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Abstract

Idea Density (ID) measures the rate at
which ideas or elementary predications
are expressed in an utterance or in a text.
Lower ID is found to be associated with an
increased risk of developing Alzheimer’s
disease (AD) (Snowdon et al., 1996; Engel-
man et al., 2010). ID has been used in two
different versions: propositional idea den-
sity (PID) counts the expressed ideas and
can be applied to any text while semantic
idea density (SID) counts pre-defined infor-
mation content units and is naturally more
applicable to normative domains, such as
picture description tasks. In this paper, we
develop DEPID, a novel dependency-based
method for computing PID, and its version
DEPID-R that enables to exclude repeat-
ing ideas—a feature characteristic to AD
speech. We conduct the first comparison
of automatically extracted PID and SID in
the diagnostic classification task on two
different AD datasets covering both closed-
topic and free-recall domains. While SID
performs better on the normative dataset,
adding PID leads to a small but significant
improvement (+1.7 F-score). On the free-
topic dataset, PID performs better than SID
as expected (77.6 vs 72.3 in F-score) but
adding the features derived from the word
embedding clustering underlying the auto-
matic SID increases the results consider-
ably, leading to an F-score of 84.8.

1 Introduction

Idea density (ID) measures the rate of propositions
or ideas expressed per word in a text and it is con-
nected to some very interesting results from neu-
roscience related to Alzheimer’s disease (AD). In

The old gray [MARE] has a very large [NOSE].

Dependencies Propositions

det(The, mare)
amod(old, mare) (OLD, MARE)
amod(gray, mare) (GRAY, MARE)
nsubj(mare, has) (HAS, MARE, NOSE)
det(a, nose)
advmod(very, large) (VERY, (LARGE, NOSE))
amod(large, nose) (LARGE, NOSE)
dobj(nose, has) (HAS, MARE, NOSE)
punct(., has)

Table 1: The alignment of the dependency and
propositional structures. The example sentence
is due to Brown et al. (2008). The predicative
proposition (HAS, MARE, NOSE) is represented by
two dependency arcs.

particular, two longitudinal studies—the Nun Study
(Snowdon et al., 1996) and the Precursors Study
(Engelman et al., 2010)—suggest that lower ID, as
measured from the essays written in young age, is
associated with the higher probability of develop-
ing AD in later life.

Two alternative definitions of idea density have
been used in relation to AD. Propositional idea
density (PID) counts the number of any ideas ex-
pressed in the text, setting no restriction to the topic
(Turner and Greene, 1977; Chand et al., 2010). An
example sentence with its ideas or propositions is
given in Table 1. Based on each proposition a ques-
tion can be formulated with a yes or no answer. Re-
moving a proposition from a sentence changes the
semantic meaning of that sentence. For instance,
removing the proposition (GRAY, MARE) from the
example makes the overall meaning of the sentence
more general. The PID is then computed by nor-
malising the proposition count with the token count
and thus the PID of the example given in Table 1 is
6/9 ≈ 0.667.

The existing tool for automatic PID computation,
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CPIDR (Brown et al., 2008), is based on counting
POS tags. However, we noticed that the proposi-
tional structure of a sentence is very similar to its
dependency structure, see the first column in Ta-
ble 1. This motivated us to come up with DEPID, a
method for computing PID from dependency struc-
tures. In addition, DEPID more easily enables to
consider idea repetition which has been shown to
be a characteristic feature in Alzheimer’s speech
(Bayles et al., 1985; Tomoeda et al., 1996; Bayles
et al., 2004), resulting in a modified PID version
DEPID-R which excludes the repeated ideas.

Semantic idea density (SID) (Ahmed et al.,
2013a,b) relies on a set of pre-defined informa-
tion content units (ICU). ICU is an object or action
that can be seen on the picture or is told in the story
and is expected to be mentioned in the narrative.
For instance, assuming that the words in capital
letters and square brackets in the example sentence
shown in Table 1 belong to the set of pre-defined
ICUs the SID is computed by normalising the ICU
count with the token count: 2/9 ≈ 0.222. Recently,
Yancheva and Rudzicz (2016), proposed a method
for computing SID based on word embedding clus-
ters. We use their method for computing SID as
it does not rely on any pre-defined ICU inventory
and thus is applicable also on free-topic datasets.

PID and SID are complementary definitions of
idea density with SID being naturally applicable in
standardised picture description or story re-telling
tasks while PID is more suitable on datasets of
spontaneous speech on free topics.

In this paper we study the predictiveness of both
PID and SID features in the diagnostic classifica-
tion task for predicting AD. To that end, we conduct
experiments on two very different datasets: Demen-
tiaBank, which consists of transcriptions of a nor-
mative picture description task, and AMI, which
contains autobiographical memory interviews de-
scribing life events freely chosen by the subjects.

We show that on the DementiaBank data the
POS-based PID scores are actually higher for AD
patients than they are for normal controls, con-
trary to the expectations from the AD literature
(Engelman et al., 2010; Chand et al., 2012; Kem-
per et al., 2001). By studying the characteristics
of the DementiaBank we are able to adapt DEPID
such that its PID values become significantly differ-
ent between the patient and control groups in the
expected direction. Thus, we believe that our pro-
posed DEPID is a better tool for measuring PID as

described by neurolinguists on spontaneous speech
transcripts than the POS-based CPIDR.

Secondly, we show that the SID performs bet-
ter than PID on the constrained-domain Dementia-
Bank corpus but adding the PID feature leads to a
small but significant improvement.

Thirdly, we show that on the free-topic AMI
dataset the PID performs better than the automati-
cally extracted SID, but adding the features derived
from the word embedding clustering underlying
the SID, modeling the broad discussion topics, in-
creases the results considerably—an effect which
is less visible on the constrained topic Dementia-
Bank.

The contributions of this paper are the following:

1. Development of DEPID, the new dependency-
based method for automatically computing
PID and its version DEPID-R which enables
to detect and exclude idea repetitions;

2. Analysis of the characteristic features of the
DementiaBank dataset and the proposal for
modifying DEPID to make it applicable to
this and other similar closed-topic datasets.

3. Results of extensive diagnostic classification
experiments using PID, SID and several re-
lated baselines on two very different AD
datasets.

2 Idea density and Alzheimer’s disease

ID was first associated with AD in the Nun Study
(Snowdon et al., 1996), based on a cohort of elderly
nuns participating in a longitudinal study of aging
and Alzheimer’s disease. In this work, they studied
the autobiographical essays the nuns had written
decades ago in their youth. The nuns were divided
into three groups based on their ID score computed
from the essays, so that each group covered 33.3%
percentile of the whole range of ID values. The
lowest group was labeled as having low ID and
the medium and highest group as having high ID.
These groups were established from a sample of
93 nuns. The association between AD and ID was
studied on a sample of 25 nuns who had died by the
time of the study, for 10 of whom the cause of death
had been marked as AD. The study found that most
subjects with AD belonged to the low ID group
while most of those, who did not develop AD, be-
longed to the group with high ID, thus suggesting
that the low ID in youth might be associated with
the development of the AD in later life.
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Similar work was conducted on a group of medi-
cal students for whom essays from the time of their
admission to the medical school several decades
earlier were available (Engelman et al., 2010). The
results of this study also showed a significantly
lower ID on the AD group as compared to the
healthy controls, suggesting that ID could be an
important discriminative feature for predicting AD.

2.1 Propositional and semantic idea density

Two different versions of ID have been developed
over time, both derived from the propositional base
structure developed by Kintsch and Keenan (1973)
to describe the semantic complexity of texts in read-
ing experiments.

Propositional idea density (PID), which was
used both in the Nun Study and the medical stu-
dents study, is based on counting the semantic
propositions as defined by Turner and Greene
(1977) and later refined by Chand et al. (2012).
Three main types of propositions where described:
1) predications that are based on verb frames;
2) modifications that include all sorts of modifiers,
e.g. adjectival, adverbial, quantifying, qualifying
etc.; and 3) connections that join simple proposi-
tions into complex ones. For each proposition, a
question can be formed with a yes or no answer.
For instance, based on the example in Table 1, we
could form the following questions:

1. Is the mare old?
2. Is the mare gray?
3. Has the mare a nose?
4. Is the nose large?
5. Is the nose very large?
Each of those questions inquires about a different

aspect of the whole sentence and is a basis of an
idea or proposition.

Semantic idea density (SID) has retained its re-
lation to the propositional base of some text. It
relies on a set of information content units (ICUs)
that have been pre-defined for a closed-topic task,
such as picture description or story re-telling. For
instance, different inventories of 7-25 ICUs have
been described for the Cookie Theft picture task
(Goodglass and Kaplan, 1983), listing objects visi-
ble on the picture such as “boy”, “girl”, “cookie”
or “kitchen” or actions performed on the scene
such as “boy stealing cookies” or “woman drying
dishes”. SID is computed by counting the number
of ICUs mentioned in the text and then normalising
by the total number of word tokens.

2.2 Related work on AD using ID

PID, computed with CPIDR, has been used in few
previous works for predicting AD. Jarrold et al.
(2010) used PID as one among many features and
reported it as significant. They obtained a classi-
fication accuracy of 73% on their dataset, which
contained short structured clinical interviews, with
their best model and feature set that also included
the PID feature. PID was also used by Roark et al.
(2011) to detect mild cognitive impairment on a
story re-telling dataset. However, they found no sig-
nificant difference between groups in terms of PID
and thus, their feature selection procedure most
probably filtered it out.

In terms of SID, most previous work has relied
on manually defined ICUs (Ahmed et al., 2013b,a).
Fraser et al. (2015) extracted binary and frequency-
based ICU features. They searched for words re-
lated to the ICU objects and looked at the nsubj-
relations in the dependency parses to detect the
ICUs referring to actions. The binary feature was
set when any word related to an ICU was men-
tioned in the text, while frequency-based features
counted the total number of times any word refer-
ring to an ICU was mentioned.

Recently, Yancheva and Rudzicz (2016) pro-
posed a method for automatically extracting ICUs
and computing SID without relying on a manually
defined ICU inventory. This work will be reviewed
in more detail in section 4. They found that the
automatically extracted ICUs and SID performed
as well in a diagnostic AD classification task as the
human-defined ICUs.

3 Computation of PID

Automating the computation of PID is difficult be-
cause it is essentially a semantic measure. The
instructions given by Turner and Greene (1977) for
counting the propositions assume the comprehen-
sion of the semantic meaning of the text, while
the raw text lacks the necessary semantic annota-
tions. However, it has been noticed that the propo-
sitions roughly correspond to certain POS tags. In
particular, Snowdon et al. (1996) mention that el-
ementary propositions are expressed using verbs,
adjectives, adverbs and prepositions. This obser-
vation is the basis of the CPIDR program (Brown
et al., 2008), a tool for automatically computing
PID scores from text. CPIDR first processes the
text with a POS-tagger, then counts all verbs, ad-
jectives, adverbs, prepositions and coordinating
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Dep rel Proposition type
advcl Causal connection
advmod Qualifying modification
amod Qualifying modification
appos Referencial predication
cc Conjunctive connective
csubj Predication with a clausal subject
csubjpass Predication with a passive clausal

subject
deta Quantifying modification
neg Negative modification
npadvmod Qualifying modification
nsubjb Predication subject
nsubjpass Predication with passive subject
nummod Quantifying modification
poss Possessive modification
predet Qualifying modification
preconj Conjunctive or disjunctive

connection
prep Proposition denoting purpose,

location, intention, etc.
quantmod Quantifying modification
tmod Qualifying modification
vmod Qualifying modification

Table 2: Dependency relations encoding propo-
sitions.

aexcept a, an and the
bexcept it and this

conjunctions as propositions, and then applies a set
of 37 rules to adjust the final proposition count.

3.1 DEPID—dependency-based PID

We propose that the dependency structure is bet-
ter suited for PID computation than the POS tag
counting approach adopted by the existing CPIDR
program (Brown et al., 2008) because the depen-
dency structure resembles more closely the seman-
tic propositional structure, see Table 1. We treat
each dependency type as a separate feature and
manually set the feature weights to either one or
zero depending on whether this dependency rela-
tion encodes a proposition or not. We make these
decisions based on the dependency type descrip-
tions in the Stanford dependency manual (de Marn-
effe and Manning, 2008). The dependency types
with non-zero weights are listed in Table 2. The
PID is then computed by summing the counts of
those dependency relations and normalising by the
number of word tokens. We call our dependency-
based PID computation method DEPID.

We computed the Spearman correlations be-
tween CPIDR, DEPID and manual proposition
counts on the 69 example sentences given in chap-
ter 2 in (Turner and Greene, 1977)1 and the 177

1Similar to Brown et al. (2008), we exclude the example

Spearman r
CPIDR vs Manual 0.795
DEPID vs Manual 0.839
DEPID vs CPIDR 0.864

Table 3: Spearman correlations between CPIDR,
DEPID and manual proposition counts on the exam-
ples given in Turner and Greene (1977) and Chand
et al. (2010).

example sentences given in (Chand et al., 2010),
making up the total of 276 sentences. These corre-
lations are given in Table 3. We observe that by just
counting the dependency relations given in Table 2,
we obtain proposition counts that correlate better
with the manual counts than the POS-based CPIDR
counts.

3.2 DEPID-R
It is known that the Alzheimer’s language is gen-
erally fluent and grammatical but in order to main-
tain the fluency the deficiencies in semantic or
episodic memory are compensated with empty
speech (Nicholas et al., 1985), such as repetitions,
both on the word level but also on the idea, sen-
tence or narrative level. DEPID easily enables to
track repeated ideas in the narrative. We consider a
proposition as repetition of a previous idea when
the deprel(DEPENDENT LEMMA, HEAD LEMMA)
tuples of the two propositions match. For instance,
a sentence “I had a happy life.” contains three
propositions: nsubj(I, HAVE), dobj(LIFE, HAVE)
and amod(HAPPY, LIFE). Another sentence “I’ve
had a very happy life.” later in the same narrative
only adds a single proposition to the total count—
advmod(VERY, HAPPY)—as this is the only new
piece of information that was added.

We modify DEPID to exclude the repetitive
ideas of a narrative by only counting the propo-
sition types expressed with the lexicalised de-
prel(DEPENDENT LEMMA, HEAD LEMMA) de-
pendency arcs. We call this modified version
of dependency-based PID computation method
DEPID-R. The relation between DEPID-R and DE-
PID is that DEPID counts the tokens of the same
propositions.

4 Computation of SID

Recently, Yancheva and Rudzicz (2016) proposed
a method for automatically computing SID without

17, but for examples 18, 54, 55, 56, we include all paraphrases.
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DB AMI
AD Ctrl AD Ctrl

Subjects 169 98 20 20
Samples 257 241 36 20
Mean samples 1.52 2.46 1.80 1.00
Mean words 104 114 1674 1509
Std words 58 59 778 688

Table 4: Statistics of the DementiaBank (DB) and
AMI datasets. Mean samples is the average number
of samples per subject. Mean and std words are
the mean number of words per sample and the
respective standard deviation.

the use of manually defined ICUs. Their method
relies on clustering word embeddings of the nouns
and verbs found in the transcriptions, assuming that
the embeddings of the words related to the same
semantic unit are clustered together.

They first perform K-means clustering on the
word embeddings. Then, for each cluster they
compute the mean distance µcl and its standard
deviation σcl. The mean distance is the average
Euclidean distance of all vectors assigned to a clus-
ter from the centroid of that cluster. Finally, for
each word they compute the scaled distance as a
z-score of the Euclidean distance dE between the
word embedding and its closest cluster centroid:

dscaled =
dE − µcl

σcl

The words with dscaled < 3 are counted as auto-
matic ICUs. SID is then computed by dividing
the number of ICUs with the total number of word
tokens in the transcription.

In addition to SID, Yancheva and Rudzicz (2016)
experiment with distance-based features also de-
rived from the same clustering. The distance fea-
ture for each cluster is computed as the average of
the scaled distances of the words (nouns or verbs)
in the transcript assigned to that cluster. These clus-
ter features are not directly related to the concept
of SID but they could be viewed as an automatic
approximation of features derived from the human
annotated ICUs.

5 Experiments

5.1 Data
We conduct experiments on two very different AD
datasets. The first dataset is derived from the De-
mentiaBank (Becker et al., 1994), which is part of a

publicly available Talkbank corpus.2 It contains de-
scriptions of the Cookie Theft picture (Goodglass
and Kaplan, 1983) produced by subjects diagnosed
with dementia as well as of healthy control cases.
The data is manually transcribed and annotated in
the CHAT format (MacWhinney, 2000), contain-
ing a range of annotations denoting various speech
events. This is the same dataset used by Yancheva
and Rudzicz (2016) and similar to them, we use
the interviews of all control subjects and subjects
whose diagnose is either AD or probable AD.

The second dataset, collected at NeuRA3, con-
tains autobiographical memory interviews (AMI)
of both AD patients and healthy control subjects.
Each interview consists of four stories, each story
describing events from a particular period of the
subject’s life: teenage years, early adulthood, mid-
dle adulthood and last year. Each story has three
logical parts: free recall, general probe and specific
probe. In the free recall part the subject is asked
to talk freely about events he remembers from the
given life period. In the general recall part the
interviewer helps to narrow down to a particular
specific event. In the specific probe part the in-
terviewer asks a number of predefined questions
about this specific event. We use all four stories
of an interview as a single sample but extract only
the free recall part of each story as this is the most
spontaneous part of the interview.

We preprocess both data sets similarly, follow-
ing the procedure described in (Fraser et al., 2015)
as closely as possible. We first extract only the
patient’s dialogue turns. Then we remove any to-
kens that are not words (e.g. laughs). In Demen-
tiaBank corpus, such tokens can be detected by
various CHAT annotations. We also remove filled
pauses such as um, uh, er, ah. The statistics of both
datasets are given in Table 4.

5.2 Analysis of the idea density

First, we perform a statistical analysis of the differ-
ent ID measures in Table 5 on both datasets using
the indepedent samples Wilcoxon rank-sum test to
test the difference between group means.

The DEPID computed PID values are systemati-
cally lower than the CPIDR values on both datasets,
suggesting that either CPIDR overestimates or the
DEPID underestimates the number of propositions.
In order to check that we manually annotated the

2https://talkbank.org/DementiaBank/
3Neuroscience Research Australia
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Data Method AD mean (sd) Ctrl mean (sd)
DB CPIDR* 0.518 (0.069) 0.491 (0.057)
DB DEPID* 0.371 (0.052) 0.356 (0.046)
DB DEPID-R 0.339 (0.049) 0.334 (0.042)
DB DEPID-R-ADD* 0.168 (0.064) 0.194 (0.059)
DB SID* 0.380 (0.051) 0.427 (0.045)

AMI CPIDR 0.524 (0.023) 0.532 (0.017)
AMI DEPID 0.468 (0.022) 0.473 (0.017)
AMI DEPID-R* 0.334 (0.027) 0.366 (0.027)
AMI DEPID-R-ADD+* 0.291 (0.032) 0.337 (0.032)
AMI SID* 0.346 (0.034) 0.385 (0.024)

Table 5: The statistics of the ID values for AD
and control groups. DEPID-R ignores the repeated
ideas. DEPID-R-ADD for DementiaBank addition-
ally excludes conjunctions, sentences with I and
you subjects and sentences with vague meaning.
DEPID-R-ADD+ for AMI only ignores sentences
with vague meaning. SID is computed based on the
clustering of the whole dataset. Star (*) after the
method name indicates that the difference in group
means is statistically significant (p < 0.001).

propositions of 20 interviews from DementiaBank
according to the guidelines given by Chand et al.
(2012). We found that both CPIDR and DEPID
overestimate the PID values although CPIDR does
it to much greater extent. CPIDR both overesti-
mates the number of propositions and underesti-
mates the number of tokens in certain cases leading
to higher PID scores. For example, CPIDR does
not count contracted forms, such as “’s” in “it’s” or

“n’t” in “don’t” as distinct tokens. Because there
are many such forms in DementiaBank transcrip-
tions, this behaviour considerably lowers CPIDR
token counts. Also, CPIDR counts each auxiliary
verb in present participle constructions as a sep-
arate proposition although these auxiliaries only
mark syntax, thus leading to an artificially high
proposition count. For instance, the clauses “she
is reaching” and “he is taking” both contain two
propositions according to CPIDR, whereas they
both really contain only one semantic idea.

Both CPIDR and DEPID PID values differ sig-
nificantly between AD and control groups on De-
mentiaBank but the mean values are opposite to
what was expected—AD patients have significantly
higher PID than controls. When the repeated ideas
are not counted (DEPID-R), the difference between
groups becomes non-significant. However, we
were curious about why the association between
the lower PID values and the AD diagnosis cannot
be observed on DementiaBank. Thus, we investi-
gated this issue and found that the DementiaBank

interviews have certain additional characteristics
that contribute to the automatic proposition count
being too high.

Conjunctive propositions First, we noticed that
most and-conjunctions are used as lexical fillers in
DementiaBank, whereas both CPIDR and DEPID
count all conjunctions as propositions. In order
to address this problem we excluded the cc depen-
dency type from the set of propositions.

Sentences with pronominal subjects Secondly,
we noticed that the sentences with subject either I
or you most probably do not say anything about the
picture but rather belong to the meta conversation.
Two examples of such sentences are for instance

“what else can I tell you about the picture?” or “I’d
say that’s about all.”. To solve this problem we did
not count propositions from sentences, where the
subject was either I or you.

Vague sentences Finally, we observed that the
AD patients seem to utter more vague sentences
that do not contain any concrete ideas, such as for
instance “the upper one is there” or “they’re do-
ing more things on the outside.”. Both CPIDR
and DEPID extract propositions from syntactic
structures and thus they count pseudo-ideas from
those sentences as well. To detect such vague
sentences we evaluated the specificity of all sen-
tences using SpeciTeller (Li and Nenkova, 2015).
SpeciTeller predicts a specificity score between 0
and 1 for each sentence using features extracted
from the sentence surface-level, specific dictionar-
ies and distributional word embeddings. We did
not count propositions from sentences whose speci-
ficity score was lower than 0.01.

After incorporating all those three measures to
DEPID we finally obtain PID values on Dementia-
Bank that are significantly different for patients and
controls in the expected direction—the AD patients
have significantly lower PID values than control
subjects. Note that those measures only affect the
proposition count and not the number of tokens.
Also note that although these measures were moti-
vated by the observations made on one particular
(DementiaBank) dataset, they can be expected to
be applicable to other similar closed-topic datasets,
containing picture descriptions or story re-tellings.4

4Unfortunately, aside from DementiaBank there are no
other publicly available AD datasets and thus we could not
test whether our expectations hold true.
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On AMI data, the difference between group
means is non-significant for both CPIDR and DE-
PID values. However, when the repeated ideas are
excluded (DEPID-R), the mean PID for AD pa-
tients is significantly lower than for controls, as
expected. It should be noted that the first two prob-
lems observed on DementiaBank—conjunctions
and pronominal subjects—are not actual on the
free-recall AMI data. In autobiographical memory
interviews many sentences are expected to have I
as subject. Also, the and-conjunctions are more
likely to convey real ideas there rather than carry
the role of lexical fillers. However, AD patients
can utter more sentences with very vague meaning
in AMI data as well and thus, in the last row of the
Table 5 we show the DEPID PID values with vague
sentences excluded for AMI dataset as well. We
see that the PID values decrease for both patients
and controls and the difference between groups
remains statistically significant.

SID values differ significantly between the AD
and control groups on both datasets with AD pa-
tients having significantly lower SID values as ex-
pected. The clustering underlying the automatically
computed SID is trained on the whole dataset for
both DementiaBank and AMI data.

5.3 Classification setup

We test both PID and SID in the diagnostic binary
classification task on both DementiaBank and AMI
datasets. When computing PID, the repeated ideas
are excluded (DEPID-R). In addition, for Demen-
tiaBank, we also use the additional measures de-
scribed in Section 5.2 (DEPID-R-ADD) as, accord-
ing to Table 5, just DEPID-R cannot be expected to
be predictive on that type of dataset. We compute
the SID as described in Section 4. In following
(Yancheva and Rudzicz, 2016), we cluster the 50-
dimensional Glove embeddings5 of all nouns and
verbs found in the transcripts with k-means. Simi-
lar to them, we set the number of clusters to 10 on
both datasets.

For single feature models (SID or PID) we use
a simple logistic regression classifier. For mod-
els with multiple features we use the elastic net
logistic regression with an elastic net hyperparam-
eter α = 0.5. We train and test with 10-fold
cross-validation on subjects and repeat each ex-
periment 100 times. We report the mean and stan-

5http://nlp.stanford.edu/projects/
glove/

Data Features Precision Recall F-score
DB CPIDR 59.8 (0.7) 59.1 (0.5) 58.8 (0.5)
DB PID 61.1 (0.7) 60.3 (0.6) 60.0 (0.5)
DB SID 71.4 (0.6) 70.7 (0.5) 70.5 (0.5)
DB SID+PID 73.7 (0.9) 72.1 (0.6) 72.2 (0.6)

AMI CPIDR 45.1 (3.2) 63.4 (1.8) 51.9 (2.3)
AMI PID 79.2 (1.9) 80.0 (0.5) 77.6 (0.9)
AMI SID 73.7 (3.0) 75.3 (1.5) 72.3 (2.1)
AMI SID+PID 82.9 (3.8) 78.0 (1.8) 77.7 (1.8)

Table 6: Classification results of various ID mea-
sures. The PID is DEPID-R-ADD for Dementia-
Bank and DEPID-R for AMI.

dard deviation of the 100 macro-averaged cross-
validated runs. For each experiment we report
class-weighted precision, recall and F-score.6

5.4 Classification results

The classification results using various ID mea-
sures are shown in Table 6. On both datasets, PID
and SID are better from the CPIDR baseline al-
though the difference is considerably larger on the
free-recall AMI dataset. On DementiaBank, SID
performs better than PID and combining SID and
PID also gives a small consistent cumulative effect,
improving the F-score by 1.7%. On AMI data, the
SID performs surprisingly well, considering that
the automatic ICUs were extracted from only 10
clusters and the number of clusters was not tuned
to that dataset at all. However, PID performs ca 5%
better than SID in terms of all measures. Combin-
ing PID and SID gives some improvements in pre-
cision at the cost the decrease in recall and gives no
cumulative gains in F-score. These results are fully
in line with our expectations that the syntax-based
DEPID performs better on the free-topic dataset,
while the SID is better on closed-domain dataset.

For better comparison with Yancheva and Rudz-
icz (2016) we also experimented with the distance-
based cluster features, which are derived from the
clusters underlying the automatic SID (see sec-
tion 4). We also show additional semantic baselines
using LIWC features (Tausczik and Pennebaker,
2010) and bag-of-word (BOW) features extracting
the counts of nouns and verbs normalised by the
number of tokens. These results are shown in Ta-
ble 7. On DementiaBank dataset, cluster features
alone do not perform too well and using cluster
features together with PID and SID gives only mi-
nor improvements. On the other hand, both the

6Classification accuracy is omitted because it is equivalent
to the class-weighted recall.
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Data Features Precision Recall F-score
DB Clusters 62.3 (1.6) 62.2 (1.7) 62.2 (1.7)
DB C+PID 67.4 (1.7) 64.9 (1.5) 65.1 (1.5)
DB C+SID 73.4 (1.4) 71.5 (1.3) 71.6 (1.3)
DB C+SID+PID 74.4 (1.5) 72.5 (1.2) 72.7 (1.2)
DB LIWC 80.0 (0.9) 78.4 (0.7) 78.5 (0.7)
DB BOW 80.6 (1.1) 79.1 (1.0) 79.3 (1.0)

AMI Clusters 76.9 (7.7) 71.2 (5.2) 70.5 (5.8)
AMI C+PID 81.2 (5.0) 75.7 (3.8) 75.3 (3.8)
AMI C+SID 83.5 (5.0) 77.9 (4.1) 77.7 (4.4)
AMI C+SID+PID 84.6 (4.4) 78.1 (3.8) 78.4 (4.0)
AMI LIWC 74.2 (4.7) 67.8 (3.5) 66.8 (3.3)
AMI BOW 65.1 (7.2) 65.3 (4.1) 61.6 (4.7)

Table 7: Classification results on DementiaBank
(DB) and AMI using cluster features (C) combined
with PID and SID, and LIWC and BOW baselines.
The PID is DEPID-R-ADD for DementiaBank and
DEPID-R for AMI.

Data Features Precision Recall F-score
DB Clusters 68.0 (1.2) 65.5 (0.9) 65.7 (0.8)
DB C+PID 69.6 (1.1) 67.1 (0.7) 67.4 (0.7)
DB C+SID 75.3 (1.0) 73.3 (0.7) 73.5 (0.7)
DB C+SID+PID 76.6 (1.1) 74.8 (0.8) 75.0 (0.7)

AMI Clusters 86.0 (3.6) 80.4 (2.2) 80.5 (2.1)
AMI C+PID 88.4 (3.9) 83.0 (2.7) 83.2 (2.8)
AMI C+SID 88.6 (3.0) 84.8 (1.7) 84.8 (1.7)
AMI C+SID+PID 87.3 (3.8) 82.4 (2.6) 82.7 (2.7)

Table 8: Classification results on DementiaBank
(DB) and AMI using cluster features (C) combined
with PID and SID. The clusters are pre-trained on
the whole dataset. The PID is DEPID-R-ADD for
DementiaBank and DEPID-R for AMI.

LIWC and BOW baselines perform very well on
DementiaBank with BOW features giving the total
highest precision of 80.6%, recall of 79.1% and
F-score of 79.3%. In fact, these results are very
close to the state-of-the-art on this dataset: a recall
of 81.9% (Fraser et al., 2015) and an F-score of
80.0% (Yancheva and Rudzicz, 2016). Note how-
ever that the BOW features are conceptually much
simpler than the acoustic and lexicosyntactic fea-
tures extracted by Yancheva and Rudzicz (2016)
and Fraser et al. (2015).

On the free-recall AMI data, the cluster features
perform surprisingly well while the results of the
LIWC and BOW baselines are lower. Adding clus-
ter features to ID behaves inconsistently—in case
of SID the F-score improves while adding cluster
features to PID lowers the F-score. It is also worth
noticing that results on AMI data including clus-
ter features vary quite a bit, in some cases having
standard deviation even as high as 7.7%.

Finally, we experimented with a scenario where

the word embedding clusters are pre-trained on the
whole dataset, in which case the clustering and thus
also the SID feature reflect the structure of both
training and test folds. This scenario assumes re-
training the clustering and the classification model
for each new test item/set. Although the classifica-
tion model is then informed by the test set, we do
not see it as test set leakage as the clustering is unsu-
pervised. These results, given in Table 8, show that
all results on both datasets improve, whereas the im-
provements are considerably larger on AMI dataset,
which is expected because the model trained on the
free-topic AMI data is likely to gain more on know-
ing the topics discussed in the test item/set. This
scenario gives the highest F-score of 84.8% on this
dataset when adding cluster features to SID.

Note, that the cluster features F-score trained
on the full dataset is slightly lower than the 68%
reported by Yancheva and Rudzicz (2016). This
difference is probably due to the differences in
hyperparameters and experimental setup: we use
an elastic-net regularised logistic regression classi-
fier while they used a random forest, we perform
10-fold cross-validation while they divided the De-
mentiaBank into 60-20-20 train-dev-test partitions.
However, the classification performance of cluster
features together with SID are in the same range as
their reported 74%.

6 Discussion

This is the first work we are aware of that com-
pares the same methods for predicting AD on two
different datasets. Moreover, most previous work
has been conducted either on constrained-topic
datasets, containing picture descriptions (Orimaye
et al., 2014; Fraser et al., 2015; Yancheva and
Rudzicz, 2016; Rentoumi et al., 2014), or semi-
constrained structured interviews about some par-
ticular topic (Thomas et al., 2005; Jarrold et al.,
2010, 2014), while our AMI dataset contains free
recall samples and thus is probably more sponta-
neous than the previously used datasets.

We expected PID to perform well on the free-
recall AMI dataset, which proved to be the case.
However, we were surprised that the small num-
ber of automatically extracted clusters perform so
well on that dataset too. This raises the natural
question what topics those clusters represent. To
shed light on this question, we studied the clus-
tering trained on the whole AMI dataset. There
were three clusters for which values differed sig-
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nificantly7 between AD and control subjects: C0
(p < 0.001), C6 (p < 0.001) and C9 (p = 0.0044).
C0, which could be denoted as a cluster describ-
ing experiences, contained a diverse mix of words,
which close to the cluster center denoted specific
aspects of something or connoted emotions such
as “rudeness”, “flirting” and “usher”, while the
farther words contained a range of aspects relevant
to people’s lives such as “billiards”, “bronchitis”
and “depression”. C6 contained close to the cluster
center simple work-related words, e.g. “working”,

“employed” and “student”, while farther from the
center there were more words referring to family
members and even further away became the words
referring to specific professions such as “psychol-
ogists”, “barrister” and “chemist”. The values
of C6 feature for AD patients were significantly
lower than for controls. Finally, the cluster C9
contained simple business-related words close to
the cluster center, such as “manage”, “product”
and “account”, while the words got more specific
farther away from the centroid, e.g. “licensed”,

“reorganisation” and “textile”.
Also, we checked how many words were con-

sidered as ICUs (words with dscaled < 3.0 to their
closest cluster center) on AMI data and found that
most words were counted. This suggests that the
automatically computed SID is in fact very close
to the simple proportion of nouns and verbs in the
transcripts. In order to check this, we extracted
the normalised counts of nouns and verbs from
all transcripts in both datasets and used it to train
single feature logistic regression classifiers. We
obtained the precision 67.6, recall 66.8 and F-score
66.6 on DementiaBank and precision 77.1, recall
76.0 and F-score 74.3 on AMI dataset. Also, we
found that on DementiaBank the simple bag-of-
words baseline obtained the results very close to
the current state-of-the-art that uses much more
complex feature sets, including both acoustic and
lexicosyntactic features (Fraser et al., 2015). These
two observations suggest that there is still room for
studying simple feature sets for predicting AD.

7 Conclusion

We experimented with two different definitions of
idea density—propositional idea density and se-
mantic idea density—in the classification task for
predicting Alzheimer’s disease. In the AD and psy-
cholinguistic literature, PID has been automatically

7We used the Wilcoxon signed rank test.

calculated using CPIDR (Engelman et al., 2010;
Ferguson et al., 2014; Bryant et al., 2013; Moe
et al., 2016). We show that CPIDR has a number of
flaws when applied to AD speech, and we propose
a new PID computation method DEPID which is
more highly correlated with manual estimates of
PID. We recommend that AD researchers use our
automatic measure, DEPID-R, which also excludes
repeating ideas from the total idea count, in place
of CPIDR.

This is the first comparison between PID and
SID and also the first computational study that eval-
uates the predictive models for Alzheimer’s disease
on two very different datasets. While on the closed-
topic picture description dataset SID performs bet-
ter, including PID also adds a small improvement
to the classification results. On the open-domain
dataset we found that the PID was more predictive
than SID as expected. However, the small number
of automatically extracted cluster features underly-
ing the SID, modeling the broad discussion topics,
led to even better results.

In future we plan to study the usefulness and
applicability of both PID and SID also in other
clinical tasks, such as in clinical diagnostic tasks
for depression or schizophrenia. Another possible
avenue for future work would include combining
dependency-base PID and embedding-based SID
into a unified idea density measure that would take
into account both the propositional structure as well
as the semantic content of words.
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