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Abstract

Current measures for evaluating text simplifi-
cation systems focus on evaluating lexical text
aspects, neglecting its structural aspects. In
this paper we propose the first measure to ad-
dress structural aspects of text simplification,
called SAMSA. It leverages recent advances in
semantic parsing to assess simplification qual-
ity by decomposing the input based on its se-
mantic structure and comparing it to the out-
put. SAMSA provides a reference-less auto-
matic evaluation procedure, avoiding the prob-
lems that reference-based methods face due to
the vast space of valid simplifications for a
given sentence. Our human evaluation experi-
ments show both SAMSA’s substantial corre-
lation with human judgments, as well as the
deficiency of existing reference-based mea-
sures in evaluating structural simplification.1

1 Introduction

Text simplification (TS) addresses the translation
of an input sentence into one or more simpler sen-
tences. It is a useful preprocessing step for several
NLP tasks, such as machine translation (Chan-
drasekar et al., 1996; Mishra et al., 2014) and rela-
tion extraction (Niklaus et al., 2016), and has also
been shown useful in the development of reading
aids, e.g., for people with dyslexia (Rello et al.,
2013) or non-native speakers (Siddharthan, 2002).

The task has attracted much attention in the
past decade (Zhu et al., 2010; Woodsend and La-
pata, 2011; Wubben et al., 2012; Siddharthan and
Angrosh, 2014; Narayan and Gardent, 2014), but
has yet to converge on an evaluation protocol that
yields comparable results across different methods
and strongly correlates with human judgments.
This is in part due to the difficulty to combine
the effects of different simplification operations

1All data and code are available in https://github.
com/eliorsulem/SAMSA.

(e.g., deletion, splitting and substitution). Xu et al.
(2016) has recently made considerable progress
towards that goal, and proposed to tackle it both
by using an improved reference-based measure,
named SARI, and by increasing the number of ref-
erences. However, their research focused on lex-
ical, rather than structural simplification, which
provides a complementary view of TS quality as
this paper will show.

This paper focuses on the evaluation of the
structural aspects of the task. We introduce the
semantic measure SAMSA (Simplification Auto-
matic evaluation Measure through Semantic An-
notation), the first structure-aware measure for TS
in general, and the first to use semantic structure
in this context in particular. SAMSA stipulates
that an optimal split of the input is one where each
predicate-argument structure is assigned its own
sentence, and measures to what extent this asser-
tion holds for the input-output pair in question, by
using semantic structure. SAMSA focuses on the
core semantic components of the sentence, and is
tolerant towards the deletion of other units.2

For example, SAMSA will assign a high score
to the output split “John got home. John gave
Mary a call.” for the input sentence “John got
home and gave Mary a call.”, as it splits each
of its predicate-argument structures to a different
sentence. Splits that alter predicate-argument re-
lations such as “John got home and gave. Mary
called.” are penalized by SAMSA.

SAMSA’s use of semantic structures for TS
evaluation has several motivations. First, it pro-
vides means to measure the extent to which the
meaning of the source is preserved in the output.
Second, it provides means for measuring whether
the input sentence was split to semantic units of

2We do not consider other structural operations, such as
passive to active transformations (Canning, 2002), that are
currently not treated by corpus-based simplification systems.
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the right granularity. Third, defining a semantic
measure that does not require references avoids
the difficulties incurred by their non-uniqueness,
and the difficulty in collecting high quality ref-
erences, as reported by Xu et al. (2015) and by
Narayan and Gardent (2014) with respect to the
Parallel Wikipedia Corpus (PWKP; Zhu et al.,
2010). SAMSA is further motivated by its use
of semantic annotation only on the source side,
which allows to evaluate multiple systems using
same source-side annotation, and avoids the need
to parse system outputs, which can be garbled.

In this paper we use the UCCA scheme for
defining semantic structure (Abend and Rap-
poport, 2013). UCCA has been shown to be pre-
served remarkably well across translations (Sulem
et al., 2015) and has also been successfully used
for machine translation evaluation (Birch et al.,
2016) (Section 2). We note, however, that
SAMSA can be adapted to work with any se-
mantic scheme that captures predicate-argument
relations, such as AMR (Banarescu et al., 2013)
or Discourse Representation Structures (Kamp,
1981), as used by Narayan and Gardent (2014).

We experiment with SAMSA both where se-
mantic annotation is carried out manually, and
where it is carried out by a parser. See Section 4.
We conduct human rating experiments and com-
pare the resulting system rankings with those pre-
dicted by SAMSA. We find that SAMSA’s rank-
ings obtain high correlations with human rank-
ings, and compare favorably to existing reference-
based measures for TS. Moreover, our results
show that existing measures, which mainly target
lexical simplification, are ill-suited to predict hu-
man judgments where structural simplification is
involved. Finally, we apply SAMSA to the dataset
of the QATS shared task on simplification evalu-
ation (Štajner et al., 2016). We find that SAMSA
obtains comparative correlation with human judg-
ments on the task, despite operating in a more
restricted setting, as it does not use human rat-
ings as training data and focuses only on struc-
tural aspects of simplicity. Section 2 presents pre-
vious work. Section 3 discusses UCCA. Section
4 presents SAMSA. Section 5 details the collec-
tion of human judgments. Our experimental setup
for comparing our human and automatic rankings
is given in Section 6, and results are given in Sec-
tion 7, showing superior results for SAMSA. A
discussion on the results is presented in Section 8.

Section 9 presents experiments with SAMSA on
the QATS evaluation benchmark.

2 Related Work
Evaluation Metrics for Text Simplification.
As pointed out by Xu et al. (2016), many of the
existing measures for TS evaluation do not gener-
alize across systems, because they fail to capture
the combined effects of the different simplification
operations. The two main directions pursued are
direct human judgments and automatic measures
borrowed from machine translation (MT) evalua-
tion. Human judgments generally include gram-
maticality (or fluency), meaning preservation (or
adequacy) and simplicity. Human evaluation is
usually carried out with a small number of sen-
tences (18 to 20), randomly selected from the test
set (Wubben et al., 2012; Narayan and Gardent,
2014, 2016).

The most commonly used automatic measure
for TS is BLEU (Papineni et al., 2002). Using 20
source sentences from the PWKP test corpus with
5 simplified sentences for each of them, Wubben
et al. (2012) investigated the correlation of BLEU
with human evaluation, reporting positive correla-
tion for simplicity, but no correlation for adequacy.
Štajner et al. (2014) explored the correlation with
human judgments of six automatic metrics: co-
sine similarity with a bag-of-words representation,
METEOR (Denkowski and Lavie, 2011), TERp
(Snover et al., 2009), TINE (Rios et al., 2011) and
two sub-components of TINE: T-BLEU (a variant
of BLEU which uses lower n-grams when no 4-
grams are found) and SRL (based on semantic role
labeling). Using 280 pairs of a source sentence
and a simplified output with only structural mod-
ifications, they found positive correlations for all
the metrics except TERp with respect to meaning
preservation and positive albeit lower correlations
for METEOR, T-BLEU and TINE with respect
to grammaticality. Human simplicity judgments
were not considered in this experiment. In this pa-
per we collect human judgments for grammatical-
ity, meaning preservation and structural simplic-
ity. To our knowledge, this is the first work to tar-
get structural simplicity evaluation, and it does so
both through elicitation of human judgments and
through the definition of SAMSA.

Xu et al. (2016) were the first to propose two
evaluation measures tailored for simplification, fo-
cusing on lexical simplification. The first met-
ric is FKBLEU, a combination of iBLEU (Sun

686



and Zhou, 2012), originally proposed for evaluat-
ing paraphrase generation by comparing the out-
put both to the reference and to the input, and of
the Flesch-Kincaid Index (FK), a measure of the
readability of the text (Kincaid et al., 1975). The
second one is SARI (System output Against Refer-
ences and against the Input sentence) which com-
pares the n-grams of the system output with those
of the input and the human references, separately
evaluating the quality of words that are added,
deleted and kept by the systems. They found that
FKBLEU and even more so SARI correlate better
with human simplicity judgments than BLEU. On
the other hand, BLEU (with multiple references)
outperforms the other metrics on the dimensions
of grammaticality and meaning preservation.

As the Parallel Wikipedia Corpus (PWKP),
usually used in simplification research, has been
shown to contain a large portion of problematic
simplifications (Xu et al., 2015; Hwang et al.,
2015), Xu et al. (2016) further proposed to use
multiple references (instead of a single reference)
in the evaluation measures. SAMSA addresses
this issue by directly comparing the input and the
output of the simplification system, without re-
quiring manually curated references.

Structural Measures for Text-to-text Genera-
tion. Other than measuring the number of splits
(Narayan and Gardent, 2014, 2016), which only
assesses the frequency of this operation and not
its quality, no structural measures were previously
proposed for the evaluation of structural simplifi-
cation. The need for such a measure is pressing,
given recent interest in structural simplification,
e.g., in the Split and Rephrase task (Narayan et al.,
2017), which focuses on sentence splitting.

In the task of sentence compression, which
is similar to simplification in that they both in-
volve deletion and paraphrasing, Clarke and Lap-
ata (2006) showed that a metric that uses syntactic
dependencies better correlates with human evalu-
ation than a metric based on surface sub-strings.
Toutanova et al. (2016) found that structure-aware
metrics obtain higher correlation with human eval-
uation over bigram-based metrics, in particular
with grammaticality judgments, but that they do
not significantly outperform bigram-based metrics
on any parameter. Both Clarke and Lapata (2006)
and Toutanova et al. (2016) use reference-based
metrics that use syntactic structure on both the out-
put and the references. SAMSA on the other hand

uses linguistic annotation only on the source side,
with semantic structures instead of syntactic ones.

Semantic structures were used in MT evalua-
tion, for example in the MEANT metric (Lo et al.,
2012), which compares the output and the refer-
ence sentences, both annotated using SRL (Se-
mantic Role Labeling). Lo et al. (2014) proposes
the XMEANT variant, which compares the SRL
structures of the source and output (without us-
ing references). As some frequent constructions
like nominal argument structures are not addressed
by the SRL annotation, Birch et al. (2016) pro-
posed HUME, a human evaluation metric based
on UCCA, using the semantic annotation only on
the source side when comparing it to the output.
We differ from HUME in proposing an automatic
metric, tackling monolingual text simplification,
rather than MT.

The UCCA annotation has also been recently
used for the evaluation of Grammatical Error Cor-
rection (GEC). The USIM metric (Choshen and
Abend, 2018) measures the semantic faithfulness
of the output to the source by comparing their re-
spective UCCA graphs.

Semantic Structures in Text Simplification. In
most of the work investigating the structural oper-
ations involved in text simplification, both in rule-
based systems (Siddharthan and Angrosh, 2014)
and in statistical systems (Zhu et al., 2010; Wood-
send and Lapata, 2011), the structures that were
considered were syntactic. Narayan and Gardent
(2014, 2016) proposed to use semantic structures
in the simplification model, in particular in order
to avoid splits and deletions which are inconsis-
tent with the semantic structures. SAMSA identi-
fies such incoherent splits, e.g., a split of a phrase
describing a single event, and penalizes them.

Glavas and Štajner (2013) presented two sim-
plification systems based on event extraction. One
of them, named Event-wise Simplification, trans-
forms each factual event motion into a separate
sentence. This approach fits with SAMSA’s stip-
ulation, that an optimal structural simplification
is one where each (UCCA-) event in the input
sentence is assigned a separate output sentence.
However, unlike in their model, SAMSA stipu-
lates that not only should multiple events evoked
by a verb in the same sentence be avoided in a
simplification, but penalizes sentences containing
multiple events evoked by a lexical item of any
category. For example, the sentence “John’s un-
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expected kick towards the gate saved the game”
which has two events, one evoked by “kick” (a
noun) and another by “saving” (a verb) can be con-
verted to “John kicked the ball towards the gate. It
saved the game.”

3 UCCA’s Semantic Structures
In this section we will briefly describe the UCCA
scheme, focusing on the concepts of Scenes
and Centers which are key in the definition of
SAMSA. UCCA (Universal Cognitive Conceptual
Annotation; Abend and Rappoport, 2013) is a se-
mantic annotation scheme based on typological
(Dixon, 2010b,a, 2012) and cognitive (Langacker,
2008) theories which aims to represent the main
semantic phenomena in the text, abstracting away
from syntactic detail. UCCA structures are di-
rected acyclic graphs whose nodes (or units) cor-
respond either to the leaves of the graph (including
the words of the text) or to several elements jointly
viewed as a single entity according to some se-
mantic or cognitive consideration. Unlike AMR,
UCCA semantic units are directly anchored in the
text (Abend and Rappoport, 2017; Birch et al.,
2016), which allows easy inclusion of a word-to-
word alignment in the metric model (Section 4).

UCCA Scenes. A Scene, which is the most ba-
sic notion of the foundational layer of UCCA con-
sidered here, describes a movement, an action or a
state which persists in time. Every Scene contains
one main relation, which can be either a Process or
a State. The Scene may contain one or more Par-
ticipants, which are interpreted in a broad sense,
including locations and destinations. For example,
the sentence “He ran into the park” has a single
Scene whose Process is “ran”. The two Partici-
pants are “He” and “into the park”.

Scenes can have several roles in the text. First,
they can provide additional information about an
established entity (Elaborator Scenes) as for ex-
ample the Scene “who entered the house” in the
sentence “The man who entered the house is
John”. They can also be one of the Participants
of another Scene, for example, “he will be late” in
the sentence: “He said he will be late”. In the other
cases, the Scenes are annotated as parallel Scenes
(H) which can be linked by a Linker (L): “WhenL
[he will arrive at home]H , [he will call them]H”.

Unit Centers. With regard to units which are not
Scenes, the category Center denotes the semantic

head of the unit. For example, “dogs” is the center
of the expression “big brown dogs” and “box” is
the center of “in the box”. There could be more
than one Center in a non-Scene unit, for example
in the case of coordination, where all conjuncts are
Centers.

4 The SAMSA Metric

SAMSA’s main premise is that a structurally cor-
rect simplification is one where: (1) each sentence
contains a single event from the input (UCCA
Scene), (2) the main relation of each of the events
and their participants are retained in the output.

For example, consider “John wrote a book. I
read that book.” as a simplification of “I read the
book that John wrote.”. Each output sentence con-
tains one Scene, which has the same Scene ele-
ments as the source, and would thus be deemed
correct by SAMSA. On the other hand, the out-
put “John wrote. I read the book.” is an incor-
rect split of that sentence, since a participant of
the “writing” Scene, namely “the book” is absent
in the split sentence. SAMSA would indeed pe-
nalize such a case.

Similarly, Scenes which have elements across
several sentences receive a zero score by SAMSA.
As an example, consider the sentence “The com-
bination of new weapons and tactics marks this
battle as the end of chivalry”, and erroneous split
“The combination of new weapons and tactics. It
is the end of chivalry.” (adapted from the output of
a recent system on the PWKP corpus), which does
not preserve the original meaning.

4.1 Matching Scenes to Sentences

SAMSA is based on two external linguistic re-
sources. One is a semantic annotation (UCCA in
our experiments) of the source side, which can
be carried out either manually or automatically,
using the TUPA parser3 (Transition-based UCCA
parser; Hershcovich et al., 2017) for UCCA.
UCCA decomposes each sentence s into a set of
Scenes {sc1, sc2, .., scn}, where each scene sci
contains a main relation mri (sub-span of sci) and
a set of zero or more participants Ai.

The second resource is a word-to-word align-
ment A between the words in the input and one or
zero words in the output. The monolingual align-
ment thus permits SAMSA not to penalize out-
puts that involve lexical substitutions (e.g., “com-

3https://github.com/danielhers/tupa
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mence” might be aligned with “start”). We denote
by ninp the number of UCCA Scenes in the input
sentence and by nout the number of sentences in
the output.

Given an input sentence’s UCCA Scenes
sc1, . . . , scninp , a non-annotated output of
a simplification system split into sentences
s1, . . . , snout , and their word alignment A, we
distinguish between two cases:
1. ninp ≥ nout: in this case, we compute the

maximal Many-to-1 correspondence between
Scenes and sentences. A Scene is matched to
a sentence in the following way. We say that
a leaf l in a Scene sc is consistent in a Scene-
sentence mapping M which maps sc to a sen-
tence s, if there is a word w ∈ s which l aligns
to (according to the word alignment A). The
score of matching a Scene sc to a sentence s
is then defined to be the total number of con-
sistent leaves in sc. We traverse the Scenes in
their order of occurrence in the text, selecting
for each the sentence that maximizes the score.
If ninp = nout, once a sentence is matched to
a Scene, it cannot be matched to another one.
Ties between sentences are broken towards the
sentence that appeared first in the output.

M∗(sci) = argmaxsscore(sci, s)

s.t. s /∈ {M∗(sc1), . . . ,M
∗(sci−1)} if ninp = nout

2. ninp < nout: In this case, a Scene will neces-
sarily be split across several sentences. As this
is an undesired result, we assign this instance a
score of zero.

4.2 Score Computation
Minimal Centers. The minimal center of a
UCCA unit u is UCCA’s notion of a semantic
head word, defined through recursive rules not un-
like the head propagation rules used for converting
constituency structures to dependency structures.
More formally, we define the minimal center of a
UCCA unit u (here a Participant or a Main Re-
lation) to be the UCCA graph’s leaf reached by
starting from u and iteratively selecting the child
tagged as Center. If a Participant (or a Center in-
side a Participant) is a Scene, its center is the main
relation (Process or State) of the Scene.

For example, the center of the unit “The previ-
ous president of the commission” (u1) is “presi-
dent of the commission”. The center of the latter
is “president”, which is a leaf in the graph. So the
minimal center of u1 is “president”.

Given the input sentence Scenes
{sc1, ..., scninp}, the output sentences
{s1, ..., snout}, and a mapping between them
M∗, SAMSA is defined as:
nout

ninp

1

2ninp

∑

sci

[
1M∗(sci)

(MRi) +
1

ki

ki∑

j=1

1M∗(sci)
(Par

(j)
i )
]

where MRi is the minimal center of the main
relation (Process or State) of sci, and Par

(j)
i (j =

1, . . . , ki) are the minimal centers of the Partici-
pants of sci.

For an output sentence s, 1s(u) is a function
from the input units to {0, 1}, which returns 1 iff
u is aligned (according to A) with a word in s.4

The role of the non-splitting penalty term
nout/ninp in the SAMSA formula is to penalize
cases where the number of sentences in the output
is smaller than the number of Scenes. In order to
isolate the effect of the non-splitting penalty, we
experiment with an additional metric SAMSAabl

(reads “SAMSA ablated”), which is identical to
SAMSA but does not take this term into account.
Corpus-level SAMSA and SAMSAabl scores are
obtained by averaging their sentence scores.

In the case of implicit units i.e. omitted units
that do not appear explicitly in the text (Abend and
Rappoport, 2013), since the unit preservation can-
not be directly captured, the score t for the rele-
vant unit will be set to 0.5. For example, in the
Scene “traveling is fun”, the people who are trav-
eling correspond to an implicit Participant. As im-
plicit units are not covered by TUPA, this will only
be relevant for the semi-automatic implementation
of the metric (see Section 6).

5 Human Evaluation Benchmark

5.1 Evaluation Protocol

For testing the automatic metric, we first build a
human evaluation benchmark, using 100 sentences
from the complex part of the PWKP corpus and
the outputs of six recent simplification systems for
these sentences:5 (1) TSM (Zhu et al., 2010) using
Tree-Based SMT, (2) RevILP (Woodsend and La-
pata, 2011) using Quasi-Synchronous Grammars,
(3) PBMT-R (Wubben et al., 2012) using Phrase-
Based SMT, (4) Hybrid (Narayan and Gardent,

4In some cases, the unit u can be a sequence of centers
(if there are several minimal centers). In these cases, 1s(u)
returns 1 iff the condition holds for all centers.

5All the data can be found here: http:
//homepages.inf.ed.ac.uk/snaraya2/data/
simplification-2016.tgz.
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2014), a supervised system using DRS, (5) UN-
SUP (Narayan and Gardent, 2016), an unsuper-
vised system using DRS, and (6) Split-Deletion
(Narayan and Gardent, 2016), the unsupervised
system with only structural operations.

All these systems explicitly address at least one
type of structural simplification operation. The
last system, Split-Deletion, performs only struc-
tural (i.e., no lexical) operations. It is thus an
interesting test case for SAMSA since here the
aligner can be replaced by a simple match be-
tween identical words. In total we obtain 600 sys-
tem outputs from the six systems, as well as 100
sentences from the simple Wikipedia side of the
corpus, which serve as references. Five in-house
annotators with high proficiency in English eval-
uated the resulting 700 input-output pairs by an-
swering the questions in Table 1.6

Qa addresses grammaticality, Qb and Qc cap-
ture two complementary aspects of meaning
preservation (the addition and the removal of in-
formation) and Qd addresses structural simplicity.
Possible answers are: 1 (“no”), 2 (“maybe”) and
3 (“yes”). Following Glavas and Štajner (2013),
we used a 3 point Likert scale, which has recently
been shown to be preferable over a 5 point scale
through human studies on sentence compression
(Toutanova et al., 2016).

Question Qd was accompanied by a negative
example 7 showing a case of lexical simplification,
where a complex word is replaced by a simple one.
A positive example was not included so as not to
bias the annotators by revealing the nature of the
operations our experiments focus on (i.e., splitting
and deletion).

The PWKP test corpus (Zhu et al., 2010) was
selected for our experiments over the development
and test sets used in (Xu et al., 2016), as the lat-
ter’s selection process was explicitly biased to-
wards input-output pairs that mainly contain lex-
ical simplifications.

Qa Is the output grammatical?

Qb Does the output add information, compared to
the input?

Qc Does the output remove important information,
compared to the input?

Qd Is the output simpler than the input, ignoring
the complexity of the words?

Table 1: Questions for the human evaluation

6Each input-output pair was rated by all five annotators.
7Other questions appeared without any example.

5.2 Human Score Computation
Given the annotator’s answers, we consider the
following scores. First, the grammaticality score
G is the answer to Qa. By inverting (changing 1 to
3 and 3 to 1) the answer for Qb, we obtain a Non-
Addition score indicating to which extent no addi-
tional information has been added. Similarly, in-
verting the answer to Qc yields the Non-Removal
score. Averaging these two scores, we obtain the
meaning preservation score P . Finally, the struc-
tural simplicity score S is the answer to Qd. Each
of these scores is averaged over the five annotators.
We further compute an average human score:

AvgHuman =
1

3
(G + P + S)

5.3 Inter-annotator Agreement
Inter-annotator agreement rates are computed in
two ways. Table 2 presents the absolute agree-
ment and Cohen’s quadratic weighted κ (Cohen,
1968). Table 3 presents Spearman’s correlation
(ρ) between the human ratings of the input-output
pairs (top row), and between the resulting system
scores (bottom row). In both cases, the agreement
between the five annotators is computed as the av-
erage agreement over the 10 annotator pairs.

Qa Qb Qc Qd
Total 0.58 (0.56) 0.74 (0.30) 0.53 (0.45) 0.57 (0.10)

TSM 0.59 (0.47) 0.75 (0.27) 0.50 (0.40) 0.43 (0.08)
RevILP 0.61 (0.59) 0.78 (0.27) 0.60 (0.43) 0.62 (0.11)

PBMT-R 0.47 (0.42) 0.70 (0.20) 0.58 (0.31) 0.76 (0.10)
Hybrid 0.59 (0.46) 0.77 (0.26) 0.52 (0.48) 0.72 (0.15)
UNSUP 0.51 (0.42) 0.59 (0.10) 0.45 (0.17) 0.52 (0.04)

Split-Deletion 0.59 (0.48) 0.93 (0.02) 0.45 (0.29) 0.55 (0.04)
Reference 0.70 (0.40) 0.66 (0.46) 0.52 (0.58) 0.41 (0.12)

Table 2: Inter-annotator absolute agreement (and
quadratic weighted κ), averaged over the 10 annotator
pairs. Rows correspond to systems, columns to ques-
tions. The top “Total” row refers to the concatenation
of the outputs of all 6 systems together with the refer-
ence sentences.

Qa Qb Qc Qd AvgHuman
Sen. 0.63∗ 0.30∗ 0.48∗ 0.11∗∗ 0.49∗

Sys. 0.92∗∗ 0.54 (0.1) 0.64 (0.06) 0.14 (0.4) 0.64 (0.06)

Table 3: Spearman’s correlation (and p-values) of the
system-level (top row) and sentence-level (bottom row)
ratings of the five annotators. ∗p < 10−5, ∗∗p = 0.002.

6 Experimental Setup

We further compute SAMSA for the 100 sen-
tences of the PWKP test set and the correspond-
ing system outputs. Experiments are conducted in
two settings: (1) a semi-automatic setting where
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UCCA annotation was carried out manually by
a single expert UCCA annotator using the UC-
CAApp annotation software (Abend et al., 2017),
and according to the standard annotation guide-
lines;8 (2) an automatic setting where the UCCA
annotation was carried out by the TUPA parser
(Hershcovich et al., 2017). Sentence segmenta-
tion of the outputs was carried out using the NLTK
package (Loper and Bird, 2002). For word align-
ments, we used the aligner of Sultan et al. (2014).9

7 Correlation with Human Evaluation

We compare the system rankings obtained by
SAMSA and by the four human parameters. We
find that the two leading systems according to
AvgHuman and SAMSA turn out to be the same:
Split-Deletion and RevILP. This is the case both
for the semi-automatic and the automatic imple-
mentations of the metric. A Spearman ρ correla-
tion between the human and SAMSA scores (com-
paring their rankings) is presented in Table 4.

We compare SAMSA and SAMSAabl to the
reference-based measures SARI10 (Xu et al.,
2016) and BLEU, as well as to the negative Lev-
enshtein distance to the reference (-LDSR). We
use the only available reference for this corpus, in
accordance with the standard practice. SARI is a
reference-based measure, based on n-gram overlap
between the source, output and reference, and fo-
cuses on lexical (rather than structural) simplifica-
tion. For completeness, we include the other two
measures reported in Narayan and Gardent (2016),
which are measures of similarity to the input (i.e.,
they quantify the tendency of the systems to in-
troduce changes to the input): the negative Lev-
enshtein distances between the output and input
compared to the original complex corpus (-LDSC),
and the number of sentences split by each of the
systems.

The highest correlation with AvgHuman and
grammaticality is obtained by semi-automatic
SAMSA (0.58 and 0.54), a high correlation espe-
cially in comparison to the inter-annotator agree-
ment on AvgHuman (0.64, Table 3). The auto-
matic version obtains high correlation with hu-
man judgments in these settings, where for struc-

8http://www.cs.huji.ac.il/˜oabend/
ucca.html

9https://github.com/ma-sultan/
monolingual-word-aligner

10Data and code for can be found in https://github.
com/cocoxu/simplification.

tural simplicity, it scores somewhat higher than the
semi-automatic SAMSA. The highest correlation
with structural simplicity is obtained by the num-
ber of sentences with splitting, where SAMSA
(automatic and semi-automatic) is second and
third highest, although when restricted to multi-
Scene sentences, the correlation for SAMSA
(semi-automatic) is higher (0.89, p = 0.009 and
0.77, p = 0.04).

The highest correlation for meaning preserva-
tion is obtained by SAMSAabl which provides
further evidence that the retainment of semantic
structures is a strong predictor of meaning preser-
vation (Sulem et al., 2015). SAMSA in itself does
not correlate with meaning preservation, probably
due to its penalization of under-splitting sentences.

Note that the standard reference-based mea-
sures for simplification, BLEU and SARI, obtain
low and often negative correlation with human rat-
ings. We believe that this is the case because SARI
and BLEU admittedly focus on lexical simplifica-
tion, and are difficult to use to rank systems which
also perform structural simplification.

Our results thus suggest that SAMSA provides
additional value in predicting the quality of a sim-
plification system and should be reported in tan-
dem with more lexically-oriented measures.

8 Discussion

Human evaluation parameters. The fact that
the highest correlations for structural simplicity
and meaning preservation are obtained by dif-
ferent metrics (SAMSA and SAMSAabl respec-
tively) highlights the complementarity of these
two parameters for evaluating TS quality but also
the difficulty of capturing them together. Indeed, a
given sentence-level operation could both change
the original meaning by adding or removing infor-
mation (affecting the P score) and increase sim-
plicity (S). On the other hand, the identity trans-
formation perfectly preserves the meaning of the
original sentence without making it simpler.

For examining this phenomenon, we compute
Spearman’s correlation at the system-level be-
tween the simplicity and meaning preservation hu-
man scores. We obtain a correlation of -0.77
(p = 0.04) between S and P . The correlation be-
tween S and the two sub-components of P , the
Non-Addition and the Non-Removal scores, are
-0.43 (p = 0.2) and -0.77 (p = 0.04) respec-
tively. These negative correlations support our use
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Reference-less Reference-based ∆ from Source
SAMSA SAMSAabl BLEU SARI -LDSR -LDSC # Split Sents.

Semi-Auto. Auto. Semi-Auto. Auto.
G 0.54 (0.1) 0.37 (0.2) 0.14 (0.4) 0.14 (0.4) 0.09 (0.4) -0.77 (0.04) -0.43 (0.2) -0.09 (0.4) 0.09 (0.4)
P -0.09 (0.4) -0.37 (0.2) 0.54 (0.1) 0.54 (0.1) 0.37 (0.2) -0.14 (0.4) 0.03 (0.5) 0.37 (0.2) -0.49 (0.2)
S 0.54 (0.1) 0.71 (0.06) -0.71 (0.06) -0.71 (0.06) -0.60 (0.1) -0.43 (0.2) -0.43 (0.2) -0.54 (0.1) 0.83 (0.02)

AvgHuman 0.58 (0.1) 0.35 (0.1) 0.09 (0.2) 0.09 (0.2) 0.06 (0.5) -0.81 (0.02) -0.46 (0.2) -0.12 (0.4) 0.14 (0.4)

Table 4: Spearman’s correlation of system scores i.e. Pearson’s correlation of system rankings (and p-values),
between evaluation measures (columns) and human judgments (rows). The ranking is between the six simplifica-
tion systems experimented with. The left block of columns corresponds to the SAMSA and SAMSAabl measures,
in their semi-automatic and automatic forms. The middle block of columns corresponds to the reference-based
measures SARI and BLEU, as well as -LDSR, which is the negative Levenshtein distances of the system output
from the reference. The right block corresponds to measures of conservatism, and reflect how well the tendency
of the systems to introduce changes to the input correlates with the human rankings. The block includes -LDSC,
the negative Levenshtein distance from the source sentence, and the number of input sentences split by each of
the systems. Levenshtein distances are taken as negative in order to capture similarity between the output and
source/reference. The measure with the highest correlation in each row is boldfaced.

of an average human score for assessing the over-
all quality of the simplification.

Distribution at the sentence level. In addition
to the system-level analysis presented in Section
7, we also investigate the behavior of SAMSA at
the sentence level by examining its joint distribu-
tion with the human evaluation scores. Focusing
on the AvgHuman score and the automatic im-
plementation of SAMSA and using the same data
as in Section 7, we consider a single pair of scores
(AvgHumani,SAMSAi), 1 ≤ i ≤ 100, for each
of the 100 source sentences, averaging over the
SAMSA and human scores obtained for the 6 sim-
plification systems (See Figure 1).

The joint distribution indicates a positive cor-
relation between SAMSA and AvgHuman. The
corresponding Pearson correlation is indeed 0.27
(p = 0.03).

9 Evaluation on the QATS Benchmark

In order to provide further validation for SAMSA
predictive value for quality of simplification
systems, we report SAMSA’s correlation with
a recently proposed benchmark, used for the
QATS (Quality Assessment for Text Simplifica-
tion) shared task (Štajner et al., 2016).

Setup. The test corpus contains 126 sentences
taken from 3 datasets described in Štajner et al.
(2016)11: (1) EventS: original sentences from the
EMM News-Brief12 and their syntactically sim-
plified versions (with significant content reduc-
tion) by the EventSimplify TS system (Glavas

11http://qats2016.github.io/shared.html
12emm.newsbrief.eu/NewsBrief/

clusteredition/en/latest.html

and Štajner, 2013)13 (the test corpus contains 54
pairs from this dataset), (2) EncBrit: original sen-
tences from the Encyclopedia Britannica (Barzilay
and Elhadad, 2003) and their automatic simplifica-
tions obtained using ATS systems based on several
phrase-based statistical MT systems (Štajner et al.,
2015) trained on Wikipedia TS corpus (Coster
and Kauchak, 2011) (24 pairs), and (3) LSLight:
sentences from English Wikipedia and their auto-
matic simplifications (Glavaš and Štajner, 2015)
by three different lexical simplification systems
(Biran et al., 2011; Horn et al., 2014; Glavaš and
Štajner, 2015) (48 pairs).

Human evaluation is also provided by this re-
source, with scores for overall quality, grammat-
icality, meaning preservation and simplicity. Im-
portantly, the simplicity score does not explicitly
refer to the output’s structural simplicity, but rather
to its readability. We focus on the overall human
score, and compare it to SAMSA. Since different
systems were used to simplify different portions of
the input, correlation is taken at the sentence level.

We use the same implementations of SAMSA.
Manual UCCA annotation is here performed by
one of the authors of this paper.
Results. We follow Štajner et al. (2016) and
report the Pearson correlations (at the sentence
level) between the rankings of the metrics and
the human evaluation scores. Results show that
the semi-automatic/automatic SAMSA obtains a
Pearson correlation of 0.32 and 0.28 with the hu-
man scores. This places these measures in the 3rd
and 4th places in the shared task, where the only
two systems that surpassed it are marginally better,
with scores of 0.33 and 0.34, and where the next

13takelab.fer.hr/data/symplify
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Figure 1: Joint distribution of the automatic SAMSA and the AvgHuman scores at the sentence level. Each point
in the graph corresponds to a single source sentence. In addition to the scatter plot, a least-squares regression line
is presented.

system in QATS obtained a correlation of 0.23.
This correlation by SAMSA was obtained in

more restricted conditions, compared to the mea-
sures that competed in QATS. First, SAMSA com-
putes its score by only considering the UCCA
structure of the source, and an automatic word-
to-word alignment between the source and out-
put. Most QATS systems, including OSVCML
and OSVCML2 (Nisioi and Nauze, 2016) which
scored highest on the shared task, use an ensem-
ble of classifiers based on bag-of-words, POS tags,
sentiment information, negation, readability mea-
sures and other resources. Second, the systems
participating in the shared task had training data
available to them, annotated by the same anno-
tators as the test data. This was used to train
classifiers for predicting their score. This gives
the QATS measures much predictive strength,
but hampers their interpretability. SAMSA on
the other hand is conceptually simple and inter-
pretable. Third, the QATS shared task does not
focus on structural simplification, but experiments
on different types of systems. Indeed, some of
the data was annotated by systems that exclusively
perform lexical simplification, which is orthogo-
nal to SAMSA’s structural focus.

Given these factors, SAMSA’s competitive cor-
relation with the participating systems in QATS
suggests that structural simplicity, as reflected by
the correct splitting of UCCA Scenes, captures a
major component in overall simplification qual-
ity, underscoring SAMSA’s value. These promis-
ing results also motivate a future combination of
SAMSA with classifier-based metrics.

10 Conclusion
We presented the first structure-aware metric for
text simplification, SAMSA, and the first evalua-
tion experiments that directly target the structural
simplification component, separately from the lex-
ical component. We argue that the structural and
lexical dimensions of simplification are loosely re-
lated, and that TS evaluation protocols should as-
sess both. We empirically demonstrate that strong
measures that assess lexical simplification quality
(notably SARI), fail to correlate with human judg-
ments when structural simplification is performed
by the evaluated systems. Our experiments show
that SAMSA correlates well with human judg-
ments in such settings, which demonstrates its use-
fulness for evaluating and tuning statistical sim-
plification systems, and shows that structural eval-
uation provides a complementary perspective on
simplification quality.
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