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Abstract 

It is shown that the enormous improvement in the size of disk storage space in 
recent years can be used to build individual word-domain statistical language 
models, one for each significant word of a language that contributes to the context 
of the text. Each of these word-domain language models is a precise domain model 
for the relevant significant word; when combined appropriately, they provide a 
highly specific domain language model for the language following a cache, even a 
short cache. Our individual word probability and frequency models have been 
constructed and tested in the Vietnamese and English languages. For English, we 
employed the Wall Street Journal corpus of 40 million English word tokens; for 
Vietnamese, we used the QUB corpus of 6.5 million tokens. Our testing methods 
used a priori and a posteriori approaches. Finally, we explain adjustment of a 
previously exaggerated prediction of the potential power of a posteriori models. 
Accurate improvements in perplexity for 14 kinds of individual word language 
models have been obtained in tests, (i) between 33.9% and 53.34% for Vietnamese 
and (ii) between 30.78% and 44.5% for English, over a baseline global tri-gram 
weighted average model. For both languages, the best a posteriori model is the a 
posteriori weighted frequency model of 44.5% English perplexity improvement 
and 53.34% Vietnamese perplexity improvement. In addition, five Vietnamese a 
posteriori models were tested to obtain from 9.9% to 16.8% word-error-rate (WER) 
reduction over a Katz trigram model by the same Vietnamese speech decoder. 
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1. Introduction 

A human is able to work out the precise domain of a spoken sentence after hearing only a few 
words. The clear identification of this domain makes it possible for a human to anticipate the 
following words and combination of words, thus, recognizing speech even in a very noisy 
environment. This ability to anticipate still cannot be replicated by statistical language models. 
In this paper, we suggest one way that significant improvement in language modeling 
performance can be achieved by building domain models for significant words in a language. 
The word-domain language model extends the idea of cache models (Kuhn & De Mori, 1990) 
and trigger models (Lau, Rosenfeld, & Roukos, 1993) by triggering a separate n-gram 
language model for each significant word in a cache and combining them to produce a 
combined model. 

The word-domain models are built by collecting a training corpus for each significant 
word. This is done by amalgamating the text fragments where the word appears in a large 
global training corpus. In this paper, the text fragments are the sentences containing the 
significant words. Sicilia-Garcia, Ming, and Smith (2001, 2002) have shown that larger 
fragments are not needed. We define a significant word as any word that significantly 
contributes to the context of the text or any word that is (i) not a stop word, i.e. not an article, 
conjunction, or preposition; (ii) not among the most frequently used words in the language, 
such as “will”; and (iii) not a common adverb or adjective, “now,” “very,” “some,” etc. 

All other words are considered significant, and a corpus is built for each. A statistical 
language model is then calculated from this corpus, i.e. from all of the sentences containing 
the word. Therefore, the model should be able to represent the domain of that word. This 
approach entails a very large number of individual word language models being created, 
which requires a correspondingly large amount of disk storage; previous experiments by 
Sicilia-Garcia, Ming, and Smith (2005) were done on twenty thousand individual word 
language models, which occupied approximately 180 GigaBytes. Thus, this tactic is feasible 
only given the relatively recent increase in affordable hard disk space. These word models 
gradually developed from the PhD work of Sicilia-Garcia 1999-2005. Almost at the same time 
as her research, similar research work was done by Blei, Ng, and Jordan (2003); they 
originally started from the ideas of Hofmann, Puzicha, and Buhmann (1998) and from 
Hofmann (1999). 

The remaining sections are organized in the following way. First, we discuss the 
weighted average model our developed approach lies upon. Then, we discuss both the 
probability models - including linear interpolation and the exponential decay model - and the 
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weighted models, such as the weighted probability model, weighted exponential model, and 
linear interpolation exponential model with weights. Then, we discuss their corresponding 
frequency models and we discuss a priori and a posteriori testing methods. Following this, the 
corpus, experiments, and results are shown for the probability models, for the frequency 
models, and for a posteriori models. Finally, we provide some conclusions. 

2. The Language Models 

Experiments had shown that we needed to combine the global language model with the 
individual word-domain models in order to obtain good results. (This may be due to the 
limited size of the global corpus in our tests, which was 40 million tokens.) So, we first built a 
language model for the whole global corpus. Frequencies of words and phrases derived from 
the corpus and the conditional probability of a word given a sequence of preceding words 
were calculated. The conditional probabilities were approximated by the maximum 
likelihoods: 
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n nw w w w−= in the text. These 
probabilities were smoothed by one of the well-known methods, such as Turing-Good 
estimation (Good, 1953) or the Katz back-off method (Katz, 1987). Although any of these 
could be used in our experiment to demonstrate the principle of our multiple word-domain 
models, it was convenient to use the empirical weighted average (WA) linear interpolation 
n-gram model (O’Boyle, Owens & Smith, 1994) because of its simplicity. It gives results 
comparable to the Katz back-off method but is much quicker to use. The weighted average 
probability of a word w given the preceding words w1…wm-1wm is: 
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where the weighted functions (in the simplest case) are given by 
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where T is the number of tokens in the corpus and ( )1
m
m if w + −  is the frequency of the 

sentence wm+1-i…wm in the text. The unigram maximum likelihood probability of a word is: 

( ) ( )
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The language model defined by Equations (2) and (4) is called the global language model 
when trained on the global corpus. The creation of a language model for each significant word 
is formed in the same manner as the global language model. 

3. Probability Models 

We need to combine the probabilities obtained from each word-domain language model and 
from the global language model in order to obtain a combined probability for a word, given a 
sequence of words. One simple way to do this is a mathematical combination of the global 
language model and the word language models in a linear interpolated expression as: 

( ) ( ) ( )1 1 1
1

mn n n
G G i i

i
P w w P w w P w wλ λ

=
= + ∑                                     (5) 

where 
1

1
m

G iλ λ+ =∑  and ( )1
n

GP w w  is the conditional probability of the word w following 
a phrase w1...wn-1,wn in the global language model, Pi is the conditional probability in the word 
language model for the significant word wi, λi is the correspondent weight, and m is the 
number of word models that are included. Ideally, the λi parameters would be optimized using 
a held-out training corpus; however, this is not practical as we do not know which 
combination of words wi will arise in the cache. So, a simpler approach is needed. 

3.1 Linear Interpolation 
A simple method of choosing the λ-values is to give the same weight to all of the word 
language models but a different weight to the global language model and to put a restriction 
on the number of word language models to be included. This weighted model is defined as 
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and λ and m are parameters that are chosen to optimize the model. 

3.2 Exponential Decay Model 
A method was developed based on an exponential decay of the word model probabilities with 
distance since a word appearing several words before the target word will generally be less 
relevant than more recent words. Given a sequence of Vietnamese words, for example, 
“ ” (meaning “I had friendly relations with HUI”) in Table 1, 
where 5, 4, 3, 2, 1 represent the distance of the word from the target word “HUI”. The words 
“tri” (relation) and “giao” (friendly) are significant words for which we have individual word 
language models. 
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Table 1. An explanation of distance of words. 

  tri giao   
5 4 3 2 1  

This model for the word w, where w represents the significant word “HUI,” is as follows: 
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where ( )1
n

GP w w  is the conditional probability of the word w following a phrase w1,w2…wn 
in the global language model and ( )1

n
triP w w  is the conditional probability of the word w 

following a phrase w1…wn-1wn in the word language model for the significant word “tri”. The 
same definition applies for the word model “giao”. d is the exponential decay distance with 
d=5, 10, 15, etc. A cache or cut-off is introduced in the model 

if l ≥ cache => replace exp(-l/d) by 0 

where l is the distance from the significant word to the target word. 

3.3 Weighted Models 
In the two methods above, the weights for the word language models were independent of the 
size of the word training corpora or the global training corpus. So, we introduced new weights 
to these models that depend on the size of the training corpora. These weights are functions of 
the size of the word training corpora, i.e. the number of tokens of the training corpora Ti. 
Examples of the weights can be seen in Table 2. 

Table 2. Some of the weights in weighted models. 

Weights 

Ln(1+LnTi) 

Sqrt(LnTi) 

LnTi 

Sqrt(Ti) 

Ti/LnTi 
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An obvious weight to use is a log function to match the information theory, but other weights 
were also tried. All of these weights are studied in order of weight difference as Ti increases, 
from the largest difference to the smallest. Their relationship can be seen in Figure 1. 

Figure 1. Value of the weights used in these models. 

3.3.1 Weighted Probability Model 
The weighted probability model is based on the idea that the weight given to a word language 
model should depend on the size of the training corpora. It is described as follows: 
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where βG is the weight for the global language model and βi is the weight for the word model 
for the word wi. We give more weight to those word models with a small training corpus as 
they represent models for the less frequent words, which have the most information. The 
weights used are functions of the size of the word training corpora in Table 2, that is, of the 
number of tokens of the training corpora Ti. 

3.3.2 Weighted Exponential Model 
The weighted exponential language model is a combination of the weighted probability model 
and the exponential decay model. Each language model has two functions: one is the 
exponential decay, in terms of the distance from the significant word, and the second function 
is a weight, depending on the size of the word training corpora. We define this model as: 
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where xi is the distance from the word wi model. 

3.3.3 Linear Interpolation Exponential Model with Weights 
Finally, we decided to try another model that is based on a combination of all previous 
methods. Based on the idea that the global language model could be weighted in a different 
way from the word language models, the probability of a word given the previous words is: 
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This is equivalent to combining all of the methods seen previously into one model, which we 
call the linear interpolation exponential model with weights. 

4. Frequency Models 

Instead of combining probabilities to obtain a dynamic language model, it is also possible to 
combine frequencies before calculating probabilities, i.e. a revised maximum likelihood. To 
do this, replace Equation (1) with: 
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This can then be combined using the WA model in Equation (2). This simple method is 
automatically normalized, and it is easy to implement and fast to execute. The choice of λ is 
still critical but cannot be optimized from a held out corpus. For the frequency model, we also 
combine the frequencies using the same methods that are used for probabilities. 

4.1 Linear Interpolation Frequency Model 
The linear interpolation model applied to the frequency is defined as: 
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where ( )1
n

Gf w  is the frequency of the phrase w1, w2…wn from the global model, ( )1
n

if w  
is the frequency of the phrase w1, w2…wn from the word wi model, and m and λ>0 are chosen 
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parameters. 

4.2 Exponential Decay Frequency Model 
A method was used based on an exponential decay of the frequencies: 
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4.3 Weighted Models 
We introduce new weights to these models; they are functions shown in Table 2. 

4.3.1 Weighted Frequency Model 
The weighted frequency model is a mathematical combination of the word language models 
with the global language models. The frequency for this model is defined as follows: 
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4.3.2 Weighted Exponential Decay Frequency Model 
As can be seen from the previous section, the frequencies are weighted depending on the size 
of the training corpora only. In this model, the exponential decaying factor is added to these 
weights. The new weighted exponential frequency becomes: 
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5. Testing Methods 

Perplexity is a well known measure of the performance of a language model (Jelinek, Mercer, 
& Bahl, 1983). We calculate the perplexity of each sentence, nw1 , by 

1
1 1 2 1 1( ) ( ) ( | )... ( | )n n

nP w P w P w w P w w −=                               (16) 

and the perplexity of a sentence by 
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where m is the number of words in the sentence. 

There are two methods of calculating the constituent probabilities on the right hand side 
of Equation (17) using the word domain language models, one a priori by Sicilia-Garcia et al. 
(2001, 2002) and the second a posteriori, which was first tried by Sicilia-Garcia et al. (2005.) 
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5.1 A Priori Method 
In the a priori method, we use the global language model and (possibly) individual word 
models from earlier sentences (i.e. from the cache) at the beginning of the sentence because 
we do not know which significant words are going to appear in the sentence. We then add in a 
word language model for each significant word after it appears in the sentence. Thus, in the 
sentence, “The cat sat on the mat,” neglecting previous sentences, the first two words are 
modeled using the global language model, the probability P(sat| the cat) is calculated using the 
global model combined with the word model for “cat,” and the last three words are modeled 
using the global model combined with the word models for “cat” and “sat”. 

5.2 A Posteriori Method 
This, however, is not the only way in which models are tested. For example, in domain 
language models, researchers extract a whole sentence, paragraph, or document from the test 
file, find all of the significant words within it, and use all of these words to perform an 
optimization of the possible domains to find the domain or combination of domains to 
minimize the perplexity (Seymore, Chen, & Rosenfeld, 1998; Donnelly, 1998; Iyer & 
Ostendorf, 1999; Sicilia-Garcia et al., 2005.) 

To make comparisons with these other domain methods, Sicilia-Garcia et al. (2005) also 
tried this a posteriori method to calculate perplexity for word-domain models. To do this, they 
extracted all of the significant words in a sentence and built a language model based on the 
global model and the word domain models for the significant words. This was then used to 
calculate the perplexity of the whole sentence. In the example above, “The cat sat on the mat,” 
the perplexity was calculated using the global model combined with the word domain models 
for the three words “cat,” “sat,” and “mat” for the whole sentence calculation. Using this 
approach, they obtained 68%-69% improvement in perplexity when using the a posteriori 
weighted probability model and the a posteriori weighted frequency model. They accepted 
that this 69% improvement exaggerated the performance but showed the potential power of 
these a posteriori models. Upon further analysis of this, however, we have discovered a slight 
flaw in the calculation. This can be demonstrated by again considering the example above. 
They calculated the a posteriori probability P(sat| the cat) by employing the global model, the 
word “cat” model, the word “sat” model, and the word “mat” model. As the unigram “sat,” as 
well as its n-grams, obviously occur themselves in every sentence of its own target word “sat” 
model, this yields an unnaturally high probability Psat(sat| the cat). Hence, the flaw: if we 
replace the word “sat” by any significant words xxx in the test, the probability Pxxx(xxx| the cat) 
will also obtain unnaturally high values in its own word xxx model. 

In this work, we propose and test a corrected method for calculating the a posteriori 
probability P(sat| the cat), which uses only the global model and the word models for “cat” 
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and “mat,” excluding the target word “sat” model. Furthermore, we have tested three different 
ways of combining word models in our calculation for the linear interpolation probability, the 
exponential decay probability, and the weighted probability models in the whole sentence test: 

i. applying the word models appearing from the beginning until the end of each sentence, 
excluding the target word model 

ii. applying the word models within the phrase history first then the word models that 
appear later in each sentence, and  

iii. ignoring the order of appearance of significant words in each sentence, either existing 
in the phrase history or occurring later, but applying those significant word models 
that are located from nearer to farther distances, relative to the target word. 

We find out that the (iii) calculation provides 1%-3% better perplexity improvements than (i) 
and (ii) calculations for all three models. This means that nearer word models supply more 
reliable probabilities. 

Sicilia-Garcia (2002) suggested another whole paragraph calculation with poorer results. 

6. Corpus 

The methods described above were compared in some Vietnamese and English experiments. 
For English, we used the Wall Street Journal (WSJ) corpus (Paul & Baker, 1992). Previous 
research by Sicilia-Garcia et al. (2001, 2002, 2005) displayed how the individual word 
probability models depend on the size of the training corpus for two subsets of the WSJ of 
approximately 16 million (1988) and 6 million words (1989). The well-known WSJ test file 
(Paul et al., 1992) contains 584 paragraphs, 1,869 sentences, 34,781 tokens, and 3,677 word 
types. In this work, we develop these models for the whole combined WSJ corpus of 40 
million words. The results reveal a lower perplexity for the larger 40 million word corpus, 
compared to Sicilia-Garcia et al. 

For Vietnamese, we employ the syllabic Vietnamese corpus by Ha in 2002 
(http://hochiminhcityuniversityofindustry-lequanha.schools.officelive.com/VietnameseQUBC
orpus.aspx), with a size of 6,564,445 tokens and 31,402 types. This corpus was collected from 
popular Vietnamese newspapers, such as The Youth Newspaper, Saigon Liberation 
Newspaper, Vietnamese Culture and Sports, Motion Pictures Magazine, and Vietnam Express, 
along with traditional and modern novels and short stories. 

Vietnamese is the national and official language of Vietnam. It is the mother tongue of 
86% of Vietnam's population, and of about three million overseas Vietnamese people. It is 
also spoken as a second language by many ethnic minorities of Vietnam. It is part of the 
Austro-Asiatic language family, of which it has its most speakers, having several times more 
speakers than the other Austro-Asiatic languages put together. Some Vietnamese vocabulary 
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has been borrowed from Chinese, and it was formerly written using a Chinese-like writing 
system, albeit in a modified format and with vernacular pronunciation. As a byproduct of 
French colonial rule, the language displays some influence from French, and the Vietnamese 
writing system in use today is an adapted version of the Latin alphabet, with additional 
diacritics for tones and certain letters. 

Vietnamese is basically a monosyllabic language with six tones, which gives the 
language a sing-song effect. A syllable can be repeated with any one of six tones to indicate 
six different meanings. For example, the syllable “ma” has six different meanings according to 
the tone this Vietnamese syllable carries - with level tone, “ma” means “phantom” or “ghost”; 
with low tone, “ ” means “but,” “which,” or “who”; with high rising glottalized  tone, 
“ ” means “code”; with dipping-rising tone, “ ” means “tomb”; with high rising tone, 
“ ” means “cheek”; and with low glottalized tone, “ ” means “young rice seedling”. 

Due to the semantic impact of tonality, we would like to apply our language models for 
Vietnamese syllables instead of English words. 

We also established our Vietnamese test text from the above Vietnamese newspapers, but 
its content was taken from newspapers of the year 2008, much later than Ha’s training text in 
2002. Therefore, the Vietnamese test text is totally different from Ha’s corpus; it includes 
33,108 Vietnamese syllable tokens of 2,226 syllable types within 3,321 sentences. 

7. Results 

We will first present the results for each a priori model, starting from the probability models 
and moving to the frequency models then show our a posteriori results. All perplexity values 
shown in the tables are accompanied with a percentage, which shows the improvement 
compared to the global base-line trigram WA model. 

7.1 Results for Probability Models 
We present the results for all a priori probability models, starting from the linear interpolation 
probability model and going to the linear interpolation exponential decay probability model 
with weights. It can be seen from the results that the best English and Vietnamese probability 
model is the weighted exponential probability model, with overall results in Tables 3 and 4. 

The best performance achieved using each different type of probability models is shown 
in Table 5 and Table 6. 

The best model is the weighted exponential probability model, with 34% improvement 
for English and 37% for Vietnamese, while the linear interpolation exponential model with 
weights - our combination of all of the models - disappointingly only improves 32% for 
English and 33.9% for Vietnamese. For these models, the number of individual word models 
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required in the cache to reach the maximum performance is 16-23 English words and 29-64 
Vietnamese syllables. So, the individual word-domain language model reduces the size of the 
cache needed from 500 words, as in other models (Clarkson & Robinson, 1997; Donnelly, 
Smith, Sicilia-Garcia & Ming, 1999), to less than 30 English words or 64 Vietnamese 
syllables, which is important for spoken language and is closer to the ability of humans. 

In Table 5 and Table 6, WM represents the number of word language models that is m in 
Equations (6), (8), (9), and (10). 

Table 3. The weighted exponential model (English WSJ.) 

 Sentence/WSJ 

n-gram Perplexity Improvement (d, Cache, Function) 

tri-gram 62.71 16.78% (8, 75, Sqrt(1/LnTi)) 

5-gram 51.09 32.21% (8, 70, LnTi) 

7-gram 49.91 33.77% (7, 75, LnTi) 

9-gram 49.82 33.90% (7, 75, LnTi) 

Table 4. The weighted exponential model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (d, Cache, Function) 

tri-gram 94.70 22.98% (13, 100, Sqrt(LnTi)) 

5-gram 80.16 34.81% (13, 100, LnTi) 

7-gram 78.12 36.47% (13, 100, LnTi) 

9-gram 77.57 36.92% (13, 100, LnTi) 

Table 5. Improvement in perplexity for different probability models, all in sentence 
contexts (English WSJ.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 26.77%  

Linear Interpolation 11.16% 31.98% λ=0.7, WM=23 

Exponential Decay 16.75% 33.72% Decay=6, Cache=70 

Weighted Probability 13.90% 32.52% WM=16, Sqrt(Ti) 

Weighted Exponential 16.78% 33.90% Decay=7, Cache=75, LnTi 

Linear Interpolation Exponential 
with Weights 12.91% 32.28% λ=0.6, Decay=13, 

Cache=65, Ln(1+LnTi) 
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Table 6. Improvement in perplexity for different probability models, all in sentence 
contexts (Vietnamese QUB.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 20.88%  

Linear Interpolation 18.46% 34.02% λ=0.6, WM=64 

Exponential Decay 22.88% 36.54% Decay=10, Cache=100 

Weighted Probability 20.45% 34.45% WM=29, Sqrt(Ti) 

Weighted Exponential 22.98% 36.92% Decay=13, Cache=100, LnTi 

Linear Interpolation Exponential 
with Weights 18.40% 33.88% λ=0.6, Decay=57, 

Cache=100, 1/Ln(1+LnTi)) 

Our weighted exponential model is a special case of the linear interpolation exponential with 
weights. Hence, it should not have better performance. Sicilia-Garcia et al. (2001, 2002, 2005) 
were also disappointed when this combination model of all other models was not good. The 
reason for this unusual observation is a conflict occurring between the weighted exponential 
model (that is a combination of exponential decay and weighted probability models) and the 
linear interpolation model. The linear interpolation model was optimized on the condition that 
all significant words are equally treated, while the weighted exponential model treats 
significant words differently from each other. 

In the linear interpolation model, the global “weight” is λ = 0.6 and each Vietnamese 
syllabic model equally optimized at a “weight” of (1-λ)/m = (1-0.6)/64 = 0.006,25. For the 
weighted exponential model, however, the global weight is Ln(40M) = 17.5 and a Vietnamese 
syllabic model with size 10,000 has a weight of Ln(10,000) = 9.21. Another Vietnamese 
syllabic model with size 100 has its weight of Ln(100) = 4.61. On the linear interpolation 
exponential with weights, when these weights are multiplied or interpolated together, they 
break the optimization of both the linear interpolation model and the weighted exponential 
model; the too small individual “weight” 0.006,25 in the first model and the much larger 
global weight 17.5 in the latter model are not satisfied. 

7.2 Results for Frequency Models 
We present the results for each a priori frequency model, starting from the linear interpolation 
frequency model and going to the weighted frequency model. The best English frequency 
model is the weighted frequency model, and our results for this model are displayed in Table 7. 
An improvement of 38% has been achieved for the English weighted frequency model. 

The best Vietnamese one is the exponential decay frequency model with 47.3% 
perplexity improvement, as shown in Table 9. 
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Table 7. The weighted frequency model (English WSJ.) 

 Sentence/WSJ 

n-gram Perplexity Improvement (WM, Function) 

tri-gram 58.12 22.87% (29,1/Ti*Ln(Ti)) 

5-gram 47.36 37.16% (29, 1/Ti) 

7-gram 46.70 38.03% (29, Ln(Ti)/Ti) 

9-gram 46.73 38.00% (29, Ln(Ti)/Ti) 

For the English weighted frequency model, it is important to notice that the perplexity result 
for the 9-gram model is poorer than the one for the 7-gram language model. We think this is 
because the word language models in many cases are so small that the 9-gram frequencies are 
usually zero. In order to recognize or understand a rather short phrase as a tri-gram, its 
meaning largely depends on its context. The other possibility is that the historical word 
language models need more weight than the large global model of 40 million tokens. If a 
significant word language model has 1,000 words in its corpus, then the global weight will 
approximately be 1/(40M*Ln(40M)) = 1.428E-09 while that word model’s weight 
1/(1,000*Ln(1,000)) = 0.000,144 is much larger in comparison. 

Nevertheless, for longer phrases, such as 5-grams or 9-grams, the meanings of a very 
long 9-gram is almost obvious by itself and its meaning is less impacted by significant words 
surrounding it. Sometimes, people understand a long spoken phrase with 9 continuous words 
without confusion even though they did not hear the previous significant words. Therefore, for 
longer English phrases, the global weight should gain importance and increase its value, 
relative to significant words. This means that, in Table 7, the WM = 29 for all n-grams but, 
with the tri-gram weight 1/(Ti*Ln(Ti)), is smaller than the 5-gram weight 1/Ti, and 1/Ti is also 
smaller than Ln(Ti)/Ti of 7-grams and 9-grams. 

This is not happening in the Vietnamese weighted frequency model in Table 8 because 
the value of WM is very large, 67. The weight 1/Ti  is applied to this Vietnamese model and to 
the corresponding 5-gram English model in Table 7. For example, we consider the following 
Vietnamese syllabic 9-gram “ ,” its closest English 
phrase - “Vietnamese is a syllabic language” - is only a word 5-gram. Therefore, because 
many English 5-grams will correspond to Vietnamese syllabic 7-grams or 9-grams, this 
Vietnamese model has the same weights as the 5-gram English weighted frequency model. 
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Table 8. The weighted frequency model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (WM, Function) 

tri-gram 85.88 30.15% (67, 1/Ti) 

5-gram 73.55 40.18% (67, 1/Ti) 

7-gram 72.63 40.93% (67, 1/Ti) 

9-gram 72.47 41.06% (67, 1/Ti) 

Table 9. The exponential decay model (Vietnamese QUB.) 

 Sentence/QUB 

n-gram Perplexity Improvement (Decay, Cache) 

tri-gram 100.60 18.19% (150, 150) 

5-gram 71.68 41.71% (150, 145) 

7-gram 66.11 46.24% (150, 145) 

9-gram 64.77 47.32% (150, 145) 

The best performance of the frequency models is shown by Table 10 and Table 11. 

Table 10. Improvement in perplexity for frequency models, all in sentence 
contexts (English WSJ.) 

Models tri-gram 9-gram Best Values 

Global  0.00% 26.77%  

Linear Interpolation  15.77% 34.32% λ=0.003, WM=29 

Exponential Decay  8.13% 30.78% Decay=150, Cache=115 

Weighted Frequency 22.87% 38.00% WM=29, Ln(Ti)/Ti 

Weighted Exponential Decay 22.84% 37.95% Decay=100, Cache=85, 1/Ti 

Table 11. Improvement in perplexity for frequency models, all in sentence contexts 
(Vietnamese QUB.) 

Models tri-gram 9-gram Best Values 

Global 0.00% 20.88%  

Linear Interpolation 22.72% 36.20% λ=0.002, WM=46 

Exponential Decay 18.19% 47.32% Decay=150, Cache=145 

Weighted Frequency 30.15% 41.06% WM=67, 1/Ti 

Weighted Exponential Decay 30.10% 41.05% Decay=100, Cache=100, 1/Ti 
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In Table 10 and Table 11, the best model in the Vietnamese corpus is the exponential decay 
model, which is different from the best in the English corpus because the Vietnamese 
language is formed by a more limited number of syllables than English words; hence, a 
Vietnamese syllable has many more different meanings than an English word. Only a 
significant Vietnamese syllable appearing in the immediate context of a target syllable can 
change the meaning of the target into a total different topic, but this depends much on the 
distance from the significant syllable model to the target. 

In the weighted frequency models, the best weight in English is (Ln(Ti)/Ti) and 
Vietnamese (1/Ti). They are different because a Vietnamese sentence is generally longer in 
syllable length than its corresponding English sentence in word number, for example, the 
following sentence has 12 syllables “ ” 
and its corresponding English sentence that means “I do research in individual word language 
models” only contains 8 words. 

7.3 Results for A Posteriori Models 
We investigated our new approach for calculating a posteriori probabilities using five models: 
the linear interpolation probability model, the exponential probability model, the weighted 
probability model, the linear interpolation frequency model, and the weighted frequency 
model. We found that the best performance was provided by the a posteriori weighted 
frequency model, which gave a 44.46% English improvement and 53.34% Vietnamese 
improvement in perplexity. This is better than the performance of much more computationally 
intensive methods based on clustering (Iyer & Ostendorf, 1999; Clarkson et al., 1997). The a 
posteriori weighted frequency model’s results are displayed in Table 12 and Table 13, and the 
best results for all different a posteriori models are shown in Table 14 and Table 15. 

In order to compare to a priori models in Table 10, in the a priori weighted frequency 
model for English, the weights are different, namely Ln(Ti)/Ti in the a priori model and 
1/Ti*Ln(Ti) in the a posteriori model. Besides, the WM values, the number of significant word 
language models or m in Equation (14), are quite different, with values of 29 for the a priori 
and 16 for the a posteriori models. This can be explained as the concept that people can catch 
the meaning of a target word more clearly and quickly when they not only hear its previous 
words but also listen to its following words. Then, the English a posteriori model needs to 
increase weight on significant word models to the global model weight, but it needs to “hear” 
fewer significant words in the context before it can catch the meaning. 
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Table 12. The a posteriori weighted frequency model (English WSJ.) 
  Whole Sentence Perplexity Whole Sentence Improvement 

Weight tri-gram 5-gram 7-gram 9-gram tri-gram 5-gram 7-gram 9-gram 
Ti*Ln(Ti) 73.91 56.08 54.61 54.52 1.93% 25.59% 27.53% 27.66% 

Ti 73.77 56.00 54.54 54.45 2.11% 25.69% 27.62% 27.75% 

Ti/Ln(Ti) 73.62 55.92 54.47 54.38 2.31% 25.80% 27.72% 27.85% 

Sqrt(Ti) 71.88 54.92 53.56 53.48 4.63% 27.13% 28.93% 29.03% 

Ln(Ti) 67.91 52.52 51.35 51.30 9.88% 30.30% 31.86% 31.93% 

Sqrt(Ln(Ti)) 67.49 52.26 51.10 51.05 10.45% 30.65% 32.19% 32.26% 

Ln(1+Ln(Ti)) 67.34 52.17 51.02 50.97 10.64% 30.77% 32.30% 32.36% 

1/Ln(1+Ln(Ti)) 66.72 51.79 50.66 50.62 11.47% 31.28% 32.78% 32.83% 

Sqrt(1/Ln(Ti)) 66.57 51.69 50.57 50.53 11.67% 31.41% 32.89% 32.95% 

1/Ln(Ti) 66.07 51.39 50.29 50.25 12.32% 31.81% 33.27% 33.32% 

Sqrt(1/Ti) 58.31 46.54 45.73 45.72 22.63% 38.24% 39.32% 39.33% 

Ln(Ti)/Ti 52.00 42.71 42.16 42.19 31.01% 43.32% 44.06% 44.02% 

1/Ti  51.45 42.44 41.92 41.96 31.73% 43.68% 44.37% 44.32% 

1/Ti*Ln(Ti) 51.09 42.30 41.81 41.85 32.21% 43.87% 44.52% 44.46% 

Table 13. The a posteriori weighted frequency model (Vietnamese QUB.) 
 Whole Sentence Perplexity Whole Sentence Improvement 

Weight tri-gram 5-gram 7-gram 9-gram tri-gram 5-gram 7-gram 9-gram 
Ti*Ln(Ti) 122.45 98.83 97.16 96.87 0.41% 19.62% 20.98% 21.22% 

Ti 122.27 98.68 97.02 96.73 0.56% 19.74% 21.10% 21.33% 

Ti/Ln(Ti) 122.03 98.49 96.83 96.54 0.75% 19.90% 21.25% 21.48% 

Sqrt(Ti) 118.30 95.61 94.06 93.79 3.79% 22.25% 23.51% 23.72% 

Ln(Ti) 107.45 87.82 86.52 86.30 12.61% 28.58% 29.64% 29.82% 

Sqrt(Ln(Ti)) 106.05 86.82 85.55 85.33 13.75% 29.39% 30.42% 30.60% 

Ln(1+Ln(Ti)) 105.64 86.53 85.27 85.05 14.09% 29.63% 30.65% 30.83% 

1/Ln(1+Ln(Ti)) 103.41 84.94 83.72 83.51 15.90% 30.92% 31.91% 32.08% 

Sqrt(1/Ln(Ti)) 102.96 84.62 83.41 83.20 16.27% 31.19% 32.17% 32.34% 

1/Ln(Ti) 101.24 83.38 82.21 82.00 17.67% 32.19% 33.14% 33.31% 

Sqrt(1/Ti) 82.11 69.34 68.46 68.31 33.22% 43.61% 44.32% 44.45% 

Ln(Ti)/Ti 68.88 59.43 58.75 58.63 43.98% 51.67% 52.22% 52.32% 

1/Ti 67.31 58.35 57.71 57.59 45.26% 52.55% 53.07% 53.16% 

1/Ti*Ln(Ti) 66.77 58.11 57.49 57.37 45.70% 52.74% 53.25% 53.34% 
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Table 14. Improvements of a posteriori models (English WSJ.) 
A Posteriori Models tri-gram 9-gram Best Values 

Global 0.00% 26.77%  

Linear Interpolation Probability 30.99% 44.20% λ=0.2 

Exponential Decay Probability 28.66% 42.82% Decay=100, Cache=5 

Weighted Probability 30.82% 44.17% Sqrt(1/Ln(Ti)) 

Linear Interpolation Frequency 25.17% 40.66% λ=0.001 

Weighted Frequency 32.21% 44.46% WM=16, 1/Ti*Ln(Ti) 

Similar to a posteriori Vietnamese models in Table 15, the weighted frequency model has 
WM=34 and a weight of 1/(Ti*Ln(Ti)), while the a priori ones are much larger, WM=67 and 
weights 1/Ti. 

Table 15. Improvements of a posteriori models (Vietnamese QUB.) 
A Posteriori Models tri-gram 9-gram Best Values 

Global 0.00% 20.88%  

Linear Interpolation Probability 37.44% 47.63% λ=0.3 

Exponential Decay Probability 40.31% 49.28% Decay=15, Cache=99 

Weighted Probability 37.62% 47.34% Ln(Ti)  

Linear Interpolation Frequency 36.21% 47.03% λ=0.001 

Weighted Frequency 45.70% 53.34% WM=34, 1/Ti*Ln(Ti) 

Previously, for similar experiments, Sicilia-Garcia et al. (2005) reported improvements of 
68%-69% for 7-gram models. Nevertheless, that was based on the flawed calculation 
previously described in the section, A Posteriori Method, so the results we present here can be 
viewed as a true reflection of the performance that can be achieved by these models. 
Nowadays, with the current condition of PCs, the programming issues of Sicilia-Garcia in 
training and accessing a language model of 9-grams no longer exist. With a 9-gram phrase 
length, on the global database of WSJ 4.5 gigabytes, we now complete the a posteriori 
probability linear interpolation model in 30 minutes, while Sicilia-Garcia finished this 
computer execution for 7-grams in 4 days nonstop. For the a posteriori weighted frequency 
model, we now execute only over 2 days for 9-grams, while Sicilia-Garcia completed 10 full 
days for 7-grams. (This is without speeding up the algorithms; it is only by upgrading to newer 
computers.) 

The different nature of the Vietnamese syllabic language causes a much smaller 
proportion of syllables to be significant than English significant words. In a Vietnamese 
sentence and an English sentence of the same length, there are considerably fewer significant 
syllables occurring, hence, inconsistent effects are found from our results. 
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7.4 Speech word-error-rate Results for A Posteriori Models 
We employ a Vietnamese large vocabulary continuous speech decoder linking to the five 
Vietnamese a posteriori models. Our speech recognition system is syllable-based HMM 
trained with Vietnamese speech data of 97,850 spoken statements extracted from the 
Vietnamese QUB text corpus; they are recordings of 326 speech hours by 60 Vietnamese 
speakers, including 30 men and 30 women from 18 years old to 51 years old. The number of 
states per HMM is 5, and each state was modeled using a mixture of 16 Gaussians. It is a 
tone-dependent phoneme model. 

7.4.1 Vietnamese VnIPh Lexicon 
In March 2009, Ha created the Vietnamese lexicon called Vietnamese International Phonetic 
Lexicon version 1.0 or VnIPh lexicon 
(http://hochiminhcityuniversityofindustry-lequanha.schools.officelive.com/VnIPh.aspx). 

We employ this lexicon in our speech recognition system; it includes an automatic 
lexicon generator to create 12,165 Vietnamese syllable entries. We would like to show a few 
Vietnamese syllables from this lexicon in Table 16. 

Table 16. The Vietnamese VnIPh Lexicon (a few entries) 
Vietnamese Syllable Phoneme Meaning in English 

  

In Table 16, phonemes 0, 1, 2, 3, 4, and 5 are the six tones of Vietnamese speech: level, low, 
high rising glottalized, dipping-rising, high rising, and low glottalized tones. In fact, there are 
43 context-independent phonemes: 0, 1, 2, 3, 4, 5, AA, AH, AO, AW, AY, B, CH, D, EH, ER, 
EY, F, G, HH, IH, IY, K, L, M, N, NG, OW, OY, P, R, S, SH, SIL, T, UH, UW, V, W, WW, 
WY, Y, and Z. 

7.4.2 Vietnamese Speech Tests 
We set up our own Vietnamese speech tests that included 21,451 Vietnamese syllables of 
3,363 types in 3,834 statements. In Vietnamese speech, the number of syllables is countable 
because, using the Vietnamese spelling rule, all of the syllables can be obviously formed from 
the vowels, consonants, and tones. Hence, similar to English words, the number of 
Vietnamese words, which are combinations of syllables, is uncountable. Nevertheless, all of 
the possible Vietnamese syllables are fully stored in our lexicon and there are no 
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out-of-vocabulary syllables in our Vietnamese speech tests, even though there are still 
unknown syllable combinations or unknown Vietnamese words out of the training corpus. 

Although the Vietnamese QUB training corpus is clean, without any external noises, our 
Vietnamese speech tests are noisy with all insertion/deletion/substitution cases of phonemes. 
Noisy spoken tests are recorded in realistic environments, around cars, fans, and other people 
talking; each utterance is recorded in a high, medium, or low noise condition. 

We apply an unconstrained phone recognizer, and the observed phone sequences are 
obtained. Our expected phone sequences are constructed using lexicon concatenation based on 
the Vietnamese syllable transcriptions. In comparison to the expected sequences, our observed 
sequences show three experimental conditions: well-matched, medium-matched, and 
highly-mismatched. In our tests, we have three common types of phone errors, which are 
16.57% insertion, 18.24% deletion, and 16.21% substitution. 

7.4.3 Vietnamese Language Models 
Our Vietnamese recognition baseline system uses a Katz back-off trigram language model; 
hence, we can calculate the word error rate (WER) as follows in Table 17. 

All of our Katz probabilities of Vietnamese phrases were stored in a hashed file inside 
the decoder. In order to link our individual word models into this decoder, we first calculated 
the combined probabilities of all n-grams from unigrams and bigrams up to 9-grams via the 
five models in Equations (6), (7), (8), (12), and (14). This took us ten days; then, we created 
five hashed files storing these Vietnamese probabilities with the same structure of the existing 
Katz hashed file. 

In the next step, we replaced the Katz file by each of our five files or our individual word 
language models. In this way, when speaking, the Vietnamese speech decoder is naturally able 
to execute on-line. Our Vietnamese word-error-rates are done by tests with direct microphone 
input from six held-out Vietnamese native speakers, four men and two women, ranging from 
21 years old to 52 years old. 

Table 17. Noisy Speech A Posteriori WER (Vietnamese QUB.) 
A Posteriori Models WER Improvement over Baseline 

Baseline 45.65%  

Linear Interpolation Probability 33.67% 11.98% 

Exponential Decay Probability 35.78% 9.87% 

Weighted Probability 33.33% 12.32% 

Linear Interpolation Frequency 33.44% 12.21% 

Weighted Frequency 28.87% 16.78% 
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8. Conclusions 

We have described the concept of using individual word models to improve language model 
performance. Individual word language models permit an accurate capture of the domains in 
which significant words occur, thereby improving the model performance. The results indicate 
that individual word models offer a promising and simple means of introducing domain 
information into an n-gram language model. 

Humans probably hear the sounds of several words spoken before using a form of human 
language model to make a sensible sentence from the sounds, particularly when there are 
corruptions. Therefore, the idea of using the a posteriori method to define the domain might 
be more appropriate than the a priori method. We believe that the use of multiple 
word-domains, which need only large amounts of relatively inexpensive disk space, models 
the domain environment of any piece of written or spoken text more accurately than any other 
domain method. Our Vietnamese word-error-rate measurement to test this theory by linking to 
a speech decoder is also very good. For our future work, we will apply a posteriori language 
models in automatic speech recognition for English and other languages. 
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