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Abstract

We propose a new algorithm to approximately
extract top-scoring hypotheses from a hyper-
graph when the score includes an N–gram
language model. In the popular cube prun-
ing algorithm, every hypothesis is annotated
with boundary words and permitted to recom-
bine only if all boundary words are equal.
However, many hypotheses share some, but
not all, boundary words. We use these com-
mon boundary words to group hypotheses and
do so recursively, resulting in a tree of hy-
potheses. This tree forms the basis for our
new search algorithm that iteratively refines
groups of boundary words on demand. Ma-
chine translation experiments show our algo-
rithm makes translation 1.50 to 3.51 times as
fast as with cube pruning in common cases.

1 Introduction

This work presents a new algorithm to search a
packed data structure for high-scoring hypothe-
ses when the score includes an N–gram language
model. Many natural language processing systems
have this sort of problem e.g. hypergraph search
in hierarchical and syntactic machine translation
(Mi et al., 2008; Klein and Manning, 2001), lat-
tice rescoring in speech recognition, and confusion
network decoding in optical character recognition
(Tong and Evans, 1996). Large language models
have been shown to improve quality, especially in
machine translation (Brants et al., 2007; Koehn and
Haddow, 2012). However, language models make
search computationally expensive because they ex-
amine surface words without regard to the structure
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Figure 1: Hypotheses are grouped by common prefixes
and suffixes.

of the packed search space. Prior work, including
cube pruning (Chiang, 2007), has largely treated the
language model as a black box. Our new search
algorithm groups hypotheses by common prefixes
and suffixes, exploiting the tendency of the language
model to score these hypotheses similarly. An exam-
ple is shown in Figure 1. The result is a substantial
improvement over the time-accuracy trade-off pre-
sented by cube pruning.

The search spaces mentioned in the previous para-
graph are special cases of a directed acyclic hyper-
graph. As used here, the difference from a nor-
mal graph is that an edge can go from one vertex
to any number of vertices; this number is the arity
of the edge. Lattices and confusion networks are
hypergraphs in which every edge happens to have
arity one. We experiment with parsing-based ma-
chine translation, where edges represent grammar
rules that may have any number of non-terminals,
including zero.

Hypotheses are paths in the hypergraph scored by
a linear combination of features. Many features are
additive: they can be expressed as weights on edges
that sum to form hypothesis features. However, log
probability from anN–gram language model is non-
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additive because it examines surface strings across
edge and vertex boundaries. Non-additivity makes
search difficult because locally optimal hypotheses
may not be globally optimal.

In order to properly compute the language model
score, each hypothesis is annotated with its bound-
ary words, collectively referred to as its state (Li
and Khudanpur, 2008). Hypotheses with equal state
may be recombined, so a straightforward dynamic
programming approach (Bar-Hillel et al., 1964) sim-
ply treats state as an additional dimension in the dy-
namic programming table. However, this approach
quickly becomes intractable for large language mod-
els where the number of states is too large.

Beam search (Chiang, 2005; Lowerre, 1976) ap-
proximates the straightforward algorithm by remem-
bering a beam of up to k hypotheses1 in each vertex.
It visits each vertex in bottom-up order, each time
calling a beam filling algorithm to select k hypothe-
ses. The parameter k is a time-accuracy trade-off:
larger k increases both CPU time and accuracy.

We contribute a new beam filling algorithm that
improves the time-accuracy trade-off over the popu-
lar cube pruning algorithm (Chiang, 2007) discussed
in §2.3. The algorithm is based on the observation
that competing hypotheses come from the same im-
put, so their language model states are often similar.
Grouping hypotheses by these similar words enables
our algorithm to reason over multiple hypotheses at
once. The algorithm is fully described in §3.

2 Related Work

2.1 Alternatives to Bottom-Up Search

Beam search visits each vertex in the hypergraph
in bottom-up (topological) order. The hypergraph
can also be searched in left-to-right order (Watanabe
et al., 2006; Huang and Mi, 2010). Alternatively,
hypotheses can be generated on demand with cube
growing (Huang and Chiang, 2007), though we note
that it showed little improvement in Moses (Xu and
Koehn, 2012). All of these options are compatible
with our algorithm. However, we only experiment
with bottom-up beam search.

1We use K to denote the number of fully-formed hypotheses
requested by the user and k to denote beam size.

2.2 Exhaustive Beam Filling

Originally, beam search was used with an exhaustive
beam filling algorithm (Chiang, 2005). It generates
every possible hypothesis (subject to the beams in
previous vertices), selects the top k by score, and
discards the remaining hypotheses. This is expen-
sive: just one edge of arity a encodes O(1 + ak)
hypotheses and each edge is evaluated exhaustively.
In the worst case, our algorithm is exhaustive and
generates the same number of hypotheses as beam
search; in practice, we are concerned with the aver-
age case.

2.3 Baseline: Cube Pruning

Cube pruning (Chiang, 2007) is a fast approximate
beam filling algorithm and our baseline. It chooses
k hypotheses by popping them off the top of a prior-
ity queue. Initially, the queue is populated with hy-
potheses made from the best (highest-scoring) parts.
These parts are an edge and a hypothesis from each
vertex referenced by the edge. When a hypothesis
is popped, several next-best alternatives are pushed.
These alternatives substitute the next-best edge or a
next-best hypothesis from one of the vertices.

Our work follows a similar pattern of popping one
queue entry then pushing multiple entries. However,
our queue entries are a group of hypotheses while
cube pruning’s entries are a single hypothesis.

Hypotheses are usually fully scored before being
placed in the priority queue. An alternative priori-
tizes hypotheses by their additive score. The addi-
tive score is the edge’s score plus the score of each
component hypothesis, ignoring the non-additive as-
pect of the language model. When the additive score
is used, the language model is only called k times,
once for each hypothesis popped from the queue.

Cube pruning can produce duplicate queue en-
tries. Gesmundo and Henderson (2010) modified the
algorithm prevent duplicates instead of using a hash
table. We include their work in the experiments.

Hopkins and Langmead (2009) characterized
cube pruning as A* search (Hart et al., 1968) with an
inadmissible heuristic. Their analysis showed deep
and unbalanced search trees. Our work can be inter-
preted as a partial rebalancing of these search trees.
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2.4 Exact Algorithms

A number of exact search algorithms have been de-
veloped. We are not aware of an exact algorithm that
tractably scales to the size of hypergraphs and lan-
guage models used in many modern machine trans-
lation systems (Callison-Burch et al., 2012).

The hypergraph and language model can be com-
piled into an integer linear program. The best hy-
pothesis can then be recovered by taking the dual
and solving by Lagrangian relaxation (Rush and
Collins, 2011). However, that work only dealt with
language models up to order three.

Iglesias et al. (2011) represent the search space
as a recursive transition network and the language
model as a weighted finite state transducer. Using
standard finite state algorithms, they intersect the
two automatons then exactly search for the highest-
scoring paths. However, the intersected automaton
is too large. The authors suggested removing low
probability entries from the language model, but this
form of pruning negatively impacts translation qual-
ity (Moore and Quirk, 2009; Chelba et al., 2010).
Their work bears some similarity to our algorithm
in that partially overlapping state will be collapsed
and efficiently handled together. However, the key
advatage to our approach is that groups have a score
that can be used for pruning before the group is ex-
panded, enabling pruning without first constructing
the intersected automaton.

2.5 Coarse-to-Fine

Coarse-to-fine (Petrov et al., 2008) performs mul-
tiple pruning passes, each time with more detail.
Search is a subroutine of coarse-to-fine and our work
is inside search, so the two are compatible. There are
several forms of coarse-to-fine search; the closest to
our work increases the language model order each
iteration. However, by operating inside search, our
algorithm is able to handle hypotheses at different
levels of refinement and use scores to choose where
to further refine hypotheses. Coarse-to-fine decod-
ing cannot do this because it determines the level of
refinement before calling search.

3 Our New Beam Filling Algorithm

In our algorithm, the primary idea is to group hy-
potheses with similar language model state. The

following sections formalize what these groups are
(partial state), that the groups have a recursive struc-
ture (state tree), how groups are split (bread crumbs),
using groups with hypergraph edges (partial edge),
prioritizing search (scoring) and best-first search
(priority queue).

3.1 Partial State

An N–gram language model (with order N ) com-
putes the probability of a word given the N − 1 pre-
ceding words. The left state of a hypothesis is the
first N − 1 words, which have insufficient context
to be scored. Right state is the last N − 1 words;
these might become context for another hypothesis.
Collectively, they are known as state. State mini-
mization (Li and Khudanpur, 2008) may reduce the
size of state due to backoff in the language model.

For example, the hypothesis “the few nations that
have diplomatic relations with North Korea” might
have left state “the few” and right state “Korea”
after state minimization determined that “North”
could be elided. Collectively, the state is denoted
(the few a � ` Korea). The diamond � is a stand-in
for elided words. Terminators a and ` indicate when
left and right state are exhausted, respectively2.

Our algorithm is based on partial state. Par-
tial state is simply state with more inner words
elided. For example, (the � Korea) is a partial state
for (the few a � ` Korea). Terminators a and ` can
be elided just like words. Empty state is denoted
using the customary symbol for empty string, ε. For
example, (ε � ε) is the empty partial state. The termi-
nators serve to distinguish a completed state (which
may be short due to state minimization) from an in-
complete partial state.

3.2 State Tree

States (the few a � ` Korea) and (the a � ` Korea)
have words in common, so the partial state
(the � Korea) can be used to reason over both of
them. Generalizing this notion to the set of hypothe-
ses in a beam, we build a state tree. The root of
the tree is the empty partial state (ε � ε) that reasons

2A corner case arises for hypotheses with less than N − 1
words. For these hypotheses, we still attempt state minimiza-
tion and, if successful, the state is treated normally. If state
minimization fails, a flag is set in the state. For purposes of the
state tree, the flag acts like a different terminator symbol.
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(ε � ε)

(a � ε) (a � Korea) (a a � Korea)
(a a � ` Korea)

(a a � in Korea) (a a � ` in Korea)

(some � ε) (some � DPRK) (some a � DPRK) (some a � ` DPRK)

(the � ε) (the � Korea)
(the a � Korea) (the a � ` Korea)

(the few � Korea) (the few � ` Korea) (the few a � ` Korea)

Figure 2: A state tree containing five states: (the few a � ` Korea), (the a � ` Korea), (some a � ` DPRK),
(a a � ` in Korea), and (a a � ` Korea). Nodes of the tree are partial states. The branching order is the first word,
the last word, the second word, and so on. If the left or right state is exhausted, then branching continues with the
remaining state. For purposes of branching, termination symbols a and ` act like normal words.

(ε � ε)

(a a � Korea)

(a a � ` Korea)

(a a � ` in Korea)

(some a � ` DPRK)

(the � Korea)

(the a � ` Korea)

(the few a � ` Korea)

Figure 3: The optimized version of Figure 2. Nodes
immediately reveal the longest shared prefix and suffix
among hypotheses below them.

over all hypotheses. From the root, the tree branches
by the first word of state, the last word, the second
word, the second-to-last word, and so on. If left or
right state is exhausted, then branching continues us-
ing the remaining state. The branching order priori-
tizes the outermost words because these can be used
to update the language model probability. The deci-
sion to start with left state is arbitrary. An example
tree is shown in Figure 2.

As an optimization, each node determines the
longest shared prefix and suffix of the hypotheses
below it. The node reports these words immedi-
ately, rendering some other nodes redundant. This
makes our algorithm faster because it will then only
encounter nodes when there is a branching decision
to be made. The original tree is shown in Figure 2
and the optimized version is shown in Figure 3. As
a side effect of branching by left state first, the al-
gorithm did not notice that states (the � Korea) and

(ε � ε)[1+]

(a a � Korea)

(a a � ` Korea)

(a a � ` in Korea)

(some a � ` DPRK)

(the � Korea)

(the a � ` Korea)

(the few a � ` Korea)

(the � Korea)[0+]

(the a � ` Korea)

(the few a � ` Korea)

Figure 4: Visiting the root node partitions the tree into
best child (the � Korea)[0+] and bread crumb (ε � ε)[1+].
The data structure remains intact for use elsewhere.

(a a � Korea) both end with Korea. We designed the
tree building algorithm for speed and plan to exper-
iment with alternatives as future work.

The state tree is built lazily. A node initially holds
a flat array of all the hypotheses below it. When its
children are first needed, the hypotheses are grouped
by the branching word and an array of child nodes
is built. In turn, these newly created children each
initially hold an array of hypotheses. CPU time is
saved because nodes containing low-scoring nodes
may never construct their children.

Each node has a score. For leaves, this score is
copied from the underlying hypothesis (or best hy-
pothesis if some other feature prevented recombina-
tion). The score of an internal node is the maximum
score of its children. As an example, the root node’s
score is the same as the highest-scoring hypothesis
in the tree. Children are sorted by score.
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3.3 Bread Crumbs

The state tree is explored in a best-first manner.
Specifically, when the algorithm visits a node, it
considers that node’s best child. The best child re-
veals more words, so the score may go up or down
when the language model is consulted. Therefore,
simply following best children may lead to a poor
hypothesis. Some backtracking mechanism is re-
quired, for which we use bread crumbs. Visiting a
node results in two items: the best child and a bread
crumb. The bread crumb encodes the node that was
visited and how many children have already been
considered. Figure 4 shows an example.

More formally, each node has an array of chil-
dren sorted by score, so it suffices for the bread
crumb to keep an index in this array. An in-
dex of zero denotes that no child has been vis-
ited. Continuing the example from Figure 3,
(ε � ε)[0+] denotes the root partial state with chil-
dren starting at index 0 (i.e. all of them). Visit-
ing (ε � ε)[0+] yields best child (the � Korea)[0+]
and bread crumb (ε � ε)[1+]. Later, the search al-
gorithm may return to (ε � ε)[1+], yielding best
child (some a � ` DPRK)[0+] and bread crumb
(ε � ε)[2+]. If there is no remaining sibling, visit-
ing yields only the best child.

The index serves to restrict the array of children
to those with that index or above. Formally, let d
map from a node or bread crumb to the set of leaves
descended from it. The descendants of a node n are
those of its children

d(n) =

|n|−1⊔
i=0

d(n[i])

where t takes the union of disjoint sets and n[i] is
the ith child. In a bread crumb with index c, only de-
scendents by the remaining children are considered

d(n[c+]) =

|n|−1⊔
i=c

d(n[i])

It follows that the set of descendants is partitioned
into two disjoint sets

d(n[c+]) = d(n[c])
⊔
d(n[c+ 1+])

3.4 Partial Edge
The beam filling algorithm is tasked with selecting
hypotheses given a number of hypergraph edges.
Hypergraph edges are strings comprised of words
and references to vertices (in parsing, terminals and
non-terminals). A hypergraph edge is converted to a
partial edge by replacing each vertex reference with
the root node from that vertex. For example, the hy-
pergraph edge “is v .” referencing vertex v becomes
partial edge “is (ε � ε)[0+] .”

Partial edges allow our algorithm to reason over
a large set of hypotheses at once. Visiting a
partial edge divides that set into two as follows.
A heuristic chooses one of the non-leaf nodes to
visit. Currently, this heuristic picks the node with
the fewest words revealed. As a tie breaker, it
chooses the leftmost node. The chosen node is
visited (partitioned), yielding the best child and
bread crumb as described in the previous section.
These are substituted into separate copies of the par-
tial edge. Continuing our example with the vertex
shown in Figure 3, “is (ε � ε)[0+] .” partitions into
“is (the � Korea)[0+] .” and “is (ε � ε)[1+] .”

3.5 Scoring
Every partial edge has a score that determines its
search priority. Initially, this score is the sum of the
edge’s score and the scores of each bread crumb (de-
fined below). As words are revealed, the score is
updated to account for new language model context.

Each edge score includes a log language model
probability and possibly additive features. When-
ever there is insufficient context to compute the lan-
guage model probability of a word, an estimate r is
used. For example, edge “is v .” incorporates esti-
mate

log r(is)r(.)

into its score. The same applies to hypotheses:
(the few a � ` Korea) includes estimate

log r(the)r(few | the)

because the words in left state are those with insuf-
ficient context.

In common practice (Chiang, 2007; Hoang et al.,
2009; Dyer et al., 2010), the estimate is taken from
the language model: r = p. However, querying
the language model with incomplete context leads
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Kneser-Ney smoothing (Kneser and Ney, 1995) to
assume that backoff has occurred. An alternative is
to use average-case rest costs explicitly stored in the
language model (Heafield et al., 2012). Both options
are used in the experiments3.

The score of a bread crumb is the maximum score
of its descendants as defined in §3.3. For example,
the bread crumb (ε � ε)[1+] has a lower score than
(ε � ε)[0+] because the best child (the � Korea)[0+]
and its descendants no longer contribute to the max-
imum.

The score of partial edge “is (ε � ε)[0+] .” is
the sum of scores from its two parts: edge
“is v .” and bread crumb (ε � ε)[0+]. The
edge’s score includes estimated log probability
log r(is)r(.) as explained earlier. The bread crumb’s
score comes from its highest-scoring descendent
(the few a � ` Korea) and therefore includes esti-
mate log r(the)r(few | the).

Estimates are updated as words are revealed.
Continuing the example, “is (ε � ε)[0+] .” has best
child “is (the � Korea)[0+] .” In this best child, the
estimate r(.) is updated to r(. | Korea). Similarly,
r(the) is replaced with r(the | is). Updates exam-
ine only words that have been revealed: r(few | the)
remains unrevised.

Updates are computed efficiently by using point-
ers (Heafield et al., 2011) with KenLM. To summa-
rize, the language model computes

r(wn|wn−1
1 )

r(wn|wn−1
i )

in a single call. In the popular reverse trie data struc-
ture, the language model visits wn

i while retrieving
wn

1 , so the cost is the same as a single query. More-
over, when the language model earlier provided es-
timate r(wn|wn−1

i ), it also returned a data-structure
pointer t(wn

i ). Pointers are retained in hypotheses,
edges, and partial edges for each word with an esti-
mated probability. When context is revealed, our al-
gorithm queries the language model with new con-
text wi−1

1 and pointer t(wn
i ). The language model

uses this pointer to immediately retrieve denomina-
tor r(wn|wn−1

i ) and as a starting point to retrieve nu-
merator r(wn|wn−1

1 ). It can therefore avoid looking
3We also tested upper bounds (Huang et al., 2012; Carter et

al., 2012) but the result is still approximate due to beam pruning
and initial experiments showed degraded performance.

up r(wn), r(wn|wn−1), . . . , r(wn|wn−1
i+1 ) as would

normally be required with a reverse trie.

3.6 Priority Queue

Our beam filling algorithm is controlled by a priority
queue containing partial edges. The queue is popu-
lated by converting all outgoing hypergraph edges
into partial edges and pushing them onto the queue.
After this initialization, the algorithm loops. Each
iteration begins by popping the top-scoring partial
edge off the queue. If all nodes are leaves, then the
partial edge is converted to a hypothesis and placed
in the beam. Otherwise, the partial edge is parti-
tioned as described in §3.3. The two resulting partial
edges are pushed onto the queue. Looping continues
with the next iteration until the queue is empty or the
beam is full. After the loop terminates, the beam is
given to the root node of the state tree; other nodes
will be built lazily as described in §3.2.

Overall, the algorithm visits hypergraph vertices
in bottom-up order. Our beam filling algorithm runs
in each vertex, making use of state trees in vertices
below. The top of the tree contains full hypotheses.
If a K-best list is desired, packing and extraction
works the same way as with cube pruning.

4 Experiments

Performance is measured by translating the 3003-
sentence German-English test set from the 2011
Workshop on Machine Translation (Callison-Burch
et al., 2011). Two translation models were built, one
hierarchical (Chiang, 2007) and one with target syn-
tax. The target-syntax system is based on English
parses from the Collins (1999) parser. Both were
trained on Europarl (Koehn, 2005). The language
model interpolates models built on Europarl, news
commentary, and news data provided by the evalua-
tion. Interpolation weights were tuned on the 2010
test set. Language models were built with SRILM
(Stolcke, 2002), modified Kneser-Ney smoothing
(Kneser and Ney, 1995; Chen and Goodman, 1998),
default pruning, and order 5. Feature weights were
tuned with MERT (Och, 2003), beam size 1000,
100-best output, and cube pruning. Systems were
built with the Moses (Hoang et al., 2009) pipeline.

Measurements were collected by running the de-
coder on all 3003 sentences. For consistency, all

963



-101.6

-101.5

-101.4

0 1 2

A
ve

ra
ge

m
od

el
sc

or
e

CPU seconds/sentence

This work
Additive cube pruning

Cube pruning

Figure 5: Hierarchial system in Moses with our algo-
rithm, cube pruning with additive scores, and cube prun-
ing with full scores (§2.3). The two baselines overlap.

relevant files were forced into the operating system
disk cache before each run. CPU time is the to-
tal user and system time taken by the decoder mi-
nus loading time. Loading time was measured by
running the decoder with empty input. In partic-
ular, CPU time includes the cost of parsing. Our
test system has 32 cores and 64 GB of RAM; no
run came close to running out of memory. While
multi-threaded experiments showed improvements
as well, we only report single-threaded results to re-
duce noise and to compare with cdec (Dyer et al.,
2010). Decoders were compiled with the optimiza-
tion settings suggested in their documentation.

Search accuracy is measured by average model
score; higher is better. Only relative comparisons
are meaningful because model scores have arbitrary
scale and include constant factors. Beam sizes start
at 5 and rise until a time limit determined by running
the slowest algorithm with beam size 1000.

4.1 Comparison Inside Moses

Figure 5 shows Moses performance with this work
and with cube pruning. These results used the hi-
erarchical system with common-practice estimates
(§3.5). The two cube pruning variants are explained
in §2.3. Briefly, the queue can be prioritized using
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This work
Gesmundo 1
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Cube pruning

Figure 6: Hierarchical system in cdec with our algorithm,
similarly-performing variants of cube pruning defined in
Gesmundo and Henderson (2010), and the default.

additive or full scores. Performance with additive
scores is roughly the same as using full scores with
half the beam size.

Our algorithm is faster for every beam size tested.
It is also more accurate than additive cube pruning
with the same beam size. However, when compared
with full scores cube pruning, it is less accurate for
beam sizes below 300. This makes sense because
our algorithm starts with additive estimates and iter-
atively refines them by calling the language model.
Moreover, when beams are small, there are fewer
chances to group hypotheses. With beams larger
than 300, our algorithm can group more hypotheses,
overtaking both forms of cube pruning.

Accuracy improvements can be interpreted as
speed improvements by asking how much time each
algorithm takes to achieve a set level of accuracy.
By this metric, our algorithm is 2.04 to 3.37 times as
fast as both baselines.

4.2 Comparison Inside cdec

We also implemented our algorithm in cdec (Dyer
et al., 2010). Figure 6 compares with two enhanced
versions of cube pruning (Gesmundo and Hender-
son, 2010) and the cdec baseline. The model scores
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Figure 7: Effect of rest costs on our algorithm and on cube pruning in Moses. Noisy BLEU scores reflect model errors.

are comparable with Moses4.
Measuring at equal accuracy, our algorithm

makes cdec 1.56 to 2.24 times as fast as the best
baseline. At first, this seems to suggest that cdec is
faster. In fact, the opposite is true: comparing Fig-
ures 5 and 6 reveals that cdec has a higher parsing
cost than Moses5, thereby biasing the speed ratio to-
wards 1. In subsequent experiments, we use Moses
because it more accurately reflects search costs.

4.3 Average-Case Rest Costs

Previous experiments used the common-practice
probability estimate described in §3.5. Figure 7
shows the impact of average-case rest costs on our
algorithm and on cube pruning in Moses. We also
looked at uncased BLEU (Papineni et al., 2002)
scores, finding that our algorithm attains near-peak
BLEU in less time. The relationship between model
score and BLEU is noisy due to model errors.

4The glue rule builds hypotheses left-to-right. In Moses,
glued hypotheses start with <s> and thus have empty left state.
In cdec, sentence boundary tokens are normally added last, so
intermediate hypotheses have spurious left state. Running cdec
with the Moses glue rule led to improved time-accuracy perfor-
mance. The improved version is used in all results reported. We
accounted for constant-factor differences in feature definition
i.e. whether <s> is part of the word count.

5In-memory phrase tables were used with both decoders.
The on-disk phrase table makes Moses slower than cdec.

Average-case rest costs impact our algorithm
more than they impact cube pruning. For small beam
sizes, our algorithm becomes more accurate, mostly
eliminating the disadvantage reported in §4.1. Com-
pared to the common-practice estimate with beam
size 1000, rest costs made our algorithm 1.62 times
as fast and cube pruning 1.22 times as fast.

Table 1 compares our best result with the best
baseline: our algorithm and cube pruning, both with
rest costs inside Moses. In this scenario, our algo-
rithm is 2.59 to 3.51 times as fast as cube pruning.

4.4 Target-Syntax
We took the best baseline and best result from previ-
ous experiments (Moses with rest costs) and ran the
target-syntax system. Results are shown in Figure
8. Parsing and search are far more expensive. For
beam size 5, our algorithm attains equivalent accu-
racy 1.16 times as fast. Above 5, our algorithm is
1.50 to 2.00 times as fast as cube pruning. More-
over, our algorithm took less time with beam size
6900 than cube pruning took with beam size 1000.

A small bump in model score occurs around 15
seconds. This is due to translating “durchzoge-
nen” as “criss-crossed” instead of passing it through,
which incurs a severe penalty (-100). The only rule
capable of doing so translates “X durchzogenen” as
“criss-crossed PP”; a direct translation rule was not
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Figure 8: Performance of Moses with the target-syntax system.

extracted due to reordering. An appropriate prepo-
sitional phrase (PP) was pruned with smaller beam
sizes because it is disfluent.

4.5 Memory

Peak virtual memory usage was measured before
each process terminated. Compared with cube prun-
ing at a beam size of 1000, our algorithm uses 160
MB more RAM in Moses and 298 MB less RAM in
cdec. The differences are smaller with lower beam
sizes and minor relative to 12-13 GB total size, most
of which is the phrase table and language model.

Rest+This work Rest+Cube pruning
k CPU Model BLEU CPU Model BLEU
5 0.068 -1.698 21.59 0.243 -1.667 21.75

10 0.076 -1.593 21.89 0.255 -1.592 21.97
50 0.125 -1.463 22.07 0.353 -1.480 22.04
75 0.157 -1.446 22.06 0.408 -1.462 22.05

100 0.176 -1.436 22.03 0.496 -1.451 22.05
500 0.589 -1.408 22.00 1.356 -1.415 22.00
750 0.861 -1.405 21.96 1.937 -1.409 21.98

1000 1.099 -1.403 21.97 2.502 -1.407 21.98

Table 1: Numerical results from the hierarchical system
for select beam sizes k comparing our best result with the
best baseline, both in Moses with rest costs enabled. To
conserve space, model scores are shown with 100 added.

5 Conclusion

We have described a new search algorithm that
achieves equivalent accuracy 1.16 to 3.51 times as
fast as cube pruning, including two implementations
and four variants. The algorithm is based on group-
ing similar language model feature states together
and dynamically expanding these groups. In do-
ing so, it exploits the language model’s ability to
estimate with incomplete information. Our imple-
mentation is available under the LGPL as a stand-
alone from http://kheafield.com/code/
and distributed with Moses and cdec.
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