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Abstract

We describe a novel approach to detecting
empty categories (EC) as represented in de-
pendency trees as well as a new metric for
measuring EC detection accuracy. The new
metric takes into account not only the position
and type of an EC, but also the head it is a
dependent of in a dependency tree. We also
introduce a variety of new features that are
more suited for this approach. Tested on a sub-
set of the Chinese Treebank, our system im-
proved significantly over the best previously
reported results even when evaluated with this
more stringent metric.

1 Introduction

In modern theoretical linguistics, empty categories
(ECs) are an important piece of machinery in repre-
senting the syntactic structure of a sentence and they
are used to represent phonologically null elements
such as dropped pronouns and traces of dislocated
elements. They have also found their way into large-
scale treebanks which have played an important role
in advancing the state of the art in syntactic parsing.
In phrase-structure treebanks, ECs have been used to
indicate long-distance dependencies, discontinuous
constituents, and certain dropped elements (Marcus
et al., 1993; Xue et al., 2005). Together with la-
beled brackets and function tags, they make up the
full syntactic representation of a sentence.

The use of ECs captures some cross-linguistic
commonalities and differences. For example, while
both the Penn English TreeBank (PTB) (Marcus et
al., 1993) and the Chinese TreeBank (CTB) (Xue

et al., 2005) use traces to represent the extraction
site of a dislocated element, dropped pronouns (rep-
resented as *pro*s) are much more widespread in
the CTB. This is because Chinese is a pro-drop lan-
guage (Huang, 1984) that allows the subject to be
dropped in more contexts than English does. While
detecting and resolving traces is important to the in-
terpretation of the syntactic structure of a sentence in
both English and Chinese, the prevalence of dropped
nouns in Chinese text gives EC detection added sig-
nificance and urgency. They are not only an impor-
tant component of the syntactic parse of a sentence,
but are also essential to a wide range of NLP appli-
cations. For example, any meaningful tracking of
entities and events in natural language text would
have to include those represented by dropped pro-
nouns. If Chinese is translated into a different lan-
guage, it is also necessary to render these dropped
pronouns explicit if the target language does not al-
low pro-drop. In fact, Chung and Gildea (2010) re-
ported preliminary work that has shown a positive
impact of automatic EC detection on statistical ma-
chine translation.

Some ECs can be resolved to an overt element in
the same text while others only have a generic ref-
erence that cannot be linked to any specific entity.
Still others have a plausible antecedent in the text,
but are not annotated due to annotation limitations.
A common practice is to resolve ECs in two separate
stages (Johnson, 2002; Dienes and Dubey, 2003b;
Dienes and Dubey, 2003a; Campbell, 2004; Gab-
bard et al., 2006; Schmid, 2006; Cai et al., 2011).
The first stage is EC detection, where empty cate-
gories are first located and typed. The second stage
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is EC resolution, where empty categories are linked
to an overt element if possible.

In this paper we describe a novel approach to de-
tecting empty categories in Chinese, using the CTB
as training and test data. More concretely, EC de-
tection involves (i) identifying the position of the
EC, relative to some overt word tokens in the same
sentence, and (ii) determining the type of EC, e.g.,
whether it is a dropped pronoun or a trace. We fo-
cus on EC detection here because most of the ECs
in the Chinese Treebank are either not resolved to
an overt element or linked to another EC. For ex-
ample, dropped pronouns (*pro*) are not resolved,
and traces (*T*) in relative clauses are linked to an
empty relative pronoun (*OP*).

In previous work, ECs are either represented lin-
early, where ECs are indexed to the following word
(Yang and Xue, 2010) or attached to nodes in a
phrase structure tree (Johnson, 2002; Dienes and
Dubey, 2003b; Gabbard et al., 2006). In a linear
representation where ECs are indexed to the follow-
ing word, it is difficult to represent consecutive ECs
because that will mean more than one EC will be
indexed to the same word (making the classification
task more complicated). While in English consecu-
tive ECs are relatively rare, in Chinese this is very
common. For example, it is often the case that an
empty relative pronoun (*OP*) is followed imme-
diately by a trace (*T*). Another issue with the lin-
ear representation of ECs is that it leaves unspecified
where the EC should be attached, and crucial depen-
dencies between ECs and other elements in the syn-
tactic structure are not represented, thus limiting the
utility of this task.

In a phrase structure representation, ECs are at-
tached to a hierarchical structure and the problem
of multiple ECs indexed to the same word token can
be avoided because linearly consecutive ECs may be
attached to different non-terminal nodes in a phrase
structure tree. In a phrase structure framework, ECs
are evaluated based on their linear position as well
as on their contribution to the overall accuracy of
the syntactic parse (Cai et al., 2011).

In the present work, we propose to look at EC
detection in a dependency structure representation,
where we define EC detection as (i) determining its
linear position relative to the following word token,
(ii) determining its head it is a dependent of, and (iii)

determining the type of EC. Framing EC detection
this way also requires a new evaluation metric. An
EC is considered to be correctly detected if its linear
position, its head, and its type are all correctly de-
termined. We report experimental results that show
even using this more stringent measure, our EC de-
tection system achieved performance that improved
significantly over the state-of-the-art results.

The rest of the paper is organized as follows. In
Section 2, we will describe how to represent ECs
in a dependency structure in detail and present our
approach to EC detection. In Section 3, we describe
how linguistic information is encoded as features.
In Section 4, we discuss our experimental setup and
present our results. In Section 5, we describe related
work. Section 6 concludes the paper.

2 Approach

In order to detect ECs anchored in a dependency
tree, we first convert the phrase structure trees in the
CTB into dependency trees. After the conversion,
each word token in a dependency tree, including the
ECs, will have one and only one head (or parent).
We then train a classifier to predict the position and
type of ECs in the dependency tree. Let W be a se-
quence of word tokens in a sentence, and T is syn-
tactic parse tree for W , our task is to predict whether
there is a tuple (h, t, e), such that h and t are word to-
kens in W , e is an EC, h is the head of e, and t imme-
diately follows e. When EC detection is formulated
as a classification task, each classification instance
is thus a tuple (h, t). The input to our classifier is
T , which can either be a phrase structure tree or a
dependency tree. We choose to use a phrase struc-
ture tree because phrase structure parsers trained on
the Chinese Treebank are readily available, and we
also hypothesize that phrase structure trees have a
richer hierarchical structure that can be exploited as
features for EC detection.

2.1 Empty categories in the Chinese Treebank
According to the CTB bracketing guidelines (Xue
and Xia, 2000), there are seven different types of
ECs in the CTB. Below is a brief description of the
empty categories:

1. *pro*: small pro, used to represent dropped
pronouns.
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2. *PRO*: big PRO, used to represent shared el-
ements in control structures or elements that
have generic references.

3. *OP*: null operator, used to represent empty
relative pronouns.

4. *T*: trace left by movement such as topical-
ization and relativization.

5. *RNR*: right node raising.
6. *: trace left by passivization and raising.
7. *?*: missing elements of unknown category.

An example parse tree with ECs is shown in
Figure 1. In the example, there are two ECs, an
empty relative pronoun (*OP*) and a trace (*T*), a
common syntactic pattern for relative clauses in the
CTB.

�

Shanghai

��
Pudong

��
recently

��
issue

*OP*

��
 involve

NN

�
DEC

�
document

NR NR

AD

VV

VV

NN
DEC

NP

ADVP

NP

NP

NP

WHNP

VP
IP

CP

CP

NP

VP

VP

IP

"Shanghai Pudong recently enacted 71 regulatory documents involving
the enconomic field."

ASP

�
AS

�T*

NN

QP

CD

M

���
��

CLP

ADJP

JJ

�	�
regulatory

 ��
economic

��
field


M

Figure 1: Empty categories in a phrase structure tree

2.2 Converting phrase structure to dependency
structure

We convert the phrase structure parses in the CTB
to dependency trees using the conversion tool that
generated the Chinese data sets for the CoNLL 2009
Shared Task on multilingual dependency parsing
and semantic role labeling (Hajič et al., 2009)1.
While the Chinese data of CoNLL 2009 Shared Task
does not include ECs, the tool has an option of pre-
serving the ECs in the conversion process. As an ex-
ample, the dependency tree in Figure 2 is converted
from the phrase structure tree in Figure 1, with the
ECs preserved.

1The tool can be downloaded at
http://www.cs.brandeis.edu/ clp/ctb/ctb.html.

In previous work EC detection has been formu-
lated as a classification problem with the target of
the classification being word tokens (Yang and Xue,
2010; Chung and Gildea, 2010), or constituents in
a parse tree (Gabbard et al., 2006). When word to-
kens are used as the target of classification, the task
is to determine whether there is an EC before each
word token, and what type EC it is. One shortcom-
ing with that representation is that more than one EC
can precede the same word token, as is the case in
the example in Figure 1, where both *OP* and *T*
precede 涉及 (“involve”). In fact, (Yang and Xue,
2010) takes the last EC when there is a sequence of
ECs and as a result, some ECs will never get the
chance to be detected. Notice that this problem can
be avoided in a dependency structure representation
if we make the target of classification a tuple that
consists of the following word token and the head of
the EC. From Figure 2, it should be clear that while
*OP* and *T* both precede the same word token涉
及 (“involve”), they have different heads, which are
的 (DE) and涉及 respectively.

Dependency-based EC detection also has other
nice properties. For ECs that are arguments of their
verbal head, when they are resolved to some overt
element, the dependency between the referent of
the EC and its head will be naturally established.
This can be viewed as an alternative to the approach
adopted by Levy and Manning (2004), where phrase
structure parses are augmented to recover non-local
dependencies. Dependency structures are also easily
decomposable into head/dependency pairs and this
makes the evaluation more straightforward. Each
classification instance can be evaluated indepen-
dently of other parts of the dependency structure.

2.3 One pass vs two passes

With pairs of tokens (h, t) as the classification tar-
get, all possible pairs in a sentence will have to be
considered and there will be a large number of (h,
t) tuples that are not associated with an EC, leading
to a highly imbalanced data set. One can conceive
a two-pass scenario where we first make a binary
decision of whether there is an empty category as-
sociated with the head in the first pass and then de-
termine whether there is an EC associated with the
tuple as well as the EC type in the second pass. The
alternative is to have a one-pass model in which we
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Figure 2: Empty categories in a dependency structure tree

add a NONE category indicating there is no EC as-
sociated with the tuple. With the seven EC types
presented earlier in this section, this will be an eight-
way classification problem. There are reasons for ei-
ther model: the one-pass model is simpler but in the
two-pass model we can bring different sources of in-
formation to bear on each sub-problem. Ultimately
which model leads to better accuracy is an empirical
question. We experimented with both models and it
turned out that they led to very similar results. In
this paper, we report results from the simpler one-
pass model.

3 Features

We explored a wide range of features, all derived
from the phrase structure parse tree (T ). With each
classification instance being a tuple (h, t), the “piv-
ots” for these features are h the head, t the word
token following the EC, and p, the word token pre-
ceding the EC. The features we tried fall into six
broad groups that are all empirically confirmed to
have made a positive contribution to our classifica-
tion task. These are (i) horizontal features, (ii) ver-
tical features, (iii) targeted grammatical construc-
tions, (iv) head information, (v) transitivity features,
and (vi) semantic role features. We obviously have
looked at features used in previous work on Chinese
EC detection, most notably (Yang and Xue, 2010),
which has also adopted a classification-based ap-
proach, but because we frame our classification task
very differently, we have to use very different fea-
tures. However, there is a subset of features we used
here that has at least a partial overlap with their fea-
tures, and such features are clearly indicated with ∗.

3.1 Horizontal features
The first group of features we use can be described
as horizontal features that exploit lexical context of
the head (h), the word token following the EC (t),

and the word token before the EC (p) . These in-
clude different combinations of h, t and p, as well
as their parts-of-speech. They also include various
linear distance features between h and t. Below is
the full list of lexical features:

1. ∗The token string representation of h, t and p,
as well as their part-of-speech tag (POS).

2. ∗The POS combination of h and t, the POS
combination of t and p.

3. The normalized word distance between h and
t, with the values of this feature being same,
immediately before, immediately after,
near before, and near after, and other.

4. The verb distance between h and t, defined as
the number of verbs that occur between h and
t.

5. The comma distance between h and t, defined
as the number of commas that occur between h
and t.

3.2 Vertical features
Vertical features are designed to exploit the hierar-
chical structure of the syntactic tree. Our hierar-
chical features are based on the following observa-
tions. An empty category is always located between
its left frontier and right frontier, anchored by t and
p. Given the lowest common ancestor A of p and
t, the right frontier is the path from t to A and the
left frontier is the path from the p to A. We also
define a path feature from h to t, which constrains
the distance between the EC and its head, just as it
constrains the distance between a predicate and its
argument in the semantic role labeling task (Gildea
and Jurafsky, 2002). Given the lowest common an-
cestor A′ of h and t, the path from h to t is the path
from h to A′ and from A′ to t.

In Figure 3, assuming that t is 迅速 (“rapidly”)
and h is 崛起 (“take off”), the vertical features ex-
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Figure 3: Empty category on the right frontier

tracted include:

1. The string representation of the right frontier,
AD↑ADVP↑VP↑IP↑VP

2. The path from the head t to h,
AD↑ADVP↑VP↓VP↓VV

3. The path from the head h to A,
VV↑VP↑VP↑IP↑VP. Notice there is not
always a path from h to A.

The vertical features are really a condensed rep-
resentation of a certain syntactic configuration that
helps to predict the presence or absence of an empty
category as well as the empty category type. For
example, the right frontier of *PRO* in Figure
3 AD↑ADVP↑VP↑IP↑VP represents a subjectless
IP. Had there been an overt subject in the place
of the *PRO*, the right frontier would have been
AD↑ADVP↑VP↑IP. Therefore, the vertical features
are discriminative features that can help detect the
presence or absence of an empty category.

3.3 Targeted grammatical constructions

The third group of features target specific, linguisti-
cally motivated grammatical constructions. The ma-
jority of features in this group hinge on the immedi-
ate IP (roughly corresponds to S in the PTB) ances-
tor of t headed by h. These features are only invoked
when t starts (or is on the left edge of) the immedi-
ate IP ancestor, and they are designed to capture the
context in which the IP ancestor is located. This con-
text can provide discriminative clues that may help
identify the types of empty category. For example,
both *pro*s and *PRO*s tend to occur in the sub-
ject position of an IP, but the larger context of the

IP often determines the exact empty category type.
In Figure 3, the IP that has a *PRO* subject is the
complement of a verb in a canonical object-control
construction. An IP can also be a sentential subject,
the complement of a preposition or a localizer (also
called postposition in the literature), or the comple-
ment in a CP (roughly SBAR in the PTB), etc. These
different contexts tend to be associated with differ-
ent types of empty categories. The full list of fea-
tures that exploit these contexts include:

1. ∗Whether t starts an IP
2. ∗Whether t starts a subjectless IP
3. The left sisters of the immediate IP parent that

t starts
4. The right sisters of the immediate IP parent that

t starts
5. The string representation of the governing verb

of the immediate IP parent that t starts
6. Whether the IP started by t is the complement

of a localizer phrase
7. Whether the immediate IP parent that t starts is

a sentential subject

3.4 Head information
Most ECs have a verb as its head, but when there is a
coordination VP structure where more than one VP
share an EC subject, only one such verb can be the
head of this EC. The phrase structure to dependency
structure conversion tool designates the first verb as
the head of the coordinated VP and thus the head of
the EC subject in the dependency structure. Other
verbs have no chance of being the head. We use a
VP head feature to capture this information. It is
a binary feature indicating whether a verb can be a
head.

3.5 Transitivity features
A transitivity lexicon has been extracted from the
Chinese Treebank and it is used to determine the
transitivity value of a word. A word can be
transitive, intransitive, or unknown if it is not a
verb. Ditransitive verbs are small in number and are
folded into transitive verbs. Transitivity features are
defined on h and constrained by word distance: it is
only used when h immediately precedes t. This fea-
ture category is intended to capture transitive verbs
that are missing an object.
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3.6 Semantic role features

There are apparent connections between semantic
role labeling and EC detection. The task of seman-
tic role labeling is typically defined as one of detect-
ing and classifying arguments for verbal or nomi-
nal predicates, with more work done so far on ver-
bal than nominal predicates. Although empty cat-
egories are annotated as arguments to verbal pred-
icates in linguistic resources such as the English
(Palmer et al., 2005) and Chinese (Xue and Palmer,
2009) Propbanks, they are often left out in seman-
tic role labeling systems trained on these resources.
This is because the best performing semantic role la-
beling systems rely on syntactic features extracted
from automatic parses (Gildea and Palmer, 2002;
Punyakanok et al., 2005) and the parsers that pro-
duce them do not generally reproduce empty cate-
gories. As a result, current semantic role labeling
systems can only recover explicit arguments. How-
ever, assuming that all the explicit arguments to a
predicate are detected and classified, one can infer
the empty arguments of a predicate from its explicit
arguments, given a list of expected arguments for
the predicate. The list of expected arguments can
be found in the “frame files” that are used to guide
probank annotation. We defined a semantic role fea-
ture category on h when it is a verb and the value of
this feature is the semantic role labels for the EC ar-
guments. Like transitivity features, this feature cate-
gory is also constrained by word distance. It is only
used when h immediately precedes t.

To extract semantic role features, we retrained a
Chinese semantic role labeling system on the Chi-
nese Propbank. We divided the Chinese Propbank
data into 10 different subsets, and automatically as-
signed semantic roles to each subset with a system
trained on the other nine subsets. Using the frame
files for the Chinese Propbank, we are able to infer
the semantic roles for the missing arguments and use
them as features.

4 Experimental Results

4.1 Experimental setup

Our EC detection models are trained and evaluated
on a subset of the Chinese TreeBank 6.0. The train-
ing/development/test data split in our experiments
is recommended in the CTB documentation. The

CTB file IDs for training, development and testing
are listed in Table 1. The development data is used
for feature selection and tuning, and results are re-
ported on the test set.

Train Dev Test
81-325, 400-454, 500-554 41-80 1-40

590-596, 600-885, 900 901-931

Table 1: Data set division.

As discussed in Section 2, the gold standard de-
pendency structure parses are converted from the
CTB parse trees, with the ECs preserved. From
these gold standard parse trees, we extract triples of
(e, h, t) where e is the EC type, h is (the position of)
the head of the EC, and t is (the position of) the word
token following the EC. During the training phrase,
features are extracted from automatic phrase struc-
ture parses and paired with these triples. The au-
tomatic phrase structure parses are produced by the
the Berkeley parser2 with a 10-fold cross-validation,
which each fold parsed using a model trained on the
other nine folds. Measured by the ParsEval met-
ric (Black et al., 1991), the parsing accuracy on
the CTB test set stands at 83.63% (F-score), with
a precision of 85.66% and a recall of 81.69%. We
chose to train a Maximum Entropy classifier using
the Mallet toolkit3 (McCallum, 2002) to detect ECs.

4.2 Evaluation metric

We use standard metrics of precision, recall and F-
measure in our evaluation. In a dependency struc-
ture representation, evaluation is very straightfor-
ward because individual arcs from the dependency
tree can be easily decomposed. An EC is considered
to be correctly detected if it is attached to the correct
head h, correctly positioned relative to t, and cor-
rectly typed. This is a more stringent measure than
metrics proposed in previous work, which evaluates
EC detection based on its position and type without
considering the head it is a dependent of.

4.3 Results

There are 1,838 total EC instances in the test set, and
if we follow (Yang and Xue, 2010) and collapse all

2http://code.google.com/p/berkeleyparser
3http://mallet.cs.umass.edu

1056



consecutive ECs before the same word token to one,
we will end up with a total EC count of 1,352, and
this is also the EC count used by (Cai et al., 2011)
in their evaluation. On the dependency-based repre-
sentation adopted here, after collapsing all consecu-
tive ECs before the same word token AND attached
to the same head to one, we end up with a total EC
count of 1,765. The distribution of the ECs in the
test set are presented in Table 2, with the EC count
per type from (Yang and Xue, 2010) in parenthesis
if it is different. The number of *OP*s, in particular,
has increased dramatically from 134 to 527, and this
is because a null relative pronoun (*OP*) immedi-
ately followed by a trace (*T*) in the subject posi-
tion of a relative clause is a very common pattern in
the Chinese Treebank, as illustrated in Figure 2. In
(Yang and Xue, 2010), the *OP*-*T* sequences are
collapsed into one, and only the *T*s are counted.
That leads to the much smaller count of *OP*s.

type count type count
*pro* 298 (290) *PRO* 305 (299)
*OP* 527 (134) *T* 584 (578)

* 19 *RNR* 32
*?* 0 total (1352)/1765/(1838)

Table 2: EC distribution in the CTB test set

Our results are shown in Table 3. These results
are achieved by using the full feature set presented
in Section 3. The overall accuracy by F1-measure is
0.574 if we assume there can only be one EC asso-
ciated with a given (h, t) tuple and hence the total
EC count in the gold standard is 1,765, or 0.561 if
we factor in all the EC instances and use the higher
total count of 1,838, which lowers the recall. If in-
stead we use the total EC count of 1,352 that was
used in previous work (Yang and Xue, 2010; Cai et
al., 2011), then the F1-measure is 0.660 because the
lower total count greatly improves the recall. This
is a significant improvement over the best previous
result reported by Cai et al (2011), which is an F1
measure of 0.586 on the same test set but based on
a less stringent metric of just comparing the EC po-
sition and type, without considering whether the EC
is attached to the correct head.

There are several observations worth noting from
these results. One is that our method performs par-
ticularly well on null relative pronouns (*OP*) and

class correct prec rec F1
*pro* 46 .397 .154 .222

*PRO* 162 .602 .531 .564
*OP* 344 .724 .653 .687
*T* 331 .673 .567 .615

* 0 0 0 0
*RNR* 20 .714 .625 .667

all 903 .653
.512 .574

(.491) (.561)
(.668) (.660)

CCG .660 .545 .586

Table 3: EC detection results on the CTB test set and
comparison with (Cai et al., 2011) [CCG]

traces (*T*), indicating that our features are effec-
tive in capturing information from relative clause
constructions. This accounts for most of the gain
compared with previous approaches. The *OP* cat-
egory, in particular, benefits most from the depen-
dency representation because it is collapsed to the
immediately following *T* in previous approaches
and does not even get a chance to be detected. On
the other hand, our model did poorly on dropped
pronouns (*pro*). One possible explanation is that
*pro*s generally occupy subject positions in a sen-
tence and is attached as an immediate child of an
IP, which is the top-level structure of a sentence
that an automatic parser tends to get wrong. Unlike
*PRO*, it is not constrained to well-defined gram-
matical constructions such as subject- and object-
control structures.

To evaluate the effectiveness of our features, we
also did an ablation study on the contribution of dif-
ferent feature groups. The most effective features
are the ones when taken out lead to the most drop in
accuracy. As should be clear from Table 4, the most
effective features are the horizontal features, fol-
lowed by vertical structures. Features extracted from
targeted grammatical constructions and features rep-
resenting whether h is the head of a coordinated VP
lead to modest improvement. Transitivity and se-
mantic role features make virtually no difference at
all. We believe it is premature to conclude that they
are not useful. Possible explanations for their lack
of effectiveness is that they are used in very limited
context and the accuracy of the semantic role label-
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ing system is not sufficient to make a difference.

class correct prec rec F1
all 903 .653 .512 .574 (.561)

-Horizontal 827 .627 .469 .536 (.524)
-Vertical 865 .652 .490 .559 (.547)
-Gr Cons 887 .646 .483 .565 (.552)
-V head 891 .651 .505 .569 (.556)
-Trans 899 .654 .509 .573 (.560)
-SRL 900 .657 .510 .574 (.561)

Table 4: Contribution of feature groups

5 Related Work

The work reported here follows a fruitful line of re-
search on EC detection and resolution, mostly in
English. Empty categories have initially been left
behind in research on syntactic parsing (Collins,
1999; Charniak, 2001) for efficiency reasons, but
more recent work has shown that EC detection can
be effectively integrated into the parsing process
(Schmid, 2006; Cai et al., 2011). In the meantime,
both pre-processing and post-processing approaches
have been explored in previous work as alternatives.
Johnson (2002) has showed that empty categories
can be added to the skeletal parses with reasonable
accuracy with a simple pattern-matching algorithm
in a postprocessing step. Dienes and Dubey (2003b;
2003a) achieved generally superior accuracy using a
machine learning framework without having to refer
to the syntactic structure in the skeletal parses. They
described their approach as a pre-processing step for
parsing because they only use as features morpho-
syntactic clues (passives, gerunds and to-infinitives)
that can be found in certain function words and part-
of-speech tags. Even better results, however, were
obtained by Campbell (2004) in a postprocessing
step that makes use of rules inspired by work in theo-
retical linguistics. Gabbard et al (2006) reported fur-
ther improvement largely by recasting the Campbell
rules as features to seven different machine learning
classifiers.

We adopted a machine-learning based postpro-
cessing approach based on insights gained from
prior work in English and on Chinese-specific con-
siderations. All things being equal, we believe that
a machine learning approach that can exploit partial

information is more likely to succeed than determin-
istic rules that have to make reference to morpho-
syntactic clues such as to-infinitives and gerunds that
are largely non-existent in Chinese. Without these
clues, we believe a preprocessing approach that does
not take advantage of skeletal parses is unlikely to
succeed either. The work we report here also builds
on emerging work in Chinese EC detection. Yang
and Xue (2010) reported work on detecting just the
presence and absence of empty categories without
further classifying them. Chung and Gildea (2010)
reported work on just detecting just a small subset
of the empty categories posited in the Chinese Tree-
Bank. Kong and Zhou (2010) worked on Chinese
zero anaphora resolution, where empty category de-
tection is a subtask. More recently, Cai et al (2011)
has successfully integrated EC detection into phrase-
structure based syntactic parsing and reported state-
of-the-art results in both English and Chinese.

6 Conclusions and Future Work

We described a novel approach to detecting empty
categories (EC) represented in dependency trees and
a new metric for measuring EC detection accuracy.
The new metric takes into account not only the po-
sition and type of an EC, but also the head it is a
dependent of in a dependency structure. We also
proposed new features that are more suited for this
new approach. Tested on a subset of the Chinese
Treebank, we show that our system improved signif-
icantly over the best previously reported results de-
spite using a more stringent evaluation metric, with
most of the gain coming from an improved represen-
tation. In the future, we intend to work toward re-
solving ECs to their antecedents when EC detection
can be done with adequate accuracy. We also plan to
test our approach on the Penn (English) Treebank,
with the first step being converting the Penn Tree-
bank to a dependency representation with the ECs
preserved.
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Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
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