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Abstract

We propose a novel approach to semi-
supervised learning for information extrac-
tion that uses ladder networks (Rasmus et al.,
2015). In particular, we focus on the task of
named entity classification, defined as iden-
tifying the correct label (e.g., person or or-
ganization name) of an entity mention in a
given context. Our approach is simple, effi-
cient and has the benefit of being robust to
semantic drift, a dominant problem in most
semi-supervised learning systems. We empiri-
cally demonstrate the superior performance of
our system compared to the state-of-the-art on
two standard datasets for named entity classi-
fication. We obtain between 62% and 200%
improvement over the state-of-art baseline on
these two datasets.

1 Introduction

Training machine learning systems with limited
supervision is one of the fundamental challenges
in natural language processing (NLP), as anno-
tated data is often scarce and generating it requires
costly human supervision. Semi-supervised learn-
ing addresses this challenge by combining lim-
ited supervision with a large, unannotated dataset,
thereby mitigating the supervision cost.

For NLP, bootstrapping is a popular approach
to semi-supervised learning due its relative sim-
plicity coupled with reasonable performance (Ab-
ney, 2007). However, a crucial limitation of boot-
strapping, which is typically iterative, is that, as
learning advances, the task often drifts seman-
tically into a related but different space, e.g.,
from learning women names into learning flower
names (McIntosh, 2010; Yangarber, 2003).

In this paper, we propose an effective technique
for semi-supervised learning for information ex-
traction (IE), which obviates the need for an it-
erative approach, thereby mitigating the problem
of semantic drift. Our technique is based on the

recently proposed ladder networks (LNs) (Ras-
mus et al., 2015; Valpola, 2014). Ladder net-
works are deep denoising auto-encoders which
have skip connections and reconstruction targets
in the intermediate layers. Ladder networks are
closely related to hierarchical latent variable mod-
els (Rasmus et al., 2015; Valpola, 2014). The
lateral skip connections relieve the pressure on
lower layers of the encoder to encode all la-
tent information, thereby making the architec-
ture modular in design, similar to a factor graph.
The integration of the encoder-decoder framework
as a neural network, allows one to use back-
propagation for training, thereby not having to rely
on intractable inference as in a standard graphi-
cal model. Furthermore, LNs have been shown
to achieve state-of-the-art performance in image
recognition tasks (Rasmus et al., 2015).

To the best of our knowledge, our work is one
of the first applications of LN to any NLP task.
Specifically, our contributions are as follows:

(1) We provide a novel application of LNs to an IE
task, in particular semi-supervised named entity
classification (NEC). Our approach is simple: we
concatenate embeddings of entity mentions with
that of its context1 and feed the resulting vectors
into the LN’s denoising auto-encoder.

(2) We empirically demonstrate, for the task of
semi-supervised NEC on two standard datasets –
CoNLL (Tjong Kim Sang and De Meulder, 2003)
and Ontonotes (Pradhan et al., 2013) – that we
obtain a classification accuracy of 66.11% and
63.12% with minimal supervision on only 0.3%
and 0.6% of the data, respectively. These results
compare favorably against the accuracy of state-
of-the-art bootstrapping algorithms of 40.74% and
21.06% on the same datasets. Further, in our ex-
periments we observed an almost 7-fold decrease

1A context consists of all the patterns of n-grams within
a certain window around the corresponding entity mention.
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in training time compared to an iterative bootstrap-
ping system.

(3) Lastly, we also provide empirical evidence that
our approach is robust to the phenomenon of se-
mantic drift. We obtain consistently better ac-
curacy compared to traditional bootstrapping al-
gorithms and label propagation, when initialized
with identical supervision. We also demonstrate
the reduction in semantic drift by measuring the
purity of the entity pools with respect to a cate-
gory as the algorithm advances (§4).

2 Related Work

There is a long line of work in semi-supervised
learning for NLP (Zhu, 2005; Abney, 2007). This
encompasses many different types of techniques
such as self-training or bootstrapping (Carlson
et al., 2010a,b; McIntosh, 2010; Gupta and Man-
ning, 2015, inter alia), co-training (Blum and
Mitchell, 1998), or graph-based methods such as
label propagation (Delalleau et al., 2005). Perhaps
the most popular approach among them is self-
training, or bootstrapping, which has been used
in many applications, including information ex-
traction (Carlson et al., 2010a; Gupta and Man-
ning, 2014, 2015), lexicon acquisition (Neelakan-
tan and Collins, 2015), named entity classifica-
tion (Collins and Singer, 1999) and sentiment
analysis (Rao and Ravichandran, 2009). However,
most of these approaches are iterative, and suffer
from semantic drift (Komachi et al., 2008).

Auto-encoder frameworks have been getting a
lot of attention in the machine learning community
recently. Such framewoks include recursive auto-
encoders (Socher et al., 2011), denoising auto-
encoders (Vincent et al., 2008), etc. They are
primarily used as a pre-training mechanism be-
fore supervised training. Recently, such networks
have also been used for semi-supervised learning
as they are more amenable to combining super-
vised and unsupervised components of the objec-
tive functions (Zhai and Zhang, 2015).

Ladder networks (LN) are stacked denoising
auto-encoders with skip-connections in the in-
termediate layers (Rasmus et al., 2015; Valpola,
2014). LNs have been shown to produce state-of-
the-art performance on both supervised and semi-
supervised tasks on the MNIST dataset in image
processing. Our work is among the first to apply
LNs to NLP. While similar in spirit to Zhang et al.
(2017), the only other work we found that applies

a denoising auto-encoder to a semi-supervised
spelling correction task, our work is much sim-
pler, since it uses a multi-layer perceptron instead
of convolution-deconvolution operations. Further,
we demonstrate that LNs perform very well on a
complex IE task, considerably outperforming sev-
eral state-of-the-art approaches.

3 Approach

We apply the proposed semi-supervised learning
approach to the task of NEC, defined as identify-
ing the correct label of an entity mention in a given
context. In our setting, the context of a mention is
defined as all the patterns that match the specific
mention. Please refer to the right half of Figure 1
for an example sentence snippet, an entity mention
(in boldface) and its context. Using these as input,
the classifier must infer that the mention’s correct
label is person.2

For the NEC task, the embedding of a men-
tion and its context is concatenated to produce X
which is input to the ladder network to predict a
label y for the particular entity mention.

Initializing the network

We initialize the words in the entities and patterns
around them with pre-trained word embeddings.
To obtain a single embedding for an entity mention
and its context we: (a) average word embeddings
to obtain a single embedding for the entity men-
tion and each of its patterns; and (b) average the
resulting pattern embeddings to produce the em-
bedding of the corresponding context. We then
concatenate the mention’s embedding and context
embedding to be given as input to the ladder net-
work. This process is depicted schematically in
the right part of Figure 1.

Architecture of the ladder network

Ladder Network (Rasmus et al., 2015) is a neu-
ral network architecture designed to use unsuper-
vised learning as a scaffolding for the supervised
task. It is a denoising autoencoder (DAE) with
noise introduced in every layer. It consists of
two sets of encoders, a clean one and another cor-
rupted with noise, and a decoder. In addition, there

2Note that the NEC task can be defined at mention level,
as defined above, or at entity level, i.e., identify all labels that
apply to all mentions of a given entity. (e.g., “Washington” =
{person, location}. Here we focus on mention classifi-
cation, although in some of our evaluations we revert to entity
classification, to be able to compare against other approaches.
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... profits grew by 10% in the last quarter said Ann Stephens , the president of the ...

[Ann Stephens]
[quarter said @ENTITY , president] [said @ENTITY , president] [@ENTITY , president of the]

Figure 1: Architecture of the ladder network (Rasmus et al., 2015) (left) and of the network initialization com-
ponent for the NEC task (right). LN is a deep denoising auto-encoder with lateral skip connections between the
layers. The input to our LN is an entity mention along with its context, averaged and concatenated vector ini-
tialized with pre-trained embeddings for every token (§3). We introduce noise in the network by perturbing the
embeddings with standard Gaussian noise with fixed stdev.

are skip connections between the encoder and de-
coder. The ladder network is defined as follows:

X̃, Z̃(1), . . . Z̃(L), ỹ = fcorr(X) (1)

X,Z(1), . . . Z(L), y = fclean(X) (2)

X̂, Ẑ(1), . . . Ẑ(L) = g(Z̃(1), . . . Z̃(L)) (3)

where X , X̃ and X̂ is an input datapoint, its
corrupted version, and its reconstruction, respec-
tively; Z(l) and Z̃(l) are clean and corrupted hid-
den representations in the l-th layer; and, lastly,
y, ỹ are the clean and corrupted activations, con-
verted to a probability distribution over the label
set (using a softmax layer). For our NEC task,
X is the concatenation of an entity mention and
its context embedding vectors generated as men-
tioned previously, and y represents one of the pre-
dicted mention labels (e.g. person).

We introduce noise in this architecture by per-
turbing the embeddings with a standard Gaussian
noise with a fixed standard deviation.

The objective function is a combination of a
supervised training cost and unsupervised recon-
struction costs at each layer (including the hidden
layers):

Cost = −
N∑

n=1

logP (ỹn = y∗n|Xn)+

M∑

n=N+1

L∑

l=1

λlReconstCost(Z
(l)
n , Ẑ(l)

n ) (4)

where the first term is the supervised cross-
entropy based on the N labeled datapoints
(X1, y

∗
1), (X2, y

∗
2), . . . (XN , y∗n), and the second

term is the reconstruction loss on the M un-
labeled datapoints XN+1, XN+2, . . . XN+M , for
each layer l. Typically M � N .

Pezeshki et al. (2016) analyze the different ar-
chitectural aspects of LN and note that the lat-
eral connections and corresponding reconstruction
costs (second term in Eq. 4) are critical for semi-
supervised learning. In other words, it is important
for unlabeled data to be used for regularization to
be able to learn good abstractions in the different
layers. We have similar observations for the NEC
task (see Experiments). The overall architecture
of LN is shown in the left part of Figure 1.

4 Experiments

Datasets: We used two datasets, the CoNLL-
2003 shared task dataset (Tjong Kim Sang and
De Meulder, 2003), which contains 4 entity types,
and the OntoNotes dataset (Pradhan et al., 2013),
which contains 113, both of which are bench-
mark datasets for supervised named entity recog-
nition (NER). These datasets contain marked en-
tity boundaries with labels for each marked entity.
Here we only use the entity boundaries but not the
labels of these entities during the training of our
bootstrapping systems. To simulate learning from
large texts, we tuned hyper parameters on develop-
ment, but ran the actual experiments on the train
partitions.

Baselines: We compared against 2 baselines:

Explicit Pattern-based Bootstrapping (EPB):
this system is our implementation of the state-of-
the-art bootstrapping system of Gupta and Man-
ning (2015), adapted to NEC. The algorithm
grows a pool of known entities and patterns for

3We excluded numerical categories such as DATE.
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Figure 2: Overall results on the CoNLL (left) and Ontonotes (right) datasets. Throughput is the number of entities
classified, and precision is the proportion of entities that were classified correctly.

each category of interest, from a few seed ex-
amples per category, by iterating between pattern
promotion and entity promotion. The former is
implemented using a ranking formula driven by
the point-wise mutual information (PMI) between
each pattern with the corresponding category; the
top ranked patterns are promoted to the pattern
pool in each iteration. The latter component pro-
motes entities using a classifier that estimates the
likelihood of an entity belonging to each class.
Our feature set includes, for each category c: (a)
edit distance between the candidate entity e and
known entities for c; (b) the PMI (with c) of the
patterns in the pool of c that matched e in the train-
ing documents; and (c) similarity between e and
entities in c’s pool in some semantic space.4 Enti-
ties classified with the highest confidence for each
class are promoted to the corresponding pool after
each epoch.

Label Propagation (LP): we used the imple-
mentation available in the scikit-learn pack-
age of the LP algorithm (Zhu and Ghahramani,
2002).5 In each bootstrapping epoch, we run LP,
select the entities with the lowest entropy, and add
them to their top category. Each entity is repre-
sented by a feature vector that contains the co-
occurrence counts of the entity and each of the pat-
terns that matches it in text.6

Settings: For each entity mention, we consider a
n-gram window of size 4 on either side as a pat-
tern. We initialized the mention and contexts em-
beddings input to the ladder network as well as
the baseline system with pre-trained embeddings
from Levy and Goldberg (2014) (size 300d) as this

4We used pre-trained word representations, averaged for
multi-word entities, to compute cosine similarities between
pairs of entities.

5
http://scikit-learn.org/stable/modules/generated/

sklearn.semi_supervised.LabelPropagation.html
6We experimented with other feature values, e.g., pattern

PMI scores, but all performed worse than raw counts.

gave us improved results on the baseline compared
to vanilla word2vec initialization. We used a
600d dimensional embedding for each datapoint
(300 each from entity and context concatenated).
We used a 3-layer ladder network with dimen-
sions 600-500-K where K is the number of labels
present in the dataset. Further, we used a standard
Gaussian noise with stdev = 0.3 for the corrupted
encoder and reconstruction cost for the 3-layers
were 1000-10-0.1. We set the supervised exam-
ples (mentions along their corresponding contexts
and labels) randomly. For CoNLL we used 40 and
Ontonotes 440 examples, with equal representa-
tion from their labels’ set. To compare with the
baselines, which classify entities rather than men-
tions, we sorted the predictions returned by the LN
in decreasing order of their activation scores and
chose the most confident entity label (when all its
mention scores were averaged). We ran the base-
lines until they predicted labels for all the entities.
For the baselines, in each iteration we promoted
100 entities per category.7 For a fair comparison,
we used the same set of entity mentions as seeds
(selected randomly) for each of our experiments.

Figure 2 shows the precision vs. throughput
curves for the baselines and our LN approach. We
see that on both the datasets the LN outperforms
the baselines by a large margin. Further we no-
tice that the LN is reasonably stable for most of
the precision/recall curve whereas EPB degrades
quickly. Iterative bootstrapping approaches inher-
ently suffer from semantic drift: as the iterations
progress the learned model begins to drift into a
different semantic space due to incomplete statis-
tics and ambiguity (McIntosh, 2010; Yangarber,
2003). These results parallel other previous obser-
vations that semantic drift is an inherent problem
in iterative bootstrapping approaches (Komachi

7We also ran a cautious approach of promoting 10 enti-
ties per category per iteration and noticed that the former had
better performance.
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Figure 3: Avoiding semantic drift: Comparison of pool purity between ladder and EPB on the CoNLL dataset.

et al., 2008). The figure empirically demonstrates
that, in contrast, the paradigm of semi-supervised
learning based on ladder networks is more ef-
fective in combating semantic drift. Further, we
empirically observed a speedup of almost 7x in
training a ladder network compared to an iterative
bootstrapping approach.

Table 1 lists the accuracy of the LN approach on
all the data points, as we varied the amount of su-
pervision. As expected, as we increase the amount
of supervision, we observe improvements in accu-
racy. More importantly, the table shows that LN
outperforms the overall accuracy of EPB (right-
most points in Figure 2) with much fewer annota-
tions (e.g., with 55 annotations in OntoNotes, LN
outperforms the performance of EPB with 440 an-
notated examples).

Figure 3 shows the purity of entity pools for a
given label vs. confidence scores of the entity pre-
dictions sorted in decreasing order for the CoNLL
dataset.8 Purity is defined here as the precision of
an entity pool for a given category. In the EPB
setting, this is equivalent to computing the preci-
sion at the stage of entity promotion in a particular
epoch. In LNs, we sort the entity predictions in de-
crease order of their confidence scores and create
bins of size 100 for this comparison.We notice that
for every category, LN maintains a higher over-
all purity over EPB, the best iterative bootstrap-
ping baseline, demonstrating that the entity pools
are less polluted by noisy entries, thereby reduc-
ing semantic drift. It is also important to observe
that LN inherently captures the bias in the training
data, by predicting more entities in the PER cate-
gory, as this is the most frequently occurring label
in the dataset.

5 Conclusion

We discussed a novel application of ladder net-
works to the task of lightly supervised named en-
tity classification. Our approach concatenates em-
beddings of entity mentions with their contexts

8In the appendix, a similar analysis is presented on the
Ontonotes dataset.

CoNLL OntoNotes
Num. labels Accuracy Num. labels Accuracy

20 46.46 55 26.04
40 66.46 110 48.53
80 75.37 220 59.66
160 81.11 440 73.10
320 80.94 880 73.58
640 82.51 1760 73.23
1280 81.22 3520 73.77
2560 81.34 7040 73.31
5120 81.26 14080 82.47

10240 81.91 28160 83.32

Table 1: Num. of annotated labels vs. overall accuracy.
# of mention labels - CoNLL: 13200; OntoNotes:
67000

and feeds the resulting vectors into the LN’s de-
noising auto-encoder. We demonstrate that our
system outperforms state-of-the-art iterative boot-
strapping approaches by approximately 62% and
200% on two benchmark datasets. Furthermore,
our approach mitigates the issue of semantic drift
as it is not iterative in nature, unlike traditional
bootstrapping.

As part of future investigation, we will experi-
ment with other types of encoders such as convo-
lutional and recurrent networks. Furthermore, we
aim to scale this approach to larger datasets. The
approach presented in the paper is broad in scope.
Application of this framework to other tasks in
natural language processing such as relation ex-
traction, sentiment analysis, and fine-grained en-
tity typing, where obtaining supervised training
data is hard, is another interesting avenue for fur-
ther research. For example, relation extraction can
be modeled similarly to the NEC task described
here, as a feed forward network over embeddings
of the entity mentions participating in the rela-
tion and of the lexico-syntactic patterns connect-
ing them.
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Figure 4: Avoiding semantic drift: Comparison of pool purity between ladder and EPB on the Ontonotes dataset.
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A Purity on Ontonotes

Figure 4 shows the purity of the entity pools on the
Ontonotes dataset (Purity is defined in §4). From
these graphs, we can observe that LN has a higher
overall purity compared to EPB for all categories,
which indicates that it suffers less from the prob-
lem of semantic drift. Further, we observe that
LN predicts more PERSON and ORG entities as
these as the most frequently appearing types in this
dataset. In other words, LN follows closely the
underlying distribution of the data when making
predictions, unlike EPB.
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