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Abstract
Implicit Semantic Role Labeling is a challenging task: it requires high-level understanding of the text while annotated data is very
limited. Due to the lack of training data, most researches either resort to simplistic machine learning methods or focus on automatically
acquiring training data. In this paper, we explore the possibilities of using more complex and expressive machine learning models
trained on a large amount of explicit roles. In addition, we compare the impact of one-way and multi-way selectional preference with the
hypothesis that the added information in multi-way models are beneficial. Although our models surpass a baseline that uses prototypical
vectors for SemEval-2010, we otherwise face mostly negative results. Selectional preference models perform lower than the baseline
on ON5V, a dataset of five ambiguous and frequent verbs. They are also outperformed by the Naı̈ve Bayes model of Feizabadi and
Pado (2015) on both datasets. We conclude that, even though multi-way selectional preference improves results for predicting explicit
semantic roles compared to one-way selectional preference, it harms performance for implicit roles. We release our source code,
including the reimplementation of two previously unavailable systems to enable further experimentation.
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1. Introduction
Defined as the recovery of semantic roles beyond imme-
diate syntactic structure, implicit Semantic Roles Labeling
(iSRL) can contribute valuable information for obtaining
complete semantic interpretations of text. Yet, it has been
elusive since its first shared task eight years ago (Ruppen-
hofer et al., 2010).
The main difficulty faced by researchers is the small size
of training data. Compared to traditional SRL datasets,
SemEval-2010 is hundreds-fold smaller, containing only
slightly more than a hundred of training examples (Ta-
ble 1). Early work applying traditional semantic role la-
beling (SRL) techniques to iSRL was met with deflating
results. Therefore, researchers limited themselves to sim-
plistic machine learning models such as Naı̈ve Bayes (Feiz-
abadi and Pado, 2015, among others) or abandoned ma-
chine learning altogether (Laparra and Rigau, 2013). Sev-
eral studies were devoted to the automatic expansion of
training data (see Section 2 for an overview).
This paper presents an attempt to recover implicit semantic
roles using neural networks. We take advantage of the fact
that OntoNotes contains a vast amount of manually anno-
tated explicit semantic roles from which we can learn the
selectional preference of frames (e.g. look.01 prefers ani-
mate fillers for role A0 (looker)). A neural network is used
to capture complex interactions between a predicate, a tar-
get role and its co-occurring roles. In addition, we com-
pare the impact of one-way selectional preference, taking
only the selectional preference of the predicate for the tar-
get role into account, to multi-way selectional preference,
which uses information from all semantic roles related to
the predicate.
The contribution of this paper is twofold: First, we experi-
mented with a class of simple neural models for iSRL and
two types of selection preference. While the results are
mostly negative, they highlight the importance of discourse

SemEval
OntoNotes

Train Test
Words 8K 9K 1,700K
Frames 344 371 7,007
Predicates 811 1,008 324,996
Predicates with DNI 102 118 0

Table 1: Statistics of an iSRL dataset (SemEval-
2010, PropBank version) and a traditional SRL dataset
(OntoNotes).

information (see Section 4.4 and 4.5) and suggest future di-
rections that should (not) be taken.
The second contribution lies in addressing the challenges
we met in carrying out this research and interpreting our re-
sults. The nature of these challenges lies in the fact that (1)
all resources for implicit Semantic Role Labeling are small,
(2) previous approaches differ in the dataset and the metrics
they use for evaluation, and (3) to our knowledge, none of
the existing systems is available as open source code. This
has led to a situation that is typical for challenging tasks
using small datasets: it is almost impossible to determine
what the state-of-the-art approach is and how new work re-
lates to this. Even results from papers that are evaluated
on the same dataset are difficult to compare, because differ-
ences in results can be due to the difference in features, ma-
chine learning algorithm, method of extending data, heuris-
tics or (as pointed out in Fokkens et al. (2013)) choices
in preprocessing and data preparation. As part of this re-
search, we built an experimental platform for iSRL. This
platform provides open source implementations for the ex-
periments reported in this paper, for the system described
in Schenk and Chiarcos (2016) which inspired our own
approach and for Feizabadi and Pado (2015)’s approach
which provided state-of-the-art performance on SemEval-
2010.
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The rest of the paper is organized as follows: Section 2
summarizes the foundation of iSRL and related work. In
Section 3, we outline our models of selectional preference.
Section 4 quantifies the effectiveness of selectional prefer-
ence with regard to iSRL. Section 5 concludes the work and
outlines future directions of research.

2. Background and Related Work

In this section, we explain what implicit Semantic Role La-
beling entails. This is followed by an overview of previous
work on this task. Next, we address related work that uses
selectional preferences. Consider the following sentence
from SemEval-2010 training set:

(1) Apparently [the tenants]A0 had [brought]bring.01 [lit-
tle or nothing]A1 with them, and all the furniture
down to the smallest details had been taken over
with [the house]A2.

The roles A0 and A1 of the predicate bring.01 can be filled
with phrases in the immediate syntactic structure while the
filler of A2 falls into a separate clause. Typically, a SRL
system would annotate the fillers for A0 and A1 and ignore
A2. It is therefore called a Null Instantiation (NI).
Null-instantiations can be indefinite (INI) and definite
(DNI). To reuse examples from Ruppenhofer et al. (2010),
in the blog headline More babbling about what it means to
know, the subject of knowing is not expected to be instanti-
ated within the discourse. In contrast, in the sentence Don’t
tell me you didn’t know!, the hearer expects a concrete filler
for the role of what (s)he should know and it can be ex-
pected to be present in previous context. The first example
is a case of INI while the second is a DNI.

2.1. Previous work on iSRL

Traditional SRL techniques led to very low results for iSRL
due to data sparseness (Chen et al., 2010; Tonelli and Del-
monte, 2010). Researchers therefore explored simpler al-
ternatives such as BayesNet (Silberer and Frank, 2012;
Roth and Frank, 2013; Roth and Frank, 2015), Naı̈ve Bayes
(Feizabadi and Pado, 2015), and memory-based learning
(Schenk et al., 2015). Others proposed non-parametric ap-
proaches such as observed frequency (Laparra and Rigau,
2012), prototypical vectors (Schenk and Chiarcos, 2016)
and other heuristics (Laparra and Rigau, 2013; Gorinski et
al., 2013).
In addition to methods of machine learning and heuristics,
previous work investigated the possibilities of increasing
training data. Feizabadi and Pado (2015) combine multiple
corpora and apply domain adaptation methods to deal with
the difference in genre. They demonstrated that combin-
ing two iSRL corpora led to improved performance. Sil-
berer and Frank (2012) and Roth and Frank (2015) used
heuristics to generate iSRL training examples from manu-
ally and automatically annotated SRL corpora. This work
differs from these approaches, because their research fo-
cused on creating iSRL training examples of reasonable
quality rather than using a SRL resource directly.

2.2. Selectional preferences
Selectional preference has a long research tradition (Katz
and Fodor, 1963) and has been applied in various tasks such
as syntactic parsing (Zhou et al., 2011), textual inference
(Ritter et al., 2010), and semantic role labeling (Zapirain et
al., 2013). The idea is simple: a role is filled with some
words more frequently than others. For example, the man
is much more likely a filler for the role A0 (leader) of the
predicate lead.01 than e.g. the bottle (an inanimate object)
although one can construct a grammatically and semanti-
cally correct example for each filler.
Next to the role’s semantics, co-occurring roles also have an
influence. For example, if lead.01’s role A4 (goal) is filled
by the guest house, the nation is an implausible filler for A1
(thing led), while it is perfectly plausible had we not known
what fills A4. This is known as multi-way selectional pref-
erence (van de Cruys, 2014).
One-way selectional preferences have been applied to im-
plicit semantic role labeling before. Silberer and Frank
(2012)’s system include a feature calculated using weighted
similarity to head words that are observed to fill a role.
The selectional preference model itself is described in (Erk,
2007) and (Resnik, 1996). A simpler model that uses un-
weighted similarity is used by Schenk and Chiarcos (2016).
Our results show that adding multi-way selectional prefer-
ence improves results on explicit semantic roles, but not
for iSRL. Recently work by Do et al. (2017) is closest to
our work but they apply their methods on nominal data and
did not compare one-way and multi-way selectional prefer-
ence.

2.3. Neural networks
Recent years have witnessed a surge of research interest in
neural networks for natural language processing (Goldberg,
2016). Plenty of models have been proposed for various
tasks (Godbole et al., 2015; Zhou and Xu, 2015; Andor et
al., 2016, among many others). Apart from Do et al. (2017)
who uses a different architecture for a different version of
the task, we are not aware of work that applies neural net-
works to iSRL.

3. Models
In this study, we focus exclusively on DNI resolution, the
last and hardest step in iSRL. For each test case, we assume
that the predicate p is already identified and disambiguated,
the target role r∗ is given, and overt roles are coupled with
their fillers {(rj , gj)|j = 1..m}. The goal is to rank the
correct filler highest among the candidates {ci|i = 1..n}.
To test a simple multi-way selectional preference model,
we use the following formula to assign a score for each
candidate:

s(ci) =

m⊕
j=1

f(p, r∗, rj , gj , ci) (1)

where m is the number of explicit roles known to the sys-
tem,

⊕
is a aggregation function (e.g. sum or max). In the

case of one-way selectional preference, the formula degen-
erates into:
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s′(ci) = f ′(p, r∗, ci) (2)

f and f ′ are neural networks that have the same architec-
ture, except the number of inputs. The precise form of the
neural networks and the aggregation function is determined
via a hyperparameter search (see Section 4.3).
Role fillers {gj} and candidates {ci} can be transformed
into features by extracting the head word, but other features
can also be used. Together with predicate and role names,
they are embedded into a vector space. The embedding ma-
trix is trainable and can be initialized with pretrained word
vectors for better performance.
Compared to a model that computes prototypical vectors as
the average of observed vectors in the fashion of Schenk
and Chiarcos (2016), our neural models have (at least) two
advantages:

• Distributed representation is used to represent predi-
cates and roles, not only fillers, allowing the model to
work in cases of unseen predicates or predicate-role
combinations.

• The representation enables the sharing of statistical
strength between predicates, i.e. rare predicates can
get more accurate predictions by means of resem-
blance to frequent predicates.

An additional motivation is that multi-way preference can
offer a solution to the context-dependent nature of semantic
role labeling. Our current results, however, do not provide
sufficient evidence to support such a claim.

4. Experiments
We evaluate our models for DNI resolution by comparing
our model to a baseline and to Feizabadi and Pado (2015).
In addition, we perform an ablation analysis to find out
which components of the model are useful.

4.1. Data
We train our selectional preference model on OntoNotes
(Weischedel et al., 2013), a balanced 1.7M words corpus
with over 320K manually annotated predicates and their ex-
plicit arguments.
SemEval-2010 (Ruppenhofer et al., 2010) is a standard
dataset to evaluate iSRL systems. It contains chapters of
Sherlock Holmes, one for training and two for testing, an-
notated with both implicit and explicit semantic roles. The
organizers provide two versions of the same dataset: one
annotated with FrameNet roles and the other PropBank.
Because OntoNotes was compiled using PropBank, we also
use the PropBank version of SemEval-2010.
Note that OntoNotes differs from SemEval-2010 in task
(explicit versus implicit SRL), genres (news, weblogs and
conversations versus novel) and time period (20th century
versus 19th century). Training on OntoNotes SRL and test-
ing on SemEval-2010 iSRL can be seen as a form of domain
adaptation and requires powerful generalization.
We also test our models on ON5V (Moor et al., 2013)
which poses a different challenge. Implicit semantic
roles were manually annotated on top of explicit seman-
tic roles and other linguistic information on a selection of

Predicate Role Filler head Filler full
pay.01 A2 refugees the refugees
pay.01 A2 U.S. U.S.
pay.01 A2 families the victims’ families
pay.01 A2 trust this trust
pay.01 A2 Warner AOL Time Warner
pay.01 A2 they they
pay.01 A2 lenders lenders
pay.01 A2 lawyers lawyers
pay.01 A2 one one

Table 2: Examples from ON5V showing the diversity of
fillers in terms of semantic types, part-of-speech, and top-
ics.

OntoNotes documents. The authors chose five highly fre-
quent verbs to annotate in order to create “high-volume of
annotations for specific verb predicates”.1 As a result, the
words and phrases that fill each role are very diverse, as
illustrated by the examples in Table 2. To achieve high per-
formance on this dataset, a model needs to be selective yet
general enough to encompass different types of fillers.

4.2. Baseline
Our baseline is inspired by Schenk and Chiarcos (2016).
For every <predicate, role> pair found in our training set,
it computes a prototypical vector and, at test time, returns
the candidate that is closest to the prototypical vector. Fol-
lowing their best model, we use the pretrained embeddings
from Collobert et al. (2011).
Due to some differences between research questions and
experimental setup, the results cannot be compared to
Schenk and Chiarcos’s algorithm directly. Firstly, for a fair
comparison with selectional preference-based models, we
use only the head word of each candidate (whereas they av-
erage all words in the phrase). Secondly, we train and eval-
uate on PropBank-style datasets while they use FrameNet-
style data.

4.3. Experimental Setup
We use the baseline described in the previous section and
a Naı̈ve Bayes model trained on SemEval-2010 data (Feiz-
abadi and Pado, 2015) to compare to our model’s perfor-
mance. To quantify the effect of different aspects of the
model, we investigate the following variants:

ONEWAY captures one-way selectional preference and
represents fillers by their syntactic head.

MULTIWAY captures multi-way selectional preference
and represents fillers by their syntactic head.

SYNSEM uses richer features for fillers rather than selec-
tional preferences. We use five syntactic and semantic
features from Feizabadi and Pado (2015), namely, Ex-
pected roles, Semantic Type, Word Frequency, POS,
and Constituent type.2

1They are: pay, give, bring, leave, put.
2See Table 2 in their paper. We did not use their discourse fea-

tures because they require iSRL annotations which is not available
in OntoNotes.
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Train (%) Validation (%)
ONEWAY 59.52 46.61±0.23
MULTIWAY 58.52 47.64±0.19

Table 3: Accuracy of selectional preference models on
OntoNotes (for validation set we report mean and standard
deviation over 5 runs).

SYNSEM+ONEWAY combines richer features with one-
way selectional preference.

SYNSEM+MULTIWAY takes into account co-occurring
roles to capture multi-way selectional preference.

We construct one training example for each argument found
in OntoNotes and split the data into 90% for training and
10% for development. Models are trained to choose the
right filler for each target role with as input: the predicate,
the role and, if applicable, other explicit arguments. We
evaluate on the NI-only test set from SemEval-2010 using
the standard evaluation script (Ruppenhofer et al., 2010).
We initiated the embedding matrix with 27K vectors from
the pretrained embeddings of Collobert et al. (2011). We
use AdaGrad (Duchi et al., 2011) for optimization; the ini-
tial learning rate was customized for each model to avoid
gradient explosion. All models were trained until no im-
provement was observed on the development set (but not
more than 1,000 epochs, for practical reasons). To account
for random initialization in neural networks, we run each
model 15 times and average the results. An arbitrary but
fixed random seed was used for each run to ensure repro-
ducibility.
All hyperparameters were tuned on OntoNotes develop-
ment set. We tested sum and max for aggregation func-
tion; sigmoid, tanh, and cube for activation function (Chen
and Manning, 2014); different strength of dropout (Hin-
ton et al., 2012), regularization, and learning rate. Because
of limited computational resource, we performed a random
hyperparameter search to find the best setting. As discussed
in Section 3, fillers can be represented in different ways.
We observed that using both the head word and the closest
coreferent non-pronoun head word is better than using the
head word only on our development set. Notice that gold
coreference chains are assumed to be available at test time
and were used in previous work (Silberer and Frank, 2012)
as well as the system we compare to (Feizabadi and Pado,
2015).
The source code of all experiments, including random
seeds and replication instructions, is publicly available at:
https://bitbucket.org/cltl/isrl-sp.

4.4. Results on SemEval-2010
Table 3 shows the performance of selectional preference
models with regard to resolving the explicit roles of
OntoNotes. Selectional preference alone (without the help
of syntactic structures) can find the correct filler in more
than 47% of the cases. We observe a small but statistically
significant (p < 0.05) improvement on the validation set by
adding multiway selectional preference.
The results in Table 4 show that our models significantly
increase the F1 score above the baseline on SemEval-2010

P R F1

Baseline 26.85 21.80 24.07
F&P 35.04 30.83 32.80

ONEWAY 28.80 28.67 28.74 ± 1.63
MULTIWAY 27.02 26.82 26.92 ± 1.42

SYNSEM 16.63 16.54 16.58 ± 1.51
ONEWAY+SYNSEM 24.05 23.91 23.98 ± 5.05
MULTIWAY+SYNSEM 17.29 17.29 17.29 ± 0.00

Table 4: Results on SemEval-2010. Results of neural mod-
els are averaged over 15 runs. F1 scores are reported with
mean and standard deviation when possible.

P R F1

Baseline 13.00 13.00 13.00
F&P 16.72 15.19 15.90

ONEWAY 10.64 10.64 10.64 ± 1.44
MULTIWAY 9.14 9.14 9.14 ± 1.46

SYNSEM 5.92 5.92 5.92 ± 2.10
ONEWAY+SYNSEM 10.37 10.37 10.37 ± 5.50
MULTIWAY+SYNSEM 1.24 1.24 1.24 ± 0.00

Table 5: Results on ON5V

dataset. Both neural models show significant improvement
in precision and an even bigger improvement in recall. This
can be attributed to their ability to generalize to unseen
predicate-role combinations and abstract away from ob-
served ones in their hidden layer. Contrary to our expec-
tation, MULTIWAY is inferior to ONEWAY (p < 0.05).
ONEWAY and MULTIWAY do not outperform F&P which
is simpler in terms of machine learning architecture, but is
trained on in-domain, iSRL data, and uses more features.
To bridge the gap between the models, we also integrate
Feizabadi and Pado’s syntactic and semantic features into
our neural models but they do not lead to improved perfor-
mance.
Table 3 and Table 4 reveal an increase in random fluctua-
tion when moving from OntoNotes to SemEval-2010, prob-
ably because of a difference of some orders of magnitude
in size. Moreover, SYNSEM+ONEWAY gets an F1-score
of 16.54% for one of its runs (lower than the mean of all
other neural models) and 29.43% for another (higher than
all means). These observations stress the importance of
running experiments multiple times when random factors
(such as parameter initialization and the order of training
examples) are involved. Based on a single run, a model
might be heavily over- or underrated.

4.5. Results on ON5V
In Table 5, we report the results of models on ON5V (Moor
et al., 2013). Again, the Naı̈ve Bayes model using both
local and discourse information proposed by Feizabadi and
Pado (2015) clearly provides the best performance, whereas
neural models do not show improvement over the baseline
(p < 0.05).
The disappointing performance points to its inherent limi-
tation: it expects one prototypical filler per 〈predicate, role〉
pair. As shown in Table 2, this assumption breaks in ON5V,
resulting in a lower mean and higher variance.
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We expected that MULTIWAY would alleviate this problem
by varying the predicted vector based on surrounding roles.
While it achieves that for explicit SRL on OntoNotes (Ta-
ble 3), the result does not carry over to ON5V.
Local syntactic and semantic information do not improve
results for SemEval. This applies even more strongly to
ON5V. SYNSEM leads to very low results when stand-
ing alone and does not improve performance when com-
bined with ONEWAY or MULTIWAY (the difference be-
tween ONEWAY and its combination with SYNSEM is not
statistically significant). In comparison with F&P, this re-
sult emphasizes the importance of discourse information in
the task.

5. Conclusions
In this paper, we investigated the use of more expressive
machine learning models for implicit Semantic Role Label-
ing. We proposed novel neural models that use selectional
preference and applied them to iSRL. Our empirical results
show that neural models are only better than a lookup table
of prototypical vectors in a natural setting such as SemEval-
2010 while underperforming for highly frequent and am-
biguous words in ON5V. Furthermore, the added expressive
power does not help neural models to overcome a simpler
model trained on in-domain data and equipped with dis-
course features (though it should be noted that we tested
only a small family of simple architectures, cf. Do et al.
(2017)). Multi-way preference is found to be helpful in the
case of (explicit) semantic role labeling but not for iSRL.
Although the results are mostly negative, our research pro-
vides hard-earned insights into this challenging task which
we believe will be useful for researchers.
We release all of our models and the implementation
of Schenk and Chiarcos (2016) and Feizabadi and Pado
(2015)’s models as open-source software. We also report
the fluctuation of results which stresses the importance of
measuring a model multiple times when stochastic factors
are involved.
Overall, this paper provides a solid basis for further re-
search. Our observations on fluctuation and significance
suggest more evaluation data may be needed to identify the
true impact of specific models and features.
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