabulary constructed across the
source and target language domains. In particular,
we can form a word-feature matrix with the con-
structed vocabulary and the total 515 language in-
dependent features. For each word that appeared
in the dependency relation arcs, we can use the
number of appearances of its interlingual features
as the corresponding feature values. However, the
sentences in the target language are not fully la-
beled. Some words in the target language domain
may not be observed in the projected dependency
arc instances, and we cannot compute their feature
values for the 502 interlingual features, though the
13 universal POS tag features are available for all
words. Moreover, since we only have a limited
number of projected dependency arc instances in
the target language, even for some target words
that appeared in the projected arc instances of the
parallel data, we may only observe a subset of
features among the total 502 interlingual features,
with the rest features missing. Hence the con-
structed word-feature matrix is only partially ob-

Figure 4: The word-feature matrix. There are
three parts of words: the source language words,
target language words from the projected depen-
dency arc instances, and additional target language
words. The signature features are the 502 interlin-
gual features and the POS features are the 13 uni-
versal POS tags. Solid lines indicate observed en-
tries, dashed lines indicate partially observed en-
tries, while empty indicates missing entries.

served, as shown in Figure 4. Furthermore, there
could also be some noise in the observed feature
values as some word features may not have re-
ceived sufficient observations.

To solve the missing feature problem and si-
multaneously perform data denoising, we exploit
a feature correlation assumption: the 502 con-
structed interlingual features and the 13 univer-
sal POS tags are not mutually independent; they
usually contain a lot statistical correlation infor-
mation. For example, for a word “want” with
POS tag “VERB”, its feature value for “VERB→
want, RIGHT” is likely to be very small such as
zero, while its feature value for “want→ NOUN,
LEFT” is likely to be large. Moreover, the exis-
tence of any one of the two interlingual features in
this example can also indicate the non-existence
of the other feature. The existence of feature cor-
relations establishes the low-rank property of the
word-feature matrix. We hence propose to fill the
missing feature values and reduce the noise in the
word-feature matrix by performing matrix com-
pletion. Low-rank matrix completion has been
successfully used in many applications to fill miss-
ing entries of partially observed low-rank matri-
ces and perform matrix denoising (Cabral et al.,
2011; Xiao and Guo, 2013) by exploiting the fea-
ture correlations and underlying low-dimensional
representations. Following the same principle, we
expect to automatically discover the missing fea-
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ture values in our word-feature matrix and perform
denoising through low-rank matrix completion.

Let M0 ∈ Rn×k denote the partially observed
word-feature matrix in Figure 4, where n is the
number of words and k is the dimensionality of
the feature set, which is 515 in this study. Let Ω
denote the set of indices for the observed entries.
Hence for each observed entry (i, j) ∈ Ω, M0

ij

contains the frequency collected for the j-th fea-
ture of the i-th word. We then formulate matrix
completion as the following optimization problem
to recover a full matrix M from the partially ob-
served matrix M0:

min
M≥0

γ‖M‖∗+α‖M‖1,1+
∑

(i,j)∈Ω

(Mij−M0
ij)

2 (1)

where the trace norm ‖M‖∗ enforces the low-rank
property of the matrix, and ‖M‖1,1 denotes the
entrywise L1 norm. Since many words usually
only have observed values for a small subset of the
502 interlingual features due to the simple fact that
they are only associated with very few POS tags,
a fully observed word-feature matrix is typically
sparse and contains many zero entries. Hence we
use the L1 norm regularizer to encode the spar-
sity of the matrixM . The nonnegativity constraint
M ≥ 0 encodes the fact that our frequency based
feature values in the word-feature matrix are all
nonnegative. The minimization problem in Eq (1)
can be solved using a standard projected gradient
descent algorithm (Xiao and Guo, 2013).

3.3 Cross-Lingual Dependency Parsing
After matrix completion, we can get a set of in-
terlingual features for all the words in the word-
feature matrix. We then use the interlingual fea-
tures for each word as augmenting features and
train a delexicalized dependency parser on the la-
beled sentences in the source language. The parser
is then applied to perform prediction on the test
sentences in the target language, which are also
delexicalized and augmented with the interlingual
features.

4 Experiments

4.1 Datasets
We used the multilingual dependency parsing
dataset from the CoNLL-X shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007) and ex-
perimented with nine different languages: Dan-
ish (Da), Dutch (Nl), English (En), German (De),

Greek (El), Italian (It), Portuguese (Pt), Span-
ish (Es) and Swedish (Sv). For each language,
the original dataset contains a training set and a
test set. We constructed eight cross-lingual de-
pendency parsing tasks, by using English as the
label-rich source language and using each of the
other eight languages as the label-poor target lan-
guage. For example, the task En2Da means that
we used English sentences as the source language
data and Danish sentences as the target language
data. For each task, we used the original training
set in English as the labeled source language data,
and used the original training set in the target lan-
guage as unlabeled training data and the original
test set in the target language as test sentences.
Each sentence from the dataset is labeled with
gold standard POS tags. We manually mapped
these language-specific POS tags to 12 univer-
sal POS tags: NOUN (nouns), NUM (numerals),
PRON (pronouns), ADJ (adjectives), ADP (prepo-
sitions or postpositions), ADV (adverbs), CONJ
(conjunctions), DET (determiners), PRT (parti-
cles), PUNC (punctuation marks), VERB (verbs)
and X (for others).

We used the unlabeled parallel sentences from
the European parliament proceedings parallel
corpus (Koehn, 2005), which contains parallel
sentences between multiple languages, as auxil-
iary unlabeled parallel sentences in our experi-
ments. For the representation learning over each
cross-lingual dependency parsing task, we used
all the parallel sentences for the given language
pair from this corpus. The number of parallel sen-
tences for the eight language pairs ranges from
1, 235, 976 to 1, 997, 775, and the number of to-
kens involved in these sentences in each language
ranges from 31, 929, 703 to 50, 602, 994.

4.2 Representation Learning

For the proposed representation learning, we first
trained a lexicalized dependency parser on the la-
beled source language data using the MSTParser
tool (proj with the first order set) (McDonald et
al., 2005) and used it to predict the parsing annota-
tions of the source language sentences in the unla-
beled parallel dataset. The sentences of the paral-
lel data only contain sequences of words, without
additional POS tag information. We then used an
existing POS tagging tool (Collobert et al., 2011)
to infer POS tags for them. Next we produced
word-level alignments on the unlabeled parallel
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Basic Conj with dist Conj with dir Conj with dist and dir
upos h dist, upos h dir, upos h dist, dir, upos h
upos d dist, upos d dir, upos d dist, dir, upos d
upos h, upos d, dist, upos h, upos d dir, upos h, upos d dist, dir, upos h, upos d

Table 2: Feature templates for training a basic delexicalized dependency parser. upos stands for the
universal POS tag, h stands for the head word, d stands for the dependent word, dist stands for the
dependency distance, which has five values {1, 2, 3− 5, 6− 10, 11+}, and dir stands for the dependency
direction, which has two values {left, right}.

Tasks Wikitionary Parallel Data
Delex Proj1 ∇ DNN ∇ Proj2 ∇ RLAP ∇ X-lingual

En2Da 36.5 41.3 4.8 42.6 6.1 42.9 6.4 43.6 7.1 38.7
En2De 46.2 49.2 3.0 49.5 3.3 49.7 3.5 50.5 4.3 50.7
En2El 61.5 62.4 0.9 63.0 1.5 63.5 2.0 64.3 2.8 63.0
En2Es 52.1 54.5 2.4 55.7 3.6 56.2 4.1 56.3 4.2 62.9
En2It 56.4 57.7 1.3 59.1 2.7 59.2 2.8 60.4 4.0 68.8
En2Nl 62.0 64.4 2.4 65.1 3.1 64.9 2.9 66.1 4.1 54.3
En2Pt 68.7 71.5 2.8 72.4 3.7 71.9 3.2 72.8 4.1 71.0
En2Sv 57.8 61.0 3.2 61.9 4.1 62.9 5.1 63.7 5.9 56.9
Average 55.2 57.8 2.6 58.7 3.5 58.9 3.8 59.7 4.6 58.3

Table 3: Comparison results in terms of unlabeled attachment score (UAS) for the eight cross-lingual
dependency parsing tasks (English is used as the source language). The evaluation results are on all
the test sentences. The Delex method uses no auxiliary resource, Proj1 and DNN use Wikitionary as
auxiliary resource, Proj2, RLAP, and X-lingual use parallel sentences as auxiliary resources. ∇ denotes
the improvements of each method over the baseline Delex method. The bottom row contains the average
results over the eight tasks.

sentences by using the Berkeley alignment tool
(Liang et al., 2006). With the word alignments,
we then projected the predicted dependency rela-
tions from the source language sentences of the
parallel data to the target language side, which
produces a set of dependency arc instances in the
target language. Finally, we constructed the par-
tially observed word-feature matrix from these la-
beled data and conducted matrix completion to re-
cover the whole matrix. For matrix completion,
we used the first task En2Da to perform param-
eter selection based on the test performance. We
selected γ from {0.1, 1, 10} and selected α from
{103, 104, 105}. The selected values γ = 1 and
α = 10−4 were then used for all the experiments.

4.3 Experimental Results

4.3.1 Test Results on All the Test Sentences
We first compared the proposed representa-
tion learning with annotation projection method,
RLAP, to the following methods in our experi-

ments: Delex, Proj1, Proj2, DNN and X-lingual.
The Delex method is a baseline method, which re-
places the language-specific word sequence with
the universal POS tag sequence and then trains
a delexicalized dependency parser. We listed the
feature templates used in this baseline delexical-
ized dependency parser in Table 2. The Proj1
and Proj2 methods are from (Durrett et al., 2012).
Durrett et al. (2012) proposed to use bilingual lex-
icon to learn cross-lingual features and provided
two ways to construct the bilingual lexicon, one
is based on Wikitionary and the other is based on
unlabeled parallel sentences with observed word-
level alignments. We used these two ways sepa-
rately to construct the bilingual lexicon between
the languages for learning cross-lingual features,
which are then used as augmenting features for
training delexicalized dependency parsers. We
denote the Wikitionary-based method as Proj1
and the parallel-sentence-based method as Proj2.
The DNN method, developed in (Xiao and Guo,
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Tasks Delex Proj2 ∇ RLAP ∇ USR PGI PR MLC
En2Da 46.7 54.6 7.9 55.7 9.0 51.9 41.6 44.0 -
En2De 62.0 63.0 1.0 64.0 2.0 - - 39.6 62.8
En2El 60.9 61.9 1.0 63.2 2.3 - - - 61.4
En2Es 55.2 58.3 3.1 59.6 4.4 67.2 58.4 62.4 57.3
En2It 55.5 56.9 1.4 58.3 2.8 - - - 56.2
En2Nl 60.3 62.5 2.2 63.7 3.4 - 45.1 37.9 62.0
En2Pt 80.2 84.5 4.3 85.7 5.5 71.5 63.0 47.8 83.8
En2Sv 73.4 76.0 2.6 76.4 3.0 63.3 58.3 42.2 74.9
Average 61.8 64.7 2.9 65.8 4.1 - - - -

Table 4: Comparison results on the short test sentences with length of 10 or less in terms of unlabeled
attachment score (UAS).∇ denotes the improvements of each method over the baseline Delex method.

# of Labeled Target Instances
0 500 1000 1500

U
A

S

35

36

37

38

39

40

41

42

43

44

En2Da

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

45

46

47

48

49

50

51

En2De

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

60

60.5

61

61.5

62

62.5

63

63.5

64

64.5

65

En2El

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

51

52

53

54

55

56

57

En2Es

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

55

56

57

58

59

60

61

En2It

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

60

61

62

63

64

65

66

67

En2Nl

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S

67

68

69

70

71

72

73

En2Pt

Delex
Proj2
RLAP

# of Labeled Target Instances
0 500 1000 1500

U
A

S
56

57

58

59

60

61

62

63

64

En2Sv

Delex
Proj2
RLAP

Figure 5: Unlabeled attachment score (UAS) on the whole test sentences in the target language by varying
the number of labeled training sentences in the target language.

2014), uses Wikitionary to construct bilingual
word pairs and then uses a deep neural network to
learn interlingual word embeddings as augment-
ing features for training delexicalized dependency
parsers. The X-lingual method uses unlabeled par-
allel sentences to induce cross-lingual word clus-
ters as augmenting features for delexicalized de-
pendency parser (Täckström et al., 2012). For X-
lingual, we cited its results reported in its original
paper. For other methods, we used the MSTParser
(McDonald et al., 2005) as the underlying depen-
dency parsing tool. To train the MSTParser, we
set the number of maximum iterations for the per-
ceptron training as 10 and set the number of best-k
dependency tree candidates as 1.

We evaluated the empirical performance of each
comparison method on all the test sentences. The
comparison results on the eight cross-lingual de-
pendency parsing tasks in terms of unlabeled at-
tachment score (UAS) are reported in Table 3. We
can see that the baseline method, Delex, performs

poorly across the eight tasks. This is not surprising
since the sequence of universal POS tags are not
discriminative enough for the dependency parsing
task. Note even for two sentences with the exact
same sequence of POS tags, they may have differ-
ent dependency trees. By using auxiliary bilingual
word pairs via Wikitionary, the two cross-lingual
representation learning methods, Proj1 and DNN,
outperform Delex across all the eight tasks. Be-
tween these two methods, DNN consistently out-
performs Proj1, which suggests the interlingual
word embeddings induced by deep neural net-
works are very effective. By using unlabeled par-
allel sentences as an auxiliary resource, the two
methods, Proj2 and RLAP, consistently outper-
form the baseline Delex method, while X-lingual
outperforms Delex on six tasks. Moreover, Proj2
outperforms its variant Proj1 across all the eight
tasks and achieves comparable performance with
the deep neural network based method DNN. This
suggests that unlabeled parallel sentences form
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a stronger auxiliary resource than the free Wiki-
tionary. Our proposed approach, RLAP, which has
the capacity of exploiting the unlabeled parallel
sentences, consistently outperforms the four com-
parison methods, Delex, Proj1, DNN and Proj2,
across all the eight tasks. It also outperforms the
X-lingual method on five tasks. The average UAS
over all the eight tasks for the RLAP method is
1.4 higher than the X-lingual method. All these
results demonstrated the effectiveness of the pro-
posed representation learning method for cross-
lingual dependency parsing.

4.3.2 Test Results on Short Test Sentences
We also conducted empirical evaluations on short
test sentences (with length of 10 or less). We
compared Delex, Proj2 and RLAP with four other
methods, USR, PGI, PR and MLC. The USR
method is a cross-lingual direct transfer method
which uses universal dependency rules to con-
struct linguistic constraints (Naseem et al., 2010).
The PGI method is a phylogenetic grammar induc-
tion model (Berg-Kirkpatrick and Klein, 2010).
The PR method is a posterior regularization ap-
proach (Gillenwater et al., 2010). The MLC
method is the multilingual linguistic constraints-
based method which uses typological features for
cross-lingual dependency parsing (Naseem et al.,
2012). Here we used this method in our setting
with only one source domain. Moreover, since we
do not have typological features for Danish, we
did not conduct experiment on the first task with
MLC. For the methods of USR, PGI and PR, we
cited their results reported in their original papers.
All the cited results are also produced on the short
sentences of the CoNLL-X shard task dataset. We
cited them as references on measuring the progress
of cross-lingual dependency parsing on each given
target language.

The comparison results are reported in Table 4.
We can see that the results on the short test sen-
tences are in general better than on the whole test
set (in Table 3) for the same method across most
tasks. This suggests that it is easier to infer the
dependency tree for a short sentence than for a
long sentence. Nevertheless, Proj2 consistently
outperforms Delex and RLAP consistently outper-
forms Proj2 across all the tasks. Moreover, RLAP
achieves the highest test scores in seven out of the
eight cross-lingual tasks among all the compari-
son systems. This again demonstrated the efficacy
of the proposed approach for cross-lingual depen-

dency parsing.

4.4 Impact of Labeled Training Data in
Target Language

We have also conducted experiments for the learn-
ing scenarios where a small set of labeled train-
ing sentences from the target language is available.
Specifically, we conducted experiments with a few
different numbers of additional labeled training
sentences from the target language, {500, 1000,
1500}, using three methods, RLAP, Delex and
Proj2. The comparison results on all the test sen-
tences are reported in Figure 5. We can see that the
performance of all three methods increases very
slow but in a similar trend with more additional la-
beled training instances from the target language.
However, both Proj2 and RLAP outperform Delex
with large margins across all experiments. More-
over, the proposed method, RLAP, produces the
best results across all the eight tasks. The results
again verified the efficacy of the proposed method,
demonstrated that filling the missing feature val-
ues with matrix completion is indeed useful.

5 Conclusion

In this paper, we proposed a novel representation
learning method with annotation projection to ad-
dress cross-lingual dependency parsing. The pro-
posed approach exploits unlabeled parallel sen-
tences and combines cross-lingual annotation pro-
jection and matrix completion-based interlingual
feature learning together to automatically induce
a set of language-independent numerical features.
We used these interlingual features as augmenting
features to train a delexicalized dependency parser
on the labeled sentences in the source language
and tested it in the target language domain. Our
experimental results on eight cross-lingual depen-
dency parsing tasks showed the proposed repre-
sentation learning method outperforms a number
of comparison methods.
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