Abstract

Microblogging networks serve as vehicles for reaching and influencing users. Predicting whether a message will elicit a user response opens the possibility of maximizing the virality, reach and effectiveness of messages and ad campaigns on these networks. We propose a discriminative model for predicting the likelihood of a response or a retweet on the Twitter network. The approach uses features derived from various sources, such as the language used in the tweet, the user's social network and history. The feature design process leverages aggregate statistics over the entire social network to balance sparsity and informativeness. We use real-world tweets to train models and empirically show that they are capable of generating accurate predictions for a large number of tweets.

1 Introduction

Microblogging networks are increasingly evolving into broadcasting networks with strong social aspects. The most popular network today, Twitter, reported routing 200 million tweets (status posts) per day in mid-2011. As the network is increasingly used as a channel for reaching out and marketing to its users, content generators aim to maximize the impact of their messages, an inherently challenging task. However, unlike for conventionally produced news, Twitter’s public network allows one to observe how messages are reaching and influencing users. One such direct measure of impact are message responses.

In this work, we describe methods to predict if a given tweet will elicit a response. Twitter provides two methods to respond to messages: replies and retweets (re-posting of a message to one’s followers). Responses thus serve both as a measure of distribution and as a way to increase it. Being able to predict responses is valuable for any content generator, including advertisers and celebrities, who use Twitter to increase their exposure and maintain their brand. Furthermore, this prediction ability can be used for ranking, allowing the creation of better optimized news feeds.

To predict if a tweet will receive a response prior to its posting we use features of the individual tweet together with features aggregated over the entire social network. These features, in combination with historical activity, are used to train a prediction model.

2 Related Work

The public nature of Twitter and the unique characteristics of its content have made it an attractive research topic over recent years. Related work can be divided into several types:

Twitter Demographics One of the most fertile avenues of research is modeling users and their interactions on Twitter. An extensive line of work characterizes users (Pear Analytics, 2009) and quantifies user influence (Cha et al., 2010; Romero et al., 2011; Wu et al., 2011; Bakshy et al., 2011). Popescu and Jain (2011) explored how businesses use Twitter to connect with their customer base. Popescu and Pennacchiotti (2011) and Qu et al. (2011) investigated
how users react to events on social media. There also has been extensive work on modeling conversational interactions on Twitter (Honeycutt and Herring, 2009; Boyd et al., 2010; Ritter et al., 2010; Danescu-Niculescu-Mizil et al., 2011). Our work builds on these findings to predict response behavior on a large scale.

Mining Twitter Social media has been used to detect events (Sakaki et al., 2010; Popescu and Pennacchiotti, 2010; Popescu et al., 2011), and even predict their outcomes (Asur and Huberman, 2010; Culotta, 2010). Similarly to this line of work, we mine the social network for event prediction. In contrast, our focus is on predicting events within the network.

Response Prediction There has been significant work addressing the task of response prediction in news articles (Tsagkias et al., 2009; Tsagkias et al., 2010) and blogs (Yano et al., 2009; Yano and Smith, 2010; Balasubramanyan et al., 2011). The task of predicting responses in social networks has been investigated previously: Hong et al. (2011) focused on predicting responses for highly popular items, Rowe et al. (2011) targeted the prediction of conversations and their length and Suh et al. (2010) and Petrovic et al. (2011) predicted retweets. In contrast, our work targets tweets regardless of their popularity and attempts to predict both replies and retweets. Furthermore, we present a scalable method to use linguistic lexical features in discriminative models by leveraging global network statistics. A related task to ours is that of response generation, as explored by Ritter et al. (2011). Our work complements their approach by allowing to detect when the generation of a response is appropriate. Lastly, the task of predicting the spread of hashtags in microblogging networks (Tsur and Rappoport, 2012) is also closely related to our work and both approaches supplement each other as measures of impact.

Ranking in News Feeds Different approaches were suggested for ranking items in social media (Das Sarma et al., 2010; Lakkaraju et al., 2011). Our work provides an important signal, which can be incorporated into any ranking approach.

3 Response Prediction on Twitter

Our goal is to learn a function f that maps a tweet x to a binary value $y \in \{0, 1\}$, where y indicates if x will receive a response. In this work we make no distinction between different kinds of responses.

In addition to x, we assume access to a social network \mathcal{S}, which we view as a directed graph (U, E). The set of vertices U represents the set of users. For each $u', u'' \in U$, $(u', u'') \in E$ if and only if there exists a following relationship from u' to u''.

For the purpose of defining features we denote x_t as the text of the tweet x and $u \in U$ the user who posted x. For training we assume access to a set of n labeled examples $\{(x_i, y_i) : i = 1 \ldots n\}$, where the label indicates whether the tweet has received a response or not.

3.1 Features

For prediction we represent a given tweet x using six feature families:

Historical Features Historical behavior is often strong evidence of future trends. To account for this information, we compute the following features: ratio of tweets by u that received a reply, ratio of tweets by u that were retweeted and ratio of tweets by u that received both a reply and retweet.

Social Features The immediate audience of a user u is his followers. Therefore, incorporating social features into our model is likely to contribute to its prediction ability. For a user $u \in U$ we include features for the number of followers (indegree in \mathcal{S}), the number of users u follows (outdegree in \mathcal{S}) and the ratio between the two.

Aggregate Lexical Features To detect lexical items that trigger certain response behavior we define features for all bigrams and hashtags in our set of tweets. To avoid sparsity and maintain a manageable feature space we compress the features using the labels: for each lexical item l we define R_l to be the set of tweets that include l and received a response, and N_l to be the set of tweets that contain l and received no response. We then define the integer n to be the rounding of $|N_l| / |R_l|$ to the nearest integer. For each such integer we define a feature, which we increase by 1 when the lexical item l is present in x_t.
We use this process separately for bigrams and hashtags, creating separate sets of aggregate features.

Local Content Features We introduce 45 features to capture how the content of x_t influences response behavior, including features such as the number of stop words and the percentage of English words. In addition, we include features specific to Twitter, such as the number of hash tags and user references.

Posting Features Past analysis of Twitter showed that posting time influences response potential (Pear Analytics, 2009). To examine temporal influences, we include features to account for the user’s local time and day of the week when x_t was created.

Sentiment Features To measure how sentiment influences response behavior, we define features that count the number of positive and negative sentiment words in x_t. To detect sentiment words, we use a proprietary Microsoft lexicon of 7K positive and negative terms.

4 Evaluation

4.1 Learning Algorithm

We experimented with two different learning algorithms: Multiple Additive Regression-Trees (MART) (Wu et al., 2008) and a maximum entropy classifier (Berger et al., 1996). Both provide fast classification, a natural requirement for large-scale real-time tasks.

4.2 Dataset

In our evaluation, we focus on English tweets only. Since we use local posting time in our features, we filtered users whose profile did not contain location information. To collect Tweets, messages we used the entire public feed of Twitter (often referred to as the Twitter Firehose). We randomly sampled 943K tweets from one week of data. We allowed an extra week for responses, giving a response window of two weeks. The majority of tweets in our set (90%) received no response. We used 750K tweets for training and 188K for evaluation. A separate dataset served as a development set. For the computation of aggregate lexical features, we used 186M tweets from the same week, resulting in 14M bigrams and 400K hash tags. To compute historical features, we sampled 2B tweets from the previous three months.

![Figure 1: Precision-recall curves for predicting that a tweet will get a response. The marked area highlights the area of the curve we focus on in our evaluation.](image1)

![Figure 2: Precision-recall curves with increasing number of features removed for the marked area in Figure 1. For each curve, we removed one additional feature set from the one above it.](image2)

4.3 Results

Our evaluation focuses on precision-recall curves for predicting that a given tweet will get a response. The curves were generated by varying the confidence measure threshold, which both classifiers provided. As can be seen in Figure 1, MART outperforms the maximum entropy model. We can also see that it is hard to predict response behavior for most tweets, but for a large subset, we can provide a relatively accurate prediction (highlighted in Figure 1). The rest of our analysis focuses on this subset and on results based on MART.

To better understand the contribution of each feature set, we removed features in a greedy manner. After building a model and testing it, we removed the feature family that was overall most highly ranked by MART (i.e., was used in high-level splits in the decision trees) and learned a new model. Figure 2 shows how removing feature sets degrades prediction performance. Removing historical features lowers the model’s prediction abilities, although prediction quality remains relatively high. Removing social features creates a bigger drop in performance. Lastly, removing aggregate lexical features and lo-
cal content features further decreases performance. At this point, removing posting time features is not influential. Following the removal of posting time features, the model includes only sentiment features.

5 Discussion and Conclusion

The first trend seen by removing features is that local content matters less, or at least is more complex to capture and use for response prediction. Despite the influence of chronological trends on posting behavior on Twitter (Pear Analytics, 2009), we were unable to show influence of posting time on response prediction. Historical features were the most prominent in our experiments. Second were social features, showing that developing one’s network is critical for impact. The third most prominent set of features, aggregate lexical features, shows that users are sensitive to certain expressions and terms that tend to trigger responses.

The natural path for future work is to improve performance using new features. These may include clique-specific language features, more properties of the user’s social network, mentions of named entities and topics of tweets. Another direction is to distinguish between replies and retweets and to predict the number of responses and the length of conversations that a tweet may generate. There is also potential in learning models for the prediction of other measures of impact, such as hashtag adoption and inclusion in “favorites” lists.

Acknowledgments

We would like to thank Alan Ritter, Bill Dolan, Chris Brocket and Luke Zettlemoyer for their suggestions and comments. We wish to thank Chris Quirk and Qiang Wu for providing us with access to their learning software. Thanks to the reviewers for the helpful comments.

References

