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Abstract

Extraction of spatial relations from sentences
with complex/nesting relationships is very
challenging as often needs resolving inherent
semantic ambiguities. We seek help from vi-
sual modality to fill the information gap in
the text modality and resolve spatial seman-
tic ambiguities. We use various recent vision
and language datasets and techniques to train
inter-modality alignment models, visual rela-
tionship classifiers and propose a novel global
inference model to integrate these components
into our structured output prediction model for
spatial role and relation extraction. Our global
inference model enables us to utilize the vi-
sual and geometric relationships between ob-
jects and improves the state-of-art results of
spatial information extraction from text.

1 Introduction

Significant progress has been made in spatial
language understanding by mapping natural lan-
guage text to spatial ontologies (Kordjamshidi and
Moens, 2015). The research results show that spa-
tial entities can be extracted with a good accu-
racy, however, spatial relation extraction is still
challenging (Kordjamshidi et al., 2017a; Puste-
jovsky et al., 2015). Particularly, when the sen-
tences convey more than one relationship, finding
the right links between the spatial objects and spa-
tial prepositions becomes difficult. For example,
the spatial meaning of There is a car in front of the
house on the left, can be interpreted in different
ways: (A car in front of the house) on the left or
A car in front of (the house on the left). This issue
is related to the well-known prepositional phrase
attachments (pp-attachments) syntactic ambiguity
which is problematic for our goal of spatial seman-
tic extraction too. The previous research shows
some of these ambiguities can be resolved by si-
multaneously reasoning from the associated image

(Christie et al., 2016; Delecraz et al., 2017). Con-
sider the scene in Figure 1, we can easily resolve
the ambiguity and choose the correct interpreta-
tion with the help of the associated image.

Although we do not directly tackle the task of
pp-attachment here, resolving this issue will help
our task to find the accurate link between the spa-
tial prepositions (i.e. spatial indicators) and spa-
tial objects/roles (trajector and landmark). The
spatial semantic links can go beyond the syntac-
tic links/attachments, therefore merely fixing the
preposition attachments is not sufficient for our
task. We exploit the image to find the right prepo-
sition that describes the relationships between the
spatial roles, for example on the left can be a rela-
tionship between the house and implicit landmark
picture as well as a car and implicit landmark
picture. There are many recent works on com-
bining vision and language for domains such as
image captioning (Karpathy and Fei-Fei, 2017),
visual image retrieval (Hu et al., 2016), visual
question answering (Krishna et al., 2017; Faghri
et al., 2017), activity recognition (Gupta and Ma-
lik, 2015; Yatskar et al., 2016; Yang et al., 2016),
visual relation extraction (Lu et al., 2016; Xu
et al., 2017; Haldekar et al., 2017; Peyre et al.,
2017; Liao et al., 2017) and object localization
(Kazemzadeh et al., 2014; Schlangen et al., 2016).
We aim at exploiting models from visual modality
to boost the models trained by the text modality
and improve spatial role labeling task (SpRL) (Ko-
rdjamshidi et al., 2011). The most related work
to ours is (Kordjamshidi et al., 2017a) in which
they connected phrases to ground-truth labeled
segments using word embedding similarity to gen-
erate additional visual features, whereas, in this
work, we train actual inter-modality alignment
models to include visual information in our model.
The challenges are 1) existing textual datasets for
SpRL does not have enough examples to train such
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Figure 1: A captioned scene from CLEF IAPR TC-12
dataset: There is a car in front of the house on the left.

visual models, therefore, such models need to be
trained on external datasets and later incorporated
in our multi-modal setting, 2) Aligning text enti-
ties with image entities is a complex and challeng-
ing task itself. Each modality in isolation repre-
sents spatial relations imperfectly, however, each
one can reflect different types of spatial relation
better than the other. If we can handle the men-
tioned challenges and combine the two modalities
then vision modality fills the information gap of
the text modality and improves the information ex-
traction.

To overcome the above challenges, we 1)
trained two visual models namely word-segment
alignment, trained on ImageClef Referring Ex-
pression Dataset1 to connect the two modali-
ties, and preposition classifier, trained on Visual
Genome dataset (Krishna et al., 2017) to help in
link disambiguation, and 2) generated a unified
graph, based on both image and text data and pro-
posed a global machine learning model to exploit
the information from the companion images.

The contribution of this paper includes a) ex-
ploiting the visual information to solve the SpRL
task and improving the state-of-the-art results sig-
nificantly b) forming a global inference model that
imposes the consistency constraints on the deci-
sions made based on the two modalities c) exploit-
ing external vision and language datasets to inject
external knowledge into our models d) augment-
ing an existing dataset which is annotated by spa-
tial semantics with the image segment alignments,
this dataset will help the evaluation of the exist-
ing methods for combining vision and language
for fine-grained spatial semantic extractions.

2 Model Description

Given a piece of text, S, here a sentence - split into
number of phrases, and an accompanying image,

1http://tamaraberg.com/referitgame/

I segmented into number of segments represented
by bounding boxes, the goal is to identify the tex-
tual phrases that have spatial roles and detect the
relationships between them. The spatial roles in-
cluded in this task are defined as:

(a) Spatial indicators (sp): these are triggers in-
dicating the existence of spatial information
in a sentence;

(b) Trajectors (tr): these are the entities whose
location are described;

(c) Landmarks (lm): these are the reference ob-
jects for describing the location of the trajec-
tors.

In the textual description of Figure 1, the location
of car (trajector) has been described with respect
to house (landmark) using the preposition in front
of. Furthermore, spatial relationships and their
types are defined as follows:

(a) Spatial relations: these indicate a link
between the three above mentioned roles
(sp.tr.lm), forming spatial triplets.

(b) Coarse-grained relation types: these indi-
cate the coarse-grained type of relations in
terms of spatial calculi formalisms including
region, direction, and distance types.

(c) Fine-grained relation types: these indi-
cate the fine-grained type of relations in
terms of each specific spatial calculi formal-
ism. Region connection calculi (RCC8) types
(e.g. disconnected (DC), externally con-
nected (EC), etc.), a closed set of directional
relations (e.g. left, right), and an open set of
distal relations (e.g. close, far) are defined for
regional, directional, and distal relationships
respectively.

For example, given the sentence and its accom-
panying image in Figure 1, the goal is to iden-
tify the spatial relations, 〈[A car]tr, [in front of ]sp,
[the house]lm〉 and 〈[the house]tr, [on the left]sp,
[None]lm〉 and also determine their coarse-grained
types (direction and direction respectively) and
fine-grained types (front and left respectively).

We formulate this problem as a structured out-
put prediction problem. Given a set of input-out
pairs as training examples, E = {(xi, yi) ∈ X ×
Y : i = 1..N}, a scoring function g(x, y;W ) =
〈W,φ(x, y)〉 will be learned. Where W is the
weight vector and 〈, 〉 is dot product between two
vectors. This function is a linear discriminant
function defined over combined feature represen-
tation of inputs and outputs denoted by φ(x, y)
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(Tsochantaridis et al., 2005). However, for this
work we use a piece-wise training model in which
independent models are trained per concepts in
the output and the predictions are done based on
global inference (Punyakanok et al., 2005).

We construct a graph using the phrases
{p1, ..., pn} and bounding boxes {b1...bm}, and
link these nodes to make composed concepts (like
relations, roles, etc.). We associate a classifier to
each concept in the graph and encode the domain
knowledge as global constraints over these con-
cepts. We use global reasoning by imposing these
constraints over various (node and edge) classi-
fiers to produce the final outputs. The input of our
structured output prediction model is the afore-
mentioned graph and the output is the concepts
assigned to the nodes and edges of this graph. In
the following we describe the information that we
use from each modality (i.e. text and image) and
from inter-modality relationships and describe the
relevant classifiers, features and constraints.

2.1 Text

We use binary classifiers to identify spatial roles
and relations. The spatial roles of trajector,
landmark and spatial indicator are denoted by tr,
lm, and sp. sp.tr.lm, sp.tr.lm.γ, and sp.tr.lm.λ
denote spatial relations, coarse-grained relation
types, and fine-grained relation types respectively.
Additionally, we denote candidate fine-grained
types related to coarse-grained type γ by Λγ .
Features: We use phrase-based features
φphrase(pi) for role classifiers in which pi is
the identifier of ith phrase in the sentence which
include several linguistically motivated features
such as lexical form of the words in the phrases,
lemmas, pos-tags, etc. In addition, motivated
by features used in (Roberts and Harabagiu,
2012) and (Kordjamshidi et al., 2017a), we
use a combination of phrase-based features like
concatenation of headwords of the roles, concate-
nation of their pos, and other relative features such
as distance between roles, dependency relations,
sub-categorization, etc., to represent the relations
and this is referred to as φtexttriplet(pi, pj , pk).
Constraints: The constraints over spatial con-
cepts expressed in text are as follows,∑

i

∑
k spitrjlmk ≥ trj Each tr candidate at

least should appear in
one relation∑

i

∑
j spitrjlmk ≥ lmk Each lm candidate at

least should appear in
one relation

∑
j

∑
k spitrjlmk = spi Each sp candidate

should appear in one
relation∑

j trj ≥ spi For each sp we should
have at-least one tr∑

k lmk ≥ spi For each sp we should
have at-least one
lm. Including null
landmarks

spitrjlmkγ ≤ spitrjlmk is-a constraints be-
tween relations and
coarse-grained types

spitrjlmkλ ≤ spitrjlmkγ
λ∈Λγ

is-a constraints be-
tween coarse-grained
and corresponding
fine-grained types.

2.2 Image

In the image modality, we have two types of
classifiers, 1) for localization of an object in the
image given a referring expression, and 2) for ex-
traction of spatial relations, called Word-Segment
Alignment and Preposition Classifier respectively.
Word-Segment alignment: motivated by
(Schlangen et al., 2016), we trained a set of binary
object localization classifiers to link words and
image segments. These per word classifiers are
trained using ImageClef Referring Expression
Dataset.
Preposition classifier: is a multi-class classifier
that takes two bounding boxes and returns the
spatial relation (preposition here) between them.
This classifier is trained on a subset of visual
genome dataset (Krishna et al., 2017) described
in section 3.1, this classifier provides the external
knowledge from visual resources and help in
disambiguation of ambiguous links (i.e. finding
the correct link between spatial preposition and
spatial roles).
Features: A deep convolutional neural network,
“GoogLeNet” is used to extract features for
bounding boxes that are used by Word-Segment
Alignment, for details see (Schlangen et al., 2016).
For the Preposition Classifier we use bounding
box features φbox(b) = [l, xmin, ymin, wb, hb]
where l is the label of the box, (xmin, ymin) is
the top-left point of the box, wb, hb are the width
and height of the box respectively. In addition
we use pair features φvisualpair (bi, bj) including,
label of each box, distance between the center of
the two boxes, a vector from the center of first
box to the center of second box, aspect ratio of
each box, word to vector representation of each
box’s label, the normalized area of each box,
intersection, union, intersection over union of the
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two boxes, and four directional (above, below, left
and right) features calculated with reference to
the two boxes. Box and pair features are adopted
from (Ramisa et al., 2015).

2.3 Inter-Modality
An essential part of having a global inference
over multimodal data is to have the connections
between the two modalities. Word-Segment Align-
ment classifier is used to align the headword of
each phrase p in the sentence to its corresponding
bounding box b in the image and this alignment is
denoted by p → b. A binary feature isAligned
(that indicates if the phrase is connected to an
object in the image) is added to the features of
classifiers in the text side.
Constraints: Given two bounding boxes b1 and
b2 we say that the preposition α is supported
by the image and write iSupαb1b2 if α is ranked
among top N prepositions according to Prepo-
sition Classifier scores. Using this indicator we
define the following inter-modality constraint.
iSupαb1b2 ≤ spitrjlmk

pi→b1,pj→b2,α=pi

For aligned pairs, the visual
relation should support the
textual relation

2.4 Global Reasoning
We obtain the output of each classifier in the
model holistically by global reasoning that is by
considering global correlations among classifiers,
when calculating outputs. This goal is achieved by
optimizing an objective function that is the sum-
mation of classifiers’ discriminant functions,
∑

i∈Csp
〈Wsp, φspi〉.spi +

∑

i∈Ctr
〈Wtr, φtri〉.tri+

∑

i∈Clm

〈Wlm, φlmi〉.lmi+

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmk 〉.spitrj lmk+

∑

γ∈Γ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkγ〉.spitrj lmkγ+

∑

λ∈Λ

∑

i∈Csp

∑

j∈Ctr

∑

k∈Clm

〈Wsptrlm, φspitrj lmkλ〉.spitrj lmkλ+

∑

α∈Prep

∑

(i,j)∈CiSup

〈WiSupα , φiSupαij 〉.iSup
α
ij .

Each classifier is shown as a binary variable (e.g.
tri for trajector classifier). Λ, Γ, Prep are the can-
didates for fine-grained relations, coarse-grained
relations, and prepositions from text respectively.
Cl denotes the candidates for label l.
The following model variations are designed us-
ing combination of text and image modalities for

experimentation.
Baseline Model (BM): Independent classifiers are
trained only on the textual features described in
Section 2.1. This is a learning only model and
each classifier makes independent predictions.
Baseline + Constraints (BM+C): The output of
the classifiers obtained from the BM model are
adjusted by global inference over textual con-
straints defined in Section 2.1.
Ground-truth alignments (GT): This setting is
very similar to the BM + C model except the
isAligned feature (see Section 2.3) added to con-
sider the ground-truth alignments.
Alignment Classifier (AC): Similar to the GT
model, but instead of ground-truth information we
use Word-Segment Alignment classifier to align
bounding boxes with the phrases in the sentence.
GT + Preposition (GT+P): In this setting,
ground-truth alignments alongside Preposition
classifier is used to enforce all constraints in the
global inference over the two modalities.
AC + Preposition (AC+P): Same as GT+P model
but with Word-Segment Alignment classifiers in-
stead of ground-truth alignments.

3 Experimental Setup

We report the experimental results of our model
and compare it with the state-of-the-art (Kord-
jamshidi et al., 2017a) model, referred here as M0
model. A role prediction is considered correct if
there is a phrase overlap between the ground-truth
and predicted roles and each relation is counted as
correct when all three arguments are correct. All
the base classifiers described in Section 2.1 are
sparse perceptrons. We use Saul (Kordjamshidi
et al., 2015, 2016) to implement the models and
solve the global inference of Section 2.4. The code
is publicly available here. 2

3.1 DataSets

CLEF 2017 mSpRL dataset: This dataset is a
subset of IAPR TC-123 Benchmark which is an-
notated for the SpRL task (Kordjamshidi et al.,
2017c, 2012). It contains 613 images with de-
scriptions including 1, 213 sentences. The stan-
dard split of the dataset contains 761 training and
939 testing spatial relations (Kordjamshidi et al.,
2017b). Furthermore, we added new annotations

2https://github.com/HetML/SpRL/tree/
paper2

3http://www.imageclef.org/SIAPRdata

791



Visual Genome CLEF
P R F1 P R F1

above 47.24 21.59 29.63 87.50 22.58 35.90
behind 65.02 22.65 33.56 80.00 22.22 34.78
in 80.99 54.96 65.48 83.80 79.87 81.79
in front of 31.65 6.67 11.02 80.00 16.33 27.12
on 79.76 95.75 87.03 38.39 91.49 54.09

(a) Preposition classifier results on Visual genome and CLEF datasets

P R F1
M0 68.34 57.93 62.71
BM 65.64 60.23 62.82
BM+C 70.04 66.55 68.25
GT 66.37 75.14 70.48
GT+P 67.14 74.80 70.76
AC 71.39 66.55 68.89
AC+P 71.69 66.10 68.78

(b) Spatial relations results on CLEF test set
Table 1: Experimental results, where P and R denote precision and recall respectively.

to this dataset to align phrases in the text with the
segments of the related images using brat tool.4

The alignments are used only for evaluations and
are publicly available. 5

Visual Genome dataset (VG): Visual Genome
dataset has seven main components (Krishna et al.,
2017), one of them is relationships component
which contains the relationships (prepositions) be-
tween two bounding boxes. The dataset contains
108077 images and the relationships component
contains 2316104 relation instances. We used
a subset the relationships that correspond to the
most frequent prepositions in CLEF dataset. We
used 80% for training (811661 instances) and 20%
for testing (202916 instances).
ReferItGame Dataset: It contains 120, 000 re-
ferring expressions and covers 99.5 percent of the
regions of SAIAPRTC-12 dataset which is a seg-
mented and annotated version of the IAPR TC-12
dataset (Kazemzadeh et al., 2014).

3.2 Experimental Results
Word-Segment Alignment: We implemented
and trained classifiers per words as described in
Section 2.2 for the most frequent words in Refer-
ItGame dataset using (Schlangen et al., 2016)
approach. We evaluated the trained model on
both ReferitGame and CLEF testset, and obtained
64% and 45% accuracy respectively. This trained
model is used to align words and segments in
CLEF dataset. The end-to-end evaluation re-
sults show that the models trained by this external
dataset are helpful though those are not highly ac-
curate for every referring word.
Preposition Classifier: As described in Sec-
tion 2.2, these are trained on a subset of Vi-
sual Genome dataset described in Section 3.1 and
evaluated on both Visual Genome and CLEF test
sets. Table 1a shows five best prepositions result
whereas the result for other prepositions is less

4http://brat.nlplab.org/
5http://www.cs.tulane.edu/˜pkordjam/

SpRL.htm#data

than 20% F1.
Spatial Relations: The experimental results in
Table 1b show that our baseline model (BM) is
as good as the state-of-the-art model (M0). Incor-
porating isAligned feature (in GT and AC mod-
els) further improves the results because having
the phrases visualized in the image increases the
confidence scores of the spatial role and relation
classifiers and leads to a higher recall. The global
inference over constraints in BM+C significantly
improves the performance of BM (about 5% F1).
GT+P results show that inter-modality constraints
help in improving the results (about 2% F1) which
indicates some of the visual relations successfully
confirmed and boosted their corresponding rela-
tions in the text modality. However, this improve-
ment is limited which is expected considering the
low performance of Preposition Classifier. The
GT+P results indicate the significance of the vi-
sual information in our model when the correct
alignments are provided. The alignment classifiers
in the AC model also slightly improve the BM+C.
However, as it is visible in AC+P results, when we
have both noisy alignments and noisy visual rela-
tions the results drop slightly compared to AC.

4 Conclusion

Our global inference model exploits visual modal-
ity classifiers including object localization by re-
ferring expressions and spatial relation classifiers
between visual objects, as well as classifiers that
extract spatial roles and relation from text. The
global inference imposes consistency over the two
modalities and identifies the spatial relations in
text in accordance with their counterparts in the
image. The experimental results show the effec-
tiveness of the visual information in resolving the
ambiguity of spatial semantics of text. There is
still a large room to improve the modality align-
ments and relation extraction from images to ob-
tain better gains from visual information.
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