
Proceedings of NAACL-HLT 2018, pages 173–184
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Discourse-Aware Neural Rewards for Coherent Text Generation

Antoine Bosselut1∗, Asli Celikyilmaz2, Xiaodong He3,
Jianfeng Gao2, Po-Sen Huang2 and Yejin Choi1,4

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Microsoft Research

3JD AI Research
4Allen Institute for Artificial Intelligence

{antoineb,yejin}@cs.washington.edu {xiaodong.he}@jd.com
{aslicel,jfgao,pshuang}@microsoft.com

Abstract

In this paper, we investigate the use of
discourse-aware rewards with reinforce-
ment learning to guide a model to gen-
erate long, coherent text. In particular,
we propose to learn neural rewards to
model cross-sentence ordering as a means
to approximate desired discourse struc-
ture. Empirical results demonstrate that a
generator trained with the learned reward
produces more coherent and less repeti-
tive text than models trained with cross-
entropy or with reinforcement learning
with commonly used scores as rewards.

1 Introduction

Defining an ideal loss for training text genera-
tion models remains an open research question.
Many existing approaches based on variants of re-
current neural networks (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014) are trained using
cross-entropy loss (Bahdanau et al., 2015; Vinyals
et al., 2015; Xu et al., 2015; Rush et al., 2015), of-
ten augmented with additional terms for topic cov-
erage or task-specific supervision (Kiddon et al.,
2016; Yang et al., 2017).

Training with cross-entropy, however, does not
always correlate well with achieving high scores
on commonly used evaluation measures such as
ROUGE (Lin, 2004), BLEU (Papineni et al.,
2002), or CIDEr (Vedantam et al., 2015). Another
current line of research therefore explores train-
ing generation models that directly optimize the
target evaluation measure (Wu et al., 2016; Ran-
zato et al., 2015; Paulus et al., 2018; Rennie et al.,
2017) using reinforcement learning methods such
as the REINFORCE algorithm (Williams, 1992).

∗ Work done while author was at Microsoft Research

Model Teacher

Reward

Wash the tomatoes and 
cut them length-wise. 
Set on plate. Slice the 
mozzarella and put on 
tomatoes. Add dressing 
and serve cold. 

Generated Recipe: 

Gold Recipe 

Figure 1: The generator is rewarded for imitating the
discourse structure of the gold sequence.

Importantly, most automatic measures are based
on local n-gram patterns, providing only a lim-
ited and myopic perspective of overall text qual-
ity. As a result, while models trained to directly
optimize these measures can yield improvements
on the same measures, they may not lead to bet-
ter quality in terms of overall coherence or dis-
course structure. Indeed, recent studies have re-
ported cases where commonly used measures do
not align well with desired aspects of generation
quality (Rennie et al., 2017; Li et al., 2016).

The challenge, however, is to define a global
score that can measure the complex aspects of text
quality beyond local n-gram patterns. In this pa-
per, we investigate learning neural rewards and
their use in a reinforcement learning regime with
a specific focus on learning more discourse-aware
and coherent text generation. Our approach shares
the spirit of the work of Lowe et al. (2017), where
neural scores were learned to approximate human
judgments of dialogue quality. The key difference
is that our rewards can be fully automatically con-
structed without requiring human judgments and
can be trained in an unsupervised manner.

More specifically, we propose a neural reward
learning scheme that is trained to capture cross-
sentence ordering structure as a means to approxi-
mate the desired discourse structure in documents.
The learned teacher computes rewards for the

173



underlying text generator (see Figure 1), which
is trained using self-critical reinforcement learn-
ing (Rennie et al., 2017). We also present a new
method for distributing sentence-level rewards for
more accurate credit assignment.

We test our approach on the task of generat-
ing cooking recipes, and evaluate using automatic
overlap metrics that measure discourse structure.
We also provide human judgments that yield com-
prehensive insights into the model behavior in-
duced by the learned neural rewards. Empirical
results demonstrate that a generator trained with
the discourse-aware rewards produces text that
is more coherent and less repetitive than models
trained with cross-entropy or reinforcement learn-
ing with other commonly used scores.

2 Neural Teachers

Recent work in image captioning (Rennie et al.,
2017), machine translation (Wu et al., 2016), and
summarization (Paulus et al., 2018) has investi-
gated using policy gradient methods to fine-tune
neural generation models using automatic mea-
sures such as CIDEr as the reward. However, be-
cause most existing automatic measures focus on
local n-gram patterns, fine-tuning on those mea-
sures may yield deteriorated text despite increased
automatic scores, especially for tasks that require
long coherent generation (§6.1).

Since writing out a scoring term that quantifies
the quality of discourse coherence is an open re-
search question, we take inspiration from previ-
ous research that learns the overall ordering struc-
ture of a document as an approximation of the dis-
course structure (Barzilay and Lapata, 2005, 2008;
Barzilay and Lee, 2004; Li and Hovy, 2014), and
propose two neural teachers that can learn to score
an ordered sequence of sentences. The scores from
these neural teachers are then used to formulate
rewards (§4.2) that guide coherent long text gen-
eration systems in a policy gradient reinforcement
learning setup. Notably, the neural teachers are
trained offline on gold sequences in an unsuper-
vised manner prior to training the generator. They
are not trained jointly with the generator and their
parameters are fixed during policy learning.

2.1 Notation

We define a document of n sentences as S =
{s0, ..., sn} where each sentence sj has Lj words.

sj : sj+1 : 

…+

+
+

…

Wash

lettuce

bowl

+

+
+

…

Dry

with

towel

sj+l     : max

+

+
+

…

Toss

with

serving

…

…GRU GRU GRU

GRU GRUGRU

f(
�!
S )

<latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit>

f(
 �
S )

<latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit>

Figure 2: The teacher encodes the sentences of the doc-
ument in the forward and reverse order.

2.2 Absolute Order Teacher

The first teacher explored is motivated by work
on deep semantic similarity models (Huang et al.,
2013), which approximated the similarity between
queries and documents in information retrieval
tasks. We extend this approach to modeling tem-
poral patterns by training a sentence encoder to
minimize the similarity between a sequence en-
coded in its forward order, and the same sequence
encoded in the reverse order (see Figure 2).

To focus the teacher on discourse structure, we
design the encoder to capture sentence order, in-
stead of word order. Words in each sentence sj
are encoded using a bag of words:

sj =

Lj∑

i=1

xij (1)

where xij is a word embedding and sj is a sen-
tence embedding. Each sj is passed to a gated re-
current unit (GRU) and the final output of the hid-
den unit is used as the representation for the full
document:

hj = GRU(sj , hj−1) (2)

f(S) = hn (3)

where f(S) is the representation of the sentences
of the document and hn is the final output vector
of the GRU. To capture properties of temporal co-
herence among document sentences, the teacher is
trained to minimize Labs, the cosine similarity be-
tween the sentence embedding from reading the
sentences in the forward order,

−→
S and from read-

ing the sentences in the reverse order,
←−
S :

Labs =
〈f(
−→
S ), f(

←−
S )〉

‖f(
−→
S )‖‖f(

←−
S )‖

(4)

174



Intuitively, by parametrizing only relations be-
tween sentences (with the GRU layer) and not
those between words, the teacher only captures
sentence ordering properties. When training the
neural generator (§4), we use this learned teacher
to generate a reward that judges the generated se-
quence’s ordering similarity to the gold sequence.

2.3 Relative Order Teacher
While the absolute ordering teacher evaluates the
temporal coherence of the entire generation, we
may want our teacher to be able to judge finer-
grained patterns between sentences. In recipes, for
example, where sentences correspond to process
steps, the teacher should capture implicit script
knowledge (Schank and Abelson, 1975) among
groups of sentences. Consequently, the teacher
should reward sentences individually for how they
fit with surrounding sentences.

In many current approaches for using policy
gradient methods to optimize a model with respect
to a global score, each sentence receives the same
reward. This framework assumes each sentence
is equally responsible for the reward gathered by
the full sequence, allowing potentially appropriate
subsequences to be incorrectly penalized. We de-
sign the relative order teacher to address this issue.

The relative order teacher is trained in the same
way as the absolute order model. A bag of words
embedding is computed for each sentence in the
gold sequence. Subsequences of the gold doc-
ument that have ` sentences are selected where
` ∈ (`min, `max). For a subsequence beginning
at sentence j, the model computes:

f(Sj:j+`) = GRU(sj+`, hj+`−1) (5)

where f(Sj:j+`) is the encoded representation of
sentences {sj , ...sj+`} and hj−1 would be initial-
ized as a vector of zeros. The relative ordering
teacher is trained to minimizeLrel, the cosine sim-
ilarity between gold orders of subsequences:

Lrel =
〈f(
−→
S j:j+`), f(

←−
S j:j+`)〉

‖f(
−→
S j:j+`)‖‖f(

←−
S j:j+`)‖

(6)

where the arrow above S signifies the order in
which the sentences are processed. The relative
ordering teacher learns to identify local sentence
patterns among ordered sentences, thereby learn-
ing how to reward sequences that are temporally
coherent.

3 Generator Architecture

In the task of recipe generation, the model is given
a title of a recipe such as “Cheese Sandwich” and
a list of ingredients (e.g., cheese, bread, etc.) and
must generate the full multi-sentence recipe text.
Similar to data to document generation tasks, the
model must generate a full long-form text from
sparse input signal, filling in missing information
on its own (Wiseman et al., 2017).

3.1 Notation
Using the same notation as Kiddon et al. (2016),
we are given a set of recipe title words {g1, ..., gn}
(e.g., { “cheese”, “sandwich” }) and a list of in-
gredients E = {i1, ..., i|E|} where each i can be
a single- or multi-word ingredient phrase (e.g.,
“onions” or “onions, chopped”). In the following
paragraphs, all W variables are projections matri-
ces and all b variables are bias vectors.

3.2 Encoder
We use a modification of the baseline encoder of
Kiddon et al. (2016). First, the title words are en-
coded as a bag of embeddings, g. Second, each
ingredient phrase i is encoded as a bag of em-
beddings vector, ei. The ingredient embeddings
are inputs to a bidirectional gated recurrent unit,
which yields an output vector e. The final encoder
output is the concatenation of these two represen-
tations, he = [g, e].

3.3 Decoder
The decoder is a separate gated recurrent unit that
receives he from the encoder to initialize its hid-
den state hd

0 and must generate a full recipe word
by word. At each time step, the model receives an
input token embedding, xt, as well as the output
from the encoder he:

at = σ(W1h
d
t−1 +W2xt + b1) (7)

zt = ath
e (8)

x̃t = [xt, zt] (9)

where x̃t is the input to the recurrent unit at every
time step. The recipe generator is pretrained to
minimize the negative loglikelihood of predicting
the next token in the recipe:

Lmle = −
T∑

t=1

logP (xt|x0, ..., xt−1,he) (10)

175



Fried Chicken 
• Chicken 
• Flour 
• Spices

. .
……

. mixwings

spices

…

…

Dredge

Mix Bread

Combine

chicken

in spice
…

bag .

Fry in

2) Greedily decode a sequence y*

Teacher

Teacher

r(s1), r(s2), …, r(sn)^

r(s1), r(s2), …, r(sn)* * *

3) Compute rewards

^ ^

1) Sample a sequence y according to model’s distribution^

Figure 3: The model generates a recipe by sampling
from its output vocabulary distribution and greedily de-
codes a baseline recipe. The generated sentences are
passed to the teacher, which yields a reward for each
sentence in each recipe.

where he is the encoded representation of the ti-
tle and ingredients from Section 3.2 and T is the
number of words in the gold recipe.

4 Policy Learning

Training a recipe generation model using maxi-
mum likelihood estimation produces generations
that are locally coherent, but lack understanding
of domain knowledge. By using a teacher that re-
wards the model for capturing cooking recipe dis-
course semantics, the model learns a policy that
produces generations that better model the under-
lying recipe process. We learn a policy using the
self-critical approach of Rennie et al. (2017).

4.1 Self-critical sequence training

In self-critical sequence training, outlined in
Figure 3, the model learns by being rewarded
for sampling sequences that receive more re-
ward than a greedily decoded sequence. For
each training example, a sequence ŷ is gener-
ated by sampling from the model’s distribution
P (ŷt|ŷ0, ..., ŷt−1,he) at each time step t. Once
the sequence is generated, the teacher produces a
reward r(ŷt) for each token in the sequence. A
second sequence y∗ is generated by argmax decod-
ing from P (y∗t |y∗0, ..., y∗t−1,he) at each time step t.
The model is trained to minimize:

Lrl = −
T∑

t=1

(r(ŷt)−r(y∗t )) logP (ŷt|ŷ0, ..., ŷt−1,he)

(11)
where r(y∗t ) is the reward produced by the teacher
for tokens of the greedily decoded sequence. Be-

cause r(y∗) can be viewed as a baseline reward
that sampled sequences should receive more than,
the model learns to generate sequences that re-
ceive more reward from the teacher than the best
sequence that can be greedily decoded from the
current policy. This approach allows the model
to explore sequences that yield higher reward than
the current best policy.

4.2 Rewards
As we decode a sequence y = {y0..., yt}, we track
a sentence index that is the number of sentence de-
limiter tokens (e.g., “.”) generated by the model.
The model then implicitly decodes a set of gener-
ated sentences, S′ = {s0, ..., sn}. These sentences
are provided to the teachers defined in Section 2,
which compute a score for the generated sequence.
We explain the procedure for producing a token re-
ward r(yt) from these scores below.

Absolute Order Once a sequence has been gen-
erated, the absolute order teacher computes a re-
ward for y in the following way:

rabs(y) =
〈f(S′), f(

−→
S )〉

‖f(S′)‖‖f(
−→
S )‖

− 〈f(S′), f(
←−
S )〉

‖f(S′)‖‖f(
←−
S )‖

(12)
where

−→
S is the forward-ordered corresponding

gold sequence and
←−
S is the reverse-ordered gold

sequence. Both terms in the reward computation
are variations of the loss function on which the
absolute order teacher was trained (Equation (4)).
This reward compares the generated sequence to
both sentence orders of the gold sequence, and re-
wards generations that are more similar to the for-
ward order of the gold sequence. Because the co-
sine similarity terms in Equation (12) are bounded
in [−1, 1], the model receives additional reward
for generating sequences that are different from
the reverse-ordered gold sequence.

Relative Order Similarly, the relative order re-
ward is generated by the relative order teacher
(§2.3), which evaluates subsequences of sen-
tences, rather than the whole sequence. For a sen-
tence sj , the reward is computed as:

rrel(sj) =
1

L

`max∑

`=`min

(
〈f(S′j−`:j), f(

−→
S j−`:j)〉

‖f(S′j−`:j)‖‖f(
−→
S j−`:j)‖

−
〈f(S′j−`:j), f(

←−
S j−`:j)〉

‖f(S′j−`:j)‖‖f(
←−
S j−`:j)‖

)

(13)

176



where `min and `max define the window of sen-
tences to include in the computation of the reward.
Similar to the absolute order teacher, the relative
order teacher produces scores bounded in [−1, 1],
giving the model additional reward for generat-
ing sequences that are different from the reverse-
ordered gold subsequences.

Credit Assignment When rewarding tokens
with the absolute ordering teacher, each gener-
ated token receives the same sequence-level re-
ward from the absolute order teacher:

r(yt) = rabs(y) (14)

The relative order teacher, meanwhile, computes
rewards for sentences based on their imitation of
nearby sentences in the gold recipe. Rather than
combining all rewards from the teacher to com-
pute a full sequence reward, sentences should only
be rewarded for their own quality. Each token in
a sentence corresponds to a position in the full
sequence. When relative order rewards are com-
puted by the teacher, the correct sentence reward
is indexed for each token. Consequently, when
training with a relative order teacher, words only
receive rewards for the sentences they belong to:

r(yt) =

|S|∑

j=1

1(yt ∈ ŝj)rrel(ŝj) (15)

where |S| is the number of sentences in the gener-
ated recipe, and 1 is an indicator variable identify-
ing word yt belonging to sentence sj .

4.3 Mixed Training

As the model learns parameters to optimize the
amount of reward it receives from the teacher, it is
not explicity encouraged to produce fluent gener-
ations. The model quickly learns to generate sim-
ple sequences that exploit the teacher for high re-
wards despite being incoherent recipes (e.g., Fig-
ure 4). Consequently, it is possible that generated
sequences are no longer readable (Pasunuru and
Bansal, 2017; Paulus et al., 2018).

Title: Chili Grits
Ingredients: boiling water, butter, shredded cheddar cheese,
jalapenos, eggs, chicken cream of soup, salt
Generated Recipe: Here .

Figure 4: Recipe generated from a self-critical model
with no mixed training

To remedy this effect, the model optimizes
a mixed objective that balances learning the
discourse-focused policy while maintaining the
generator’s language model:

Lmix = γLrl + (1− γ)Lmle (16)

where Lmle is the objective from Equation (10),
Lrl is the objective from either Equation (11), and
γ is a hyperparameter in [0, 1].

5 Experimental Setup

5.1 Datasets
We use the Now You’re Cooking dataset with the
same training/test/development splits from Kid-
don et al. (2016). For training, we use 109567
recipes with 1000 recipes set aside for both devel-
opment and test.

5.2 Training
Teacher Models The teachers are trained before
the recipe generator and their parameters are fixed
during generation. We tune hyperparameters on
the development set. To train the relative order
teacher, we sample 20 subsequences from each
recipe of `min = 3 to `max = 6 sentences. Ad-
ditional details are provided in Appendix A.2.

Recipe Generator We pretrain a recipe genera-
tor using a variant of the encoder-decoder baseline
from Kiddon et al. (2016). Comprehensive hyper-
parameter details can be found in Appendix A.3.

Policy Learning We train a different model for
three different teacher-provided rewards: abso-
lute ordering (AO), relative ordering (RO) and a
joint reward of relative ordering and BLEU-4 (RO
+ B4), where the full-sequence BLEU-4 reward
and the sentence-level relative ordering reward are
summed at each time step. The best model for
the absolute and relative ordering rewards are the
ones that receive the highest average reward on the
development set. The best model for the mixed
reward was chosen as the one that achieved the
highest average geometric mean of BLEU-4 re-
ward and average relative ordering reward for each
generated sequence y in the development set:

r̄ =
rb4(y)

T

T∑

t=1

rRO(yt) (17)

where rb4 is the BLEU-4 score of the whole gener-
ated sequence, and rRO is computed using Equa-

177



Model BLEU-1 BLEU-4 R-L AB1 AB4 AR-L SCB1 SCB4 SCR-L
Cross-entropy (MLE) 26.86 4.74 28.86 31.23 4.83 28.51 51.92 26.35 50.21

BLEU-4 (Rennie et al., 2017) 7.75 1.38 13.93 5.69 0.84 10.37 10.76 5.05 20.87
CIDEr (Rennie et al., 2017) 12.67 1.90 21.20 14.61 1.79 21.70 26.07 12.30 41.65

ROUGE-L (Paulus et al., 2018) 29.00 4.86 29.10 33.49 4.73 28.11 56.86 27.83 51.26
BLEU-1 (γ = 0.97) 31.16 5.60 29.53 32.28 5.09 29.34 52.63 25.43 51.58
BLEU-4 (γ = 0.99) 30.56 5.42 29.16 32.53 4.99 28.99 53.48 26.35 51.02

CIDEr (γ = 0.97) 29.60 5.10 28.79 33.93 4.81 28.41 57.00 27.55 50.57
ROUGE-L (γ = 0.97) 26.88 4.66 29.49 31.85 5.01 29.25 53.84 26.77 51.88

Absolute Ordering (AO) 23.70 4.25 28.43 28.22 4.44 27.88 47.93 24.47 50.15
Relative Ordering (RO) 27.75 4.88 29.60 34.37 5.60 29.36 58.31 29.14 53.08

Relative Ordering + BLEU-4 29.58 5.26 29.78 35.13 5.55 29.33 59.13 29.19 52.46

Table 1: Evaluation results for generated sequences by models and baselines. We bold the top performing result.
The second to fourth columns list word-level scores. Columns AB1, AB4, and AR-L list action-level scores (§6.1).
Columns SCB1, SCB4, and SCR-L list state change level scores (§6.1).

tion (15). Our best models use γ = 0.97 when
training with the mixed objective from Equa-
tion (16).

5.3 Baselines

As baselines, we report results for a model trained
only with cross-entropy loss (MLE) and for re-
implemented versions of models from Rennie
et al. (2017) and Paulus et al. (2018). These base-
lines achieved state of the art results in image cap-
tioning and document summarization tasks. We
found, however, that their high γ (1 and 0.9984, re-
spectively) led to low fluency, resulting in reduced
performance on word-level scores. To control for
this effect, we trained additional versions of each
baseline with different values for γ and report the
best performing configurations (see Table 1).

6 Results

6.1 Overlap Metrics

Scores We compute the example-level BLEU-
1, BLEU-4, and ROUGE-L (R-L) scores for all
recipes in the test set. A generated recipe, how-
ever, must be coherent at both the word-level, link-
ing words and phrases sensibly, and the world-
level, describing events that are grounded in real-
world actions. Because n-gram scores do not eval-
uate if a generated recipe models this latent pro-
cess, we also report these scores on the action
and state change sequence described in the recipe.
These words depict a simulated world where ac-
tions are taken and state changes are induced. A
generated recipe should follow the sequence of ac-
tions taken in the gold recipe, and induce the same
state changes as those in the gold recipe.

We use the state change lexicon from Bosselut
et al. (2018) to map recipe words to ordered se-
quences of actions and state changes. Each entry
in the lexicon contains an action in the cooking do-
main as well as the state changes that result from
that action in the set of {LOCATION, COMPO-
SITION, COOKEDNESS, TEMPERATURE, SHAPE,
CLEANLINESS}.

Action sequences are formed by mapping lem-
mas of words in generated sequences to entries in
the lexicon. We compare these event sequences
to the gold event sequences using the same scores
as for words – BLEU-1, BLEU-4, and ROUGE-
L. Intuitively, these scores can be seen as evalu-
ating the following: whether the generated recipe
depicts the same actions (AB1), subsequences of
consecutive actions (AB4), and full action se-
quence (AR-L) as the gold recipe.

State change sequences are more coarse-grained
than action sequences, and are formed by map-
ping actions to their state changes in the lexicon
from Bosselut et al. (2018). These scores evalu-
ate whether the generated recipe implies the same
induced state changes (SCB1), subsequences of
consecutive state changes (SCB4), and global state
change order (SCR-L) as the gold recipe.

Results Our results in Table 1 show that mod-
els optimized on word overlap metrics achieve the
greatest improvements for those scores. Optimiz-
ing scores such as BLEU-1 encourages the model
to output words and phrases that overlap often
with reference sequences, but that may not de-
scribe main events in the recipe process.

When examining models trained using a neu-
ral teacher, we see that the model optimized with

178



MLE RO + B4 Tie
Fluency 0.330 0.447 0.223

Ingredient Use 0.350 0.440 0.210
Title Completion 0.347 0.430 0.223

Action Order 0.377 0.453 0.170
BLEU-1 RO + B4 Tie

Fluency 0.387 0.373 0.240
Ingredient Use 0.327 0.363 0.310

Title Completion 0.353 0.377 0.270
Action Order 0.410 0.403 0.187

Table 2: Human evaluation measuring proportion of
winners. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with RO + B4 model.

the absolute ordering reward performs worse than
most baselines for every word-level score. The rel-
ative ordering model, however, raises every word-
level score above the cross-entropy baseline, in-
dicating the importance of fine-grained credit as-
signment at the sentence-level. The model trained
with mixed rewards from the teacher and BLEU-4
achieves even higher scores, showing the benefits
of training with diverse rewards.

When evaluating these metrics for the action
and state change sequence, the models trained
with feedback from the relative ordering teacher
show large improvement over the baselines, indi-
cating that the models exhibit more understanding
of the latent process underlying the task. While
optimizing word-level scores teaches the generator
to output common sequences of words, the rela-
tive ordering reward teaches the model to focus on
learning co-occurrences between recipe events.

6.2 Human Evaluation

We perform a human evaluation on 100 recipes
sampled from the test set to evaluate our model
on four aspects of recipe quality: fluency, ingre-
dient use, title completion, and action ordering.
For each example, three judges from Amazon Me-
chanical Turk are shown a pair of recipes, each
generated by a different model and asked to select
the recipe that is better according to the criteria
above. For ingredient use, judges select the recipe
that uses more of the ingredients correctly. For ti-
tle completion, we ask judges to select the recipe
that best completes the dish described in the recipe
title. Finally, for action ordering, judges choose
the recipe that better links subtasks in the recipes.

MLE RO + B4 Tie
Fluency 0.317 0.425 0.258

Ingredient Use 0.342 0.458 0.200
Title Completion 0.358 0.450 0.192

Action Order 0.367 0.483 0.150
BLEU-1 RO + B4 Tie

Fluency 0.391 0.383 0.225
Ingredient Use 0.267 0.392 0.342

Title Completion 0.325 0.418 0.258
Action Order 0.433 0.442 0.125

Table 3: Proportion of winners for long generated
recipes. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with mixed RO + B4 model.

Models We use the Relative Ordering + BLEU-
4 model (RO + B4) and compared to two base-
lines, the cross-entropy model (MLE), and the
BLEU-1 model, which achieved the best scores on
several word-level metrics (§6.1).

Results We report results in Table 2. Our model
outperforms the cross-entropy baseline, consis-
tently being preferred on aggregate for every ques-
tion. Workers preferred the BLEU-1 baseline for
the fluency and action order questions, while pre-
ferring recipes generated by the teacher-trained
model for the ingredient use and title ordering
questions. Upon further analysis, we see that
the strength of the BLEU-1 model depends on
the length of the original reference sequence. In
Table 3, we show evaluation scores for recipes
where the gold recipe was longer than 100 words.
Our model’s performance rises compared to the
BLEU-1 model for every question, showing that
modeling discourse structure as learned reward
improves global coherence in long text.

6.3 Insights

Qualitative Analysis In Table 4, we see the ef-
fect that the neural teacher has on the recipe gen-
erator. The teacher rewards behavior that more
closely imitates the actions in the gold recipe. In
the first example, the generator learns to com-
plete the actions of placing the mixture into the
a greased casserole and then baking it, which the
MLE model misses. The teacher also discour-
ages repetitive phrases, as they provide no increase
in reward during training. One weakness of our
teacher models, however, is that they encourage
common temporal patterns, such as in the third

179



Title Royale Casserole
Ings Broccoli, chopped; butter; flour; salt; black pepper; nutmeg; milk; cheese shredded swiss; lemon juice;

cooked cubed turkey; mushrooms; grated parmesan cheese; biscuits, refrigerated
MLE Cook broccoli according to package directions. Drain. Melt butter in skillet. Add flour, stirring constantly.

Cook, stirring constantly, until thickened. Add milk, salt, pepper, and nutmeg. Cook over low heat, stirring
constantly, until thickened. Add cheese, salt, pepper and pimento. Cook and stir till thickened. Add cheese,
stirring until melted. Add broccoli and mushrooms . Cook over low heat for 5 minutes. Add cheese. Cook
and stir until cheese melts. Add cheese. Cook and stir until cheese melts. Add cheese. Cook and stir until
cheese melts. Add cheese and stir until melted. Serve over hot noodles.

RO Melt butter in saucepan. Add flour and cook, stirring constantly, until thickened. Add milk, salt, pepper,
and nutmeg. Cook, stirring constantly, until thickened. Add cheese, salt and pepper. Cook over low heat,
stirring constantly, until mixture is thickened and smooth. Remove from heat. Stir in cheese. Spoon into
greased casserole . Top with cheese. Bake in 350 f oven for 30 minutes. Serves 6.

Gold Preheat oven to 375. Melt butter in saucepan. Blend in flour, salt, pepper, and nutmeg; cook 1-2 minutes.
Gradually add milk; cook, stirring, until slightly thickened. Stir in frozen vegetables. Remove from heat; stir
in cheese until melted. Add lemon juice, turkey, mushrooms and broccoli. Pour mixture into a lightly greased
baking dish; sprinkle with parmesan and top with biscuits. Bake 20 minutes, or until biscuits are golden brown.

Title Wine Sauerkraut
Ings butter; dry white wine; 16 oz drained sauerkraut

MLE In a saucepan, combine soup , wine, and butter. Heat, uncovered, in microwave oven 2 minutes or until
mixture is heated through.

RO Melt butter in skillet. Add sauerkraut and wine; heat to boiling. Reduce heat; cover and simmer 15 minutes.
Add wine and heat to boiling; reduce heat. Cover and cook 10 minutes or until mixture is tender. Serve on rice.

Gold Melt butter in 10-inch skillet over low heat; add sauerkraut. Cover and cook, stirring occasionally, 30
minutes; add wine. Heat to boiling; reduce heat. Cover and simmer until liquid is absorbed, about 45
minutes. Follow directions except simmer until liquid is absorbed, about 1 hour.

Title Strawberry Glazed Pie
Ings fresh strawberries; granulated sugar; salt; cornstarch; lemon juice; baked, cooled pie shell

MLE Combine sugar, cornstarch and salt in top of a double boiler. Cook and stir over medium heat until mixture
thickens and boils. Boil and stir 1 minute. Remove from heat and stir in lemon juice. Cool. Add strawberries
and lemon juice . Pour into baked pie shell. Top with whipped cream. Serve immediately.

RO Combine sugar, cornstarch, and salt in a saucepan; cook over medium heat, stirring constantly, until
mixture boils and thickens. Remove from heat; stir in lemon juice. Cool. Add strawberries; mix well. Pour
into baked pie shell. Bake in preheated 325-degree oven for 10 minutes . Cool. Garnish with whipped cream.

Gold Wash, drain thoroughly, and hull strawberries. Arrange about 3 cups of whole berries over bottom of baked
pastry shell. Crush remaining berries in a saucepan. In a bowl, mix sugar, salt and cornstarch; stir into crushed
berries. Heat slowly, stirring constantly, until mixture comes to a boil and thickens. Remove from heat and stir
in lemon juice. Cool, then spoon over berries in pie shell chill until glaze is set. Garnish with whipped cream.

Table 4: Example recipe generations from our model and comparative baselines. Boxed spans indicate recipe
events missed by another model’s generation. Red spans indicate superfluous events. The Ings row lists the
ingredients (separated by semicolons) provided to make the dish in the title.

example in Table 4, where the generator mentions
baking the pie. The model recognizes pies are gen-
erally supposed to be baked, even if it is not appro-
priate for that particular recipe.

Teacher Feedback Frequency We design the
reward functions in Eq. 12 and Eq. 13 to require
two passes through the teacher, one comparing
the generated sequence to the forward gold se-
quence, and one comparing it to the reverse gold
sequence. With no teacher comparison to the
reverse-ordered sequence, the generator learns to
exploit the teacher for reward with very simple se-
quences such as “Serve.” and “Here’s direction.”
When comparing with both orders, however, this
effect is dampened, hinting at the importance of

ensembling feedback from multiple sources for ro-
bust reward production. Another solution to this
effect was mixing policy learning and maximum
likelihood learning (Eq. 16) as the underlying lan-
guage model of the generator did not deteriorate.

Impact of `max and γ Two hyperparameters to
tune when training with teacher models are the
mixed loss coefficient γ, which balances MLE
learning with policy learning, and [`min, `max],
the number of sentences to consider when com-
puting the relative order reward. We fix `min = 3,
and vary `max ∈ [3, 6] and γ ∈ {0.95, 0.97, 0.98}.
Figure 5 shows the importance of tuning γ. A
low γ will not allow the teacher to guide the
model’s learning, while a high γ causes the lan-

180



0.95 0.97 0.98
3
4
5
6

m
ax

Action BLEU-1

0.95 0.97 0.98
3
4
5
6

m
ax

Action BLEU-4

0.95 0.97 0.98
3
4
5
6

m
ax

State Change BLEU-1

0.95 0.97 0.98
3
4
5
6

m
ax

State Change BLEU-4

0.330
0.335
0.340
0.345
0.350
0.355

0.048
0.050
0.052
0.054
0.056
0.058
0.060

0.55
0.56
0.57
0.58
0.59

0.275
0.280
0.285
0.290
0.295
0.300

Figure 5: Action and State Change BLEU Metrics for
different initializations of `max and γ

guage model to deteriorate. Interestingly, a higher
`max leads to better performance on global coher-
ence scores, implying that relative order rewards
conditioned on more sentences allow the model to
learn longer-range context co-occurrences.

7 Related Work

The field of neural text generation has received
considerable attention in tasks such as image cap-
tioning (Vinyals et al., 2015; Xu et al., 2015), sum-
marization (Rush et al., 2015; See et al., 2017),
machine translation (Bahdanau et al., 2015), and
recipe generation (Kiddon et al., 2016). While
these works have focused on developing new neu-
ral architectures that introduce structural biases for
easier learning, our work uses a simple architec-
ture and focuses on improving the optimization of
the learner (i.e., better teaching).

The importance of better teaching for RNN gen-
erators was outlined in Bengio et al. (2015), which
showed that exposure bias from a misaligned train
and test setup limited the capabilities of sequence-
to-sequence models. This limitation had been ad-
dressed in previous work by augmenting train-
ing data with examples generated by pretrained
models to make models robust to their own errors
(Daumé III et al., 2009; Ross et al., 2011).

More recent work on training RNNs for gener-
ation has used sequence scores such as ROUGE
(Paulus et al., 2018), CIDEr (Rennie et al., 2017;
Pasunuru and Bansal, 2017), BLEU (Ranzato
et al., 2015) and mixtures of them (Liu et al., 2017)
as a global reward to train a policy with the REIN-
FORCE algorithm (Williams, 1992). In contrast,
our work uses a neural teacher to reward a model
for capturing discourse semantics.

Most similar to our work is work on using neu-
ral and embedding rewards to improve dialogue
(Li et al., 2016), image captioning (Ren et al.,
2017), simplification (Zhang and Lapata, 2017),
and paraphrase generation (Li et al., 2017). While
these works use single-sentence similarity rewards
for short generation tasks, our work designs teach-
ers to reward long-range ordering patterns.

Finally, our teachers can be seen as reward-
ing generators that approximate script patterns in
recipes. Previous work in learning script knowl-
edge (Schank and Abelson, 1975) has focused on
extracting scripts from long texts (Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2016), with
some of that work focusing on recipes (Kiddon
et al., 2015; Mori et al., 2014, 2012). Our teachers
implicitly learn this script knowledge and reward
recipe generators for exhibiting it.

8 Conclusion

We introduce the absolute ordering and relative
ordering teachers, two neural networks that score
a sequence’s adherence to discourse structure in
long text. The teachers are used to compute re-
wards for a self-critical reinforcement learning
framework, allowing a recipe generator to be re-
warded for capturing temporal semantics of the
cooking domain. Empirical results demonstrate
that our teacher-trained generator better models
the latent event sequences of cooking recipes, and
a human evaluation shows that this improvement
is mainly due to maintaining semantic coherence
in longer recipes.

Acknowledgments

This research was supported in part by NSF
(IIS-1524371), DARPA under the CwC program
through the ARO (W911NF-15-1-0543) and Sam-
sung Research.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference for Learning Rep-
resentations.

Regina Barzilay and Mirella Lapata. 2005. Modeling
local coherence: An entity-based approach. In Pro-
ceedings of the 43rd Annual Meeting of the Associa-
tion for Computational Linguistics.

181



Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach. Compu-
tational Linguistics 34(1).

Regina Barzilay and Lillian Lee. 2004. Catching the
drift: Probabilistic content models, with applications
to generation and summarization. In HLT-NAACL.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2018. Simulat-
ing action dynamics with neural process networks.
Proceedings of the 6th International Conference for
Learning Representations .

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP: Volume 2-Volume 2. As-
sociation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9(8).

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
International Conference on Information & Knowl-
edge Management. ACM.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing.

Jiwei Li and Eduard H Hovy. 2014. A model of coher-
ence based on distributed sentence representation.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2017. Paraphrase generation with deep reinforce-
ment learning. arXiv preprint arXiv:1711.00279 .

Chin-Yew Lin. 2004. ROUGE: a package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama,
and Kevin Murphy. 2017. Improved image caption-
ing via policy gradient optimization of spider. Pro-
ceedings of the 2017 IEEE International Conference
on Computer Vision .

Ryan Lowe, Michael Noseworthy, Iulian Serban, Nico-
las Angelard-Gontier, Yoshua Bengio, and Joelle
Pineau. 2017. Towards an automatic turing test:
Learning to evaluate dialogue responses. In Pro-
ceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and
Tetsuro Sasada. 2014. Flow graph corpus from
recipe texts. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation.

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, and
Koichiro Yoshino. 2012. A machine learning ap-
proach to recipe text processing. In Proceedings of
the 1st Cooking with Computer Workshop.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Ramakanth Pasunuru and Mohit Bansal. 2017. Rein-
forced video captioning with entailment rewards. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proceedings of the 6th International
Conference for Learning Representations.

Karl Pichotta and Raymond J. Mooney. 2016. Using
sentence-level lstm language models for script infer-
ence. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. In Proceed-
ings of the 4th International Conference for Learn-
ing Representations.

182



Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and
Li-Jia Li. 2017. Deep reinforcement learning-based
image captioning with embedding reward. Proceed-
ings of the 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition .

Steven J. Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2017. Self-critical
sequence training for image captioning. Proceed-
ings of the 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition .

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In In-
ternational Conference on Artificial Intelligence and
Statistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. Yale University.

Abigale See, Peter J. Liu, and Christopher Manning.
2017. Gettothepoint: Summarization with pointer-
generatornetworks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern
Recognition.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the 2015
IEEE Conference on Computer Cision and Pattern
Recognition.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4).

Sam Wiseman, Stuart M. Shieber, and Alexander M.
Rush. 2017. Challenges in data-to-document gener-
ation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,

attend and tell: Neural image caption generation
with visual attention. In Proceedings of The 32nd
International Conference on Machine Learning.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

183



A Hyperparameters

A.1 Data
Each recipe is batched based on the number of to-
kens and number of ingredients it has. We use a
minibatch size of 32.

A.2 Teachers
The hidden size of the reward generator is 100, the
word embeddings have dimensionality 100. We
use dropout with a rate of 0.3 between the bag of
words layers and the recurrent layers.

A.3 Pretrained Recipe Generator
We use a hidden size of 256 for the encoder and
256 for the decoder. We initialize three different
sets of embeddings for the recipe titles, ingredient
lists, and text, each of size 256. All models are
trained with a dropout rate of 0.3 and are single-
layer. We use a temperature coefficient of β = 2
to make the output word distribution more peaky
(Kiddon et al., 2016), allowing for more controlled
exploration during self-critical learning. We use
scheduled sampling with a linear decay schedule
of 5% every 5 epochs up to a max of 50%. We use
a learning rate of η = 0.0003 and train with the
Adam optimizer.

A.4 Policy Learning
We use the same model hyperparameters as during
pretraining, but re-initialize the Adam optimizer,
use η = 3 × 10−5 as the learning rate, and do not
train with scheduled sampling.

B Baseline Selection

For each baseline we trained, we report the score
of the γ setting that achieved the highest score for
the metric on which it was trained. For exam-
ple, for baselines trained with ROUGE-L reward,
we report the results for the model trained with
the value of γ that scored the highest ROUGE-
L score on the development set. For the mod-
els trained with the CIDEr reward, we select the
model with value of γ that achieved the highest
CIDEr score on the development set. We do the
same for models trained with BLEU-1 and BLEU-
4 rewards. The values of γ yielding the best per-
formance on the development set were 0.97 for
the BLEU-1, ROUGE-L, and CIDEr-trained mod-
els, and 0.99 for the BLEU-4 trained baseline. For
each baseline, the best model is chosen by select-
ing the checkpoint that achieves the highest reward

(or lowest loss for the MLE model) for the metric
it was trained on.

184


