
Proceedings of NAACL HLT 2007, Companion Volume, pages 201–204,
Rochester, NY, April 2007. c©2007 Association for Computational Linguistics

A Three-step Deterministic Parser for Chinese Dependency Parsing

Kun Yu Sadao Kurohashi Hao Liu

Graduate School of Informatics Graduate School of Informatics Graduate School of Information

Science and Technology

Kyoto University Kyoto University The University of Tokyo

kunyu@nlp.kuee.kyoto-u.ac.jp kuro@i.kyoto-u.ac.jp liuhao@kc.t.u-tokyo.ac.jp

Abstract

 This paper presents a three-step dependency

parser to parse Chinese deterministically. By divid-

ing a sentence into several parts and parsing them

separately, it aims to reduce the error propagation

coming from the greedy characteristic of determi-

nistic parsing. Experimental results showed that

compared with the deterministic parser which

parsed a sentence in sequence, the proposed parser

achieved extremely significant improvement on

dependency accuracy.

1 Introduction

Recently, as an attractive alternative to probabilistic

parsing, deterministic parsing (Yamada and Matsumoto,

2003; Nivre and Scholz, 2004) has drawn great attention

with its high efficiency, simplicity and good accuracy

comparable to the state-of-the-art generative probabilis-

tic models. The basic idea of deterministic parsing is

using a greedy parsing algorithm that approximates a

globally optimal solution by making a sequence of lo-

cally optimal choices (Hall et al., 2006). This greedy

idea guarantees the simplicity and efficiency, but at the

same time it also suffers from the error propagation

from the previous parsing choices to the left decisions.

For example, given a Chinese sentence, which means

Paternity test is a test that gets personal identity

through DNA analysis, and it brings proof for finding

lost children, the correct dependency tree is shown by

solid line (see Figure 1). But, if word 通过(through) is

incorrectly parsed as depending on word 是(is) (shown

by dotted line), this error will result in the incorrect

parse of word 鉴定(a test) as depending on word 提供
(brings) (shown by dotted line).

This problem exists not only in Chinese, but also in

other languages. Some efforts have been done to solve

this problem. Cheng et al. (2005) used a root finder to

divide one sentence into two parts by the root word and

parsed them separately. But the two-part division is not

enough when a sentence is composed of several coordi-

nating sub-sentences. Chang et al. (2006) applied a

pipeline framework in their dependency parser to make

the local predictions more robust. While it did not show

great help for stopping the error propagation between

different parsing stages.

Figure 1. Dependency tree of a sentence (word sequence is top-down)

This paper focuses on resolving this issue for Chi-

nese. After analyzing the dependency structure of sen-

tences in Penn Chinese Treebank 5.1 (Xue et al., 2002),

we found an interesting phenomenon: if we define a

main-root as the head of a sentence, and define a sub-

sentence as a sequence of words separated by punctua-

tions, and the head
1
 of these words is the child of main-

root or main-root itself, then the punctuations that de-

pend on main-root can be a separator of sub-sentences.

For example, in the example sentence there are three

punctuations marked as PU_A, PU_B and PU_C, in

which PU_B and PU_C depends on main-root but

PU_A depends on word 得出(gets). According to our

observation, PU_B and PU_C can be used for segment-

ing this sentence into two sub-sentences A and B (cir-

cled by dotted line in Figure 2), where the sub-root of A

is main-root and the sub-root of B depends on main-root.

This phenomenon gives us a useful clue: if we divide

a sentence by the punctuations whose head is main-root,

then the divided sub-sentences are basically independ-

ent of each other, which means we can parse them sepa-

rately. The shortening of sentence length and the recog-

nition of sentence structure guarantee the robustness of

deterministic parsing. The independent parsing of each

sub-sentence also prevents the error-propagation. In

1 The head of sub-sentence is defined as a sub-root.

201

addition, because the sub-root depends on main-root or

is main-root itself, it is easy to combine the dependency

structure of each sub-sentence to create the final de-

pendency tree.

Figure 2. A segmentation of the sentence in Figure 1

Based on above analyses, this paper proposes a three-

step deterministic dependency parser for Chinese, which

works as:

Step1(Sentence Segmentation): Segmenting a sen-

tence into sub-sentences by punctuations (sub-sentences

do not contain the punctuations for segmentation);

Step2(Sub-sentence Parsing): Parsing each sub-

sentence deterministically;

Step3(Parsing Combination): Finding main-root

among all the sub-roots, then combining the dependency

structure of sub-sentences by making main-root as the

head of both the left sub-roots and the punctuations for

sentence segmentation.

2 Sentence Segmentation

As mentioned in section 1, the punctuations depending

on main-root can be used to segment a sentence into

several sub-sentences, whose sub-root depends on main-

root or is main-root. But by analysis, we found only

several punctuations were used as separator commonly.

To ensure the accuracy of sentence segmentation, we

first define the punctuations which are possible for seg-

mentation as valid punctuation, which includes comma,

period, colon, semicolon, question mark, exclamatory

mark and ellipsis. Then the task in step 1 is to find

punctuations which are able to segment a sentence from

all the valid punctuations in a sentence, and use them to

divide the sentence into two or more sub-sentences.

We define a classifier (called as sentence seg-

menter) to classify the valid punctuations in a sentence

to be good or bad for sentence segmentation. SVM (Se-

bastiani, 2002) is selected as classification model for its

robustness to over-fitting and high performance.

Table 1 shows the binary features defined for sen-

tence segmentation. We use a lexicon consisting of all

the words in Penn Chinese Treebank 5.1 to lexicalize

word features. For example, if word 为 (for) is the

27150th word in the lexicon, then feature Word1 of

PU_B (see Figure 2) is ‘27150:1’. The pos-tag features

are got in the same way by a pos-tag list containing 33

pos-tags, which follow the definition in Penn Chinese

Treebank. Such method is also used to get word and

pos-tag features in other modules.
Table 1. Features for sentence segmenter

Feature Description

Wordn/Posn word/pos-tag in different position, n=-2,-1,0,1,2

Word_left/

Pos_left

word/pos-tag between the first left valid punctua-

tion and current punctuation

Word_right/

Pos_right

word/pos-tag between current punctuation and

the first right valid punctuation

#Word_left/

#Word_right

if the number of words between the first left/right

valid punctuation and current punctuation is

higher than 2, set as 1; otherwise set as 0

V_left/

V_right

if there is a verb between the first left/right valid

punctuation and current punctuation, set as 1;

otherwise set as 0

N_leftFirst/

N_rightFirst

if the left/right neighbor word is a noun, set as 1;

otherwise set as 0

P_rightFirst/

CS_rightFirst

if the right neighbor word is a preposi-

tion/subordinating conjunction, set as 1; other-

wise set as 0

3 Sub-sentence Parsing

3.1 Parsing Algorithm

The parsing algorithm in step 2 is a shift-reduce parser

based on (Yamada and Matsumoto, 2003). We call it as

sub-sentence parser.

Two stacks P and U are defined, where stack P keeps

the words under consideration and stack U remains all

the unparsed words. All the dependency relations cre-

ated by the parser are stored in queue A.

At start, stack P and queue A are empty and stack U

contains all the words. Then word on the top of stack U

is pushed into stack P, and a trained classifier finds

probable action for word pair <p,u> on the top of the

two stacks. After that, according to different actions,

dependency relations are created and pushed into queue

A, and the elements in the two stacks move at the same

time. Parser stops when stack U is empty and the de-

pendency tree can be drawn according to the relations

stored in queue A.

Four actions are defined for word pair <p, u>:

LEFT: if word p modifies word u, then push p�u

into A and push u into P.

RIGHT: if word u modifies word p, then push u�p

into A and pop p.

REDUCE: if there is no word u’ (u’∊U and u’≠u)

which modifies p, and word next to p in stack P is p’s

head, then pop p.

SHIFT: if there is no dependency relation between p

and u, and word next to p in stack P is not p’s head, then

push u into stack P.

202

We construct a classifier for each action separately,

and classify each word pair by all the classifiers. Then

the action with the highest classification score is se-

lected. SVM is used as the classifier, and One vs. All

strategy (Berger, 1999) is applied for its good efficiency

to extend binary classifier to multi-class classifier.

3.2 Features

Features are crucial to this step. First, we define some

features based on local context (see Flocal in Table 2),

which are often used in other deterministic parsers

(Yamada and Matsumoto, 2003; Nivre et al., 2006).

Then, to get top-down information, we add some global

features (see Fglobal in Table 2). All the features are bi-

nary features, except that Distance is normalized be-

tween 0-1 by the length of sub-sentence.

Before parsing, we use a root finder (i.e. the sub-

sentence root finder introduced in Section 4) to get

Rootn feature, and develop a baseNP chunker to get

BaseNPn feature. In the baseNP chunker, IOB represen-

tation is applied for each word, where B means the word

is the beginning of a baseNP, I means the word is inside

of a baseNP, and O means the word is outside of a

baseNP. Tagging is performed by SVM with One vs. All

strategy. Features used in baseNP chunking are current

word, surrounding words and their corresponding pos-

tags. Window size is 5.
Table 2. Features for sub-sentence parser

Feature Description

Wordn/

Posn

word/pos-tag in different position,

n= P0, P1, P2, U0, U1, U2 (Pi/Ui mean

the ith position from top in stack P/U)

Word_childn/

Pos_childn

the word/pos-tag of the children of

Wordn, n= P0, P1, P2, U0, U1, U2

Local

Feature

(Flocal)

Distance distance between p and u in sentence

Rootn
if Wordn is the sub-root of this sub-

sentence, set as 1; otherwise set as 0

Global

Feature

(Fglobal) BaseNPn baseNP tag of Wordn

Table 3. Features for sentence/sub-sentence root finder

Feature Description

Wordn/Posn words in different position, n=-2,-1,0,1,2

Word_left/Pos_left wordn/posn where n<-2

Word_right/Pos_right wordn/posn where n>2

#Word_left/

#Word_right

if the number of words between the

start/end of sentence and current word is

higher than 2, set as 1; otherwise set as 0

V_left/V_right

if there is a verb between the start/end of

sentence and current word, set as 1; oth-

erwise set as 0

Nounn/Verbn/Adjn

if the word in different position is a

noun/verb/adjective, set as 1; otherwise

set as 0. n=-2,-1,1,2

Dec_right
if the word next to current word in right

side is 的(of), set as 1; otherwise set as 0

CC_left

if there is a coordinating conjunction

between the start of sentence and current

word, set as 1; otherwise set as 0

BaseNPn baseNP tag of Wordn

4 Parsing Combination

A root finder is developed to find main-root for parsing

combination. We call it as sentence root finder. We

also retrain the same module to find the sub-root in step

2, and call it as sub-sentence root finder.

We define the root finding problem as a classification

problem. A classifier, where we still select SVM, is

trained to classify each word to be root or not. Then the

word with the highest classification score is chosen as

root. All the binary features for root finding are listed in

Table 3. Here the baseNP chunker introduced in section

3.2 is used to get the BaseNPn feature.

5 Experimental Results

5.1 Data Set and Experimental Setting

We use Penn Chinese Treebank 5.1 as data set. To

transfer the phrase structure into dependency structure,

head rules are defined based on Xia’s head percolation

table (Xia and Palmer, 2001). 16,984 sentences and

1,292 sentences are used for training and testing. The

same training data is also used to train the sentence

segmenter, the baseNP chunker, the sub-sentence root

finder, and the sentence root finder. During both train-

ing and testing, the gold-standard word segmentation

and pos-tag are applied.

TinySVM is selected as a SVM toolkit. We use a

polynomial kernel and set the degree as 2 in all the ex-

periments.

5.2 Three-step Parsing vs. One-step Parsing

First, we evaluated the dependency accuracy and root

accuracy of both three-step parsing and one-step parsing.

Three-step parsing is the proposed parser and one-step

parsing means parsing a sentence in sequence (i.e. only

using step 2). Local and global features are used in both

of them.

Results (see Table 4) showed that because of the

shortening of sentence length and the prevention of er-

ror propagation three-step parsing got 2.14% increase

on dependency accuracy compared with one-step pars-

ing. Based on McNemar’s test (Gillick and Cox, 1989),

this improvement was considered extremely statistically

significant (p<0.0001). In addition, the proposed parser

got 1.01% increase on root accuracy.
Table 4. Parsing result of three-step and one-step parsing

Parsing Strategy
Dep.Accu.

(%)

Root Accu.

(%)

Avg. Parsing

Time (sec.)

One-step Parsing 82.12 74.92 22.13

Three-step Parsing
84.26

(+2.14)

75.93

(+1.01)

24.27

(+2.14)

Then we tested the average parsing time for each sen-

tence to verify the efficiency of proposed parser. The

average sentence length is 21.68 words. Results (see

Table 4) showed that compared with one-step parsing,

the proposed parser only used 2.14 more seconds aver-

203

agely when parsing one sentence, which did not affect

efficiency greatly.

To verify the effectiveness of proposed parser on

complex sentences, which contain two or more sub-

sentences according to our definition, we selected 665

such sentences from testing data set and did evaluation

again. Results (see Table 5) proved that our parser

outperformed one-step parsing successfully.
Table 5. Parsing result of complex sentence

Parsing Strategy Dep.Accu. (%) Root Accu. (%)

One-step Parsing 82.56 78.95

Three-step Parsing 84.94 (+2.38) 79.25 (+0.30)

5.3 Comparison with Others’ Work

At last, we compare the proposed parser with Nivre’s

parser (Hall et al., 2006). We use the same head rules

for dependency transformation as what were used in

Nivre’s work. We also used the same training (section

1-9) and testing (section 0) data and retrained all the

modules. Results showed that the proposed parser

achieved 84.50% dependency accuracy, which was

0.20% higher than Nivre’s parser (84.30%).

6 Discussion

In the proposed parser, we used five modules: sentence

segmenter (step1); sub-sentence root finder (step2);

baseNP chunker (step2&3); sub-sentence parser (step2);

and sentence root finder (step3).

The robustness of the modules will affect parsing ac-

curacy. Thus we evaluated each module separately. Re-

sults (see Table 6) showed that all the modules got rea-

sonable accuracy except for the sentence root finder.

Considering about this, in step 3 we found main-root

only from the sub-roots created by step 2. Because the

sub-sentence parser used in step 2 had good accuracy, it

could provide relatively correct candidates for main-root

finding. Therefore it helped decrease the influence of

the poor sentence root finding to the proposed parser.
Table 6. Evaluation result of each module

Module F-score(%) Dep.Accu(%)

Sentence Segmenter (M1) 88.04 ---

Sub-sentence Root Finder (M2) 88.73 ---

BaseNP Chunker (M3) 89.25 ---

Sub-sentence Parser (M4) --- 85.56

Sentence Root Finder (M5) 78.01 ---

Then we evaluated the proposed parser assuming us-

ing gold-standard modules (except for sub-sentence

parser) to check the contribution of each module to

parsing. Results (see Table 7) showed that (1) the accu-

racy of current sentence segmenter was acceptable be-

cause only small increase on dependency accuracy and

root accuracy was got by using gold-standard sentence

segmentation; (2) the correct recognition of baseNP

could help improve dependency accuracy but gave a

little contribution to root accuracy; (3) the accuracy of

both sub-sentence root finder and sentence root finder

was most crucial to parsing. Therefore improving the

two root finders is an important task in our future work.
Table 7. Parsing result with gold-standard modules

Gold-standard Module Dep.Accu(%) Root.Accu(%)

w/o 84.26 75.93

M1 84.51 76.24

M1+M2 86.57 80.34

M1+M2+M3 88.63 80.57

M1+M2+M3+M5 91.25 91.02

7 Conclusion and Future Work

We propose a three-step deterministic dependency

parser for parsing Chinese. It aims to solve the error

propagation problem by dividing a sentence into inde-

pendent parts and parsing them separately. Results

based on Penn Chinese Treebank 5.1 showed that com-

pared with the deterministic parser which parsed a sen-

tence in sequence, the proposed parser achieved ex-

tremely significant increase on dependency accuracy.

Currently, the proposed parser is designed only for

Chinese. But we believe it can be easily adapted to other

languages because no language-limited information is

used. We will try this work in the future. In addition,

improving sub-sentence root finder and sentence root

finder will also be considered in the future.

Acknowledgement

We would like to thank Dr. Daisuke Kawahara and Dr. Eiji Aramaki

for their helpful discussions. We also thank the three anonymous

reviewers for their valuable comments.

Reference

A.Berger. Error-correcting output coding for text classification. 1999.

In Proceedings of the IJCAI-99 Workshop on Machine Learning

for Information Filtering.

M.Chang, Q.Do and D.Roth. 2006. A Pipeline Framework for De-

pendency Parsing. In Proceedings of Coling-ACL 2006.

Y.Cheng, M.Asahara and Y.Matsumoto. 2005. Chinese Deterministic

Dependency Analyzer: Examining Effects of Global Features and

Root Node Finder. In Proceedings of IJCNLP 2005.

L.Gillick and S.J.Cox. 1989. Some Statistical Issues in the Compari-

son of Speech Recognition Algorithms. In Proceedings of ICASSP.

J.Hall, J.Nivre and J.Nilsson. 2006. Discriminative Classifiers for

Deterministic Dependency Parsing. In Proceedings of Coling-ACL

2006. pp. 316-323.

J.Nivre and M.Scholz. 2004. Deterministic Dependency Parsing of

English Text. In Proceedings of Coling 2004. pp. 64-70.

F.Sebastiani. 2002. Machine learning in automated text categorization.

ACM Computing Surveys, 34(1): 1-47.

F.Xia and M.Palmer. 2001. Converting Dependency Structures to

Phrase Structures. In HLT-2001.

N.Xue, F.Chiou and M.Palmer. 2002. Building a Large-Scale Anno-

tated Chinese Corpus. In Proceedings of COLING 2002.

H.Yamada and Y.Matsumoto. 2003. Statistical Dependency Analysis
with Support Vector Machines. In Proceedings of IWPT. 2003.

204

