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Abstract 

    In a multimodal conversation, the way users 
communicate with a system depends on the 
available interaction channels and the situated 
context (e.g., conversation focus, visual feedback). 
These dependencies form a rich set of constraints 
from various perspectives such as temporal 
alignments between different modalities, 
coherence of conversation, and the domain 
semantics. There is strong evidence that 
competition and ranking of these constraints is 
important to achieve an optimal interpretation. 
Thus, we have developed an optimization approach 
for multimodal interpretation, particularly for 
interpreting multimodal references. A preliminary 
evaluation indicates the effectiveness of this 
approach, especially for complex user inputs that 
involve multiple referring expressions in a speech 
utterance and multiple gestures.   

1 Introduction 

Multimodal systems provide a natural and 
effective way for users to interact with computers 
through multiple modalities such as speech, 
gesture, and gaze (Oviatt 1996). Since the first 
appearance of “Put-That-There” system (Bolt 
1980), a variety of multimodal systems have 
emerged, from early systems that combine speech, 
pointing (Neal et al., 1991), and gaze (Koons et al, 
1993), to systems that integrate speech with pen 
inputs (e.g., drawn graphics) (Cohen et al., 1996; 
Wahlster 1998; Wu et al., 1999), and systems that 
engage users in intelligent conversation (Cassell et 
al., 1999; Stent et al., 1999; Gustafson et al., 2000; 
Chai et al., 2002; Johnston et al., 2002).   

One important aspect of building multimodal 
systems is multimodal interpretation, which is a 
process that identifies the meanings of user inputs. 

In a multimodal conversation, the way users 
communicate with a system depends on the 
available interaction channels and the situated 
context (e.g., conversation focus, visual feedback). 
These dependencies form a rich set of constraints 
from various aspects (e.g., semantic, temporal, and 
contextual). A correct interpretation can only be 
attained by simultaneously considering these 
constraints. In this process, two issues are 
important: first, a mechanism to combine 
information from various sources to form an 
overall interpretation given a set of constraints; and 
second, a mechanism that achieves the best 
interpretation among all the possible alternatives 
given a set of constraints. The first issue focuses on 
the fusion aspect, which has been well studied in 
earlier work, for example, through unification-
based approaches (Johnston 1998) or finite state 
approaches (Johnston and Bangalore, 2000). This 
paper focuses on the second issue of optimization.  

As in natural language interpretation, there is 
strong evidence that competition and ranking of 
constraints is important to achieve an optimal 
interpretation for multimodal language processing.  
We have developed a graph-based optimization 
approach for interpreting multimodal references. 
This approach achieves an optimal interpretation 
by simultaneously applying semantic, temporal, 
and contextual constraints. A preliminary 
evaluation indicates the effectiveness of this 
approach, particularly for complex user inputs that 
involve multiple referring expressions in a speech 
utterance and multiple gestures. In this paper, we 
first describe the necessities for optimization in 
multimodal interpretation, then present our graph-
based optimization approach and discuss how our 
approach addresses key principles in Optimality 
Theory used for natural language interpretation  
(Prince and Smolensky 1993).  



2 Necessities for Optimization in 
Multimodal Interpretation 

In a multimodal conversation, the way a user 
interacts with a system is dependent not only on 
the available input channels (e.g., speech and 
gesture), but also upon his/her conversation goals, 
the state of the conversation, and the multimedia 
feedback from the system. In other words, there is 
a rich context that involves dependencies from 
many different aspects established during the 
interaction. Interpreting user inputs can only be 
situated in this rich context. For example, the 
temporal relations between speech and gesture are 
important criteria that determine how the 
information from these two modalities can be 
combined. The focus of attention from the prior 
conversation shapes how users refer to those 
objects, and thus, influences the interpretation of 
referring expressions. Therefore, we need to 
simultaneously consider the temporal relations 
between the referring expressions and the gestures, 
the semantic constraints specified by the referring 
expressions, and the contextual constraints from 
the prior conversation. It is important to have a 
mechanism that supports competition and ranking 
among these constraints to achieve an optimal 
interpretation, in particular, a mechanism to allow 
constraint violation and support soft constraints.  

We use temporal constraints as an example to 
illustrate this viewpoint1.  The temporal constraints 
specify whether multiple modalities can be 
combined based on their temporal alignment. In 
earlier work, the temporal constraints are 
empirically determined based on user studies 
(Oviatt 1996). For example, in the unification-
based approach (Johnston 1998), one temporal 
constraint indicates that speech and gesture can be 
combined only when the speech either overlaps 
with gesture or follows the gesture within a certain 
time frame. This is a hard constraint that has to be 
satisfied in order for the unification to take place. 
If a given input does not satisfy these hard 
constraints, the unification fails.  

In our user studies, we found that, although the 
majority of user temporal alignment behavior may 
satisfy pre-defined temporal constraints, there are 

                                                                 
1 We implemented a system using real estate as an application 
domain.  The user can interact with a map using both speech 
and gestures to retrieve information. All the user studies men-
tioned in this paper were conducted using this system.  
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100%85%15%Total

48%40%8%Overlap

52%45%7%Non-overlap

TotalGesture FirstSpeech First

100%85%15%Total

48%40%8%Overlap

52%45%7%Non-overlap

TotalGesture FirstSpeech First

 
Table 1: Overall temporal relations between speech and 
gesture 
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Figure 1: Temporal relations between speech and gesture
for individual users 
me exceptions. Table 1 shows the percentage of 
fferent temporal relations collected from our user 
udies. The rows indicate whether there is an 
erlap between speech referring expressions and 
eir accompanied gestures. The columns indicate 
hether the speech (more precisely, the referring 
pressions) or the gesture occurred first. 

onsistent with the previous findings (Oviatt et al, 
97), in most cases (85% of time), gestures 
curred before the referring expressions were 
tered. However, in 15% of the cases the speech 
ferring expressions were uttered before the 
sture occurred. Among those cases, 8% had an 
erlap between the referring expressions and the 
sture and 7% had no overlap.  
Furthermore, as shown in (Oviatt et al., 2003), 

though multimodal behaviors such as sequential 
.e., non-overlap) or simultaneous (e.g., overlap) 
tegration are quite consistent during the course of 
teraction, there are still some exceptions. Figure 
shows the temporal alignments from seven 

dividual users in our study. User 2 and User 6 
aintained a consistent behavior in that User 2’s 
eech referring expressions always overlapped 
ith gestures and User 6’s gesture always occurred 
ead of the speech expressions. The other five 
ers exhibited varied temporal alignment between 
eech and gesture during the interaction.  It will 
 difficult for a system using pre-defined 
mporal constraints to anticipate and 
commodate all these different behaviors.  

herefore, it is desirable to have a mechanism that 

http://roa.rutgers.edu/view.php3?id=845


allows violation of these constraints and support 
soft or graded constraints.  

3 A Graph-based Optimization Approach  

To address the necessities described above, we 
developed an optimization approach for 
interpreting multimodal references using graph 
matching. The graph representation captures both 
salient entities and their inter-relations. The graph 
matching is an optimization process that finds the 
best matching between two graphs based on 
constraints modeled as links or nodes in these 
graphs. This type of structure and process is 
especially useful for interpreting multimodal 
references. One graph can represent all the 
referring expressions and their inter-relations, and 
the other graph can represent all the potential 
referents. The question is how to match them 
together to achieve a maximum compatibility 
given a particular context.  

3.1 Overview  

Graph-based Representation 

Attribute Relation Graph (ARG) (Tsai and Fu, 1979) 
is used to represent information in our approach. 
An ARG consists of a set of nodes that are 
connected by a set of edges. Each node represents 
an entity, which in our case is either a referring 
expression to be resolved or a potential referent.  

Each node encodes the properties of the 
corresponding entity including: 
• Semantic information that indicates the 

semantic type, the number of potential referents, 
and the specific attributes related to the 

corresponding entity (e.g., extracted from the 
referring expressions).  

• Temporal information that indicates the time 
when the corresponding entity is introduced into 
the discourse (e.g., uttered or gestured).  
Each edge represents a set of relations between 

two entities. Currently we capture temporal 
relations and semantic type relations. A temporal 
relation indicates the temporal order between two 
related entities during an interaction, which may 
have one of the following values:  
• Precede: Node A precedes Node B if the entity 

represented by Node A is introduced into the 
discourse before the entity represented by Node B.  

• Concurrent: Node A is concurrent with Node B if 
the entities represented by them are referred to or 
mentioned simultaneously. 

• Non-concurrent: Node A is non-concurrent with 
Node B if their corresponding objects/references 
cannot be referred/mentioned simultaneously.  

• Unknown: The temporal order between two entities 
is unknown. It may take the value of any of the 
above.  

A semantic type relation indicates whether two 
related entities share the same semantic type. It 
currently takes the following discrete values: Same, 
Different, and Unknown. It could be beneficial in the 
future to consider a continuous function measuring 
the rate of compatibility instead.  

Specially, two graphs are generated. One graph, 
called the referring graph, captures referring 
expressions from speech utterances. For example, 
suppose a user says Compare this house, the green 
house, and the brown one. Figure 2 show a referring 
graph that represents three referring expressions 
from this speech input. Each node captures the 
semantic information such as the semantic type 
(i.e., Semantic Type), the attribute (Color), the 
number (Number) of the potential referents, as well 
as the temporal information about when this 
referring expression is uttered (BeginTime and 
EndTime). Each edge captures the semantic (e.g., 
SemanticTypeRelation) and temporal relations (e.g., 
TemporalRelation) between the referring expressions. 
In this case, since the green house is uttered before 
the brown one, there is a temporal Precede 
relationship between these two expressions. 
Furthermore, according to our heuristic that 
objects-to-be-compared should share the same 
semantic type, therefore, the SemanticTypeRelation 
between two nodes is set to Same.  

Node 1
this house

Node 2
the green 

house
Node 3

the brown 
one

SemanticType: House
Number.: 1
Attribute: Color = $Green
BeginTime: 32244242ms
EndTime: …

… …

SemanticTypeRelation: Same
TemporalRelation: Precede
Direction: Node 2 -> Node 3

Speech: Compare this house, the green house    
and the brown one

 
Figure 2: An example of a referring graph 



Similarly, the second graph, called the referent 
graph, represents all potential referents from 
multiple sources (e.g., from the last conversation, 
gestured by the user, etc). Each node captures the 
semantic and temporal information about a 
potential referent (e.g., the time when the potential 
referent is selected by a gesture). Each edge 
captures the semantic and temporal relations 
between two potential referents.  For instance, 
suppose the user points to one position and then 
points to another position. The corresponding 
referent graph is shown in Figure 3. The objects 
inside the first dashed rectangle correspond to the 
potential referents selected by the first pointing 
gesture and those inside the second dashed 
rectangle correspond to the second pointing gesture. 
Each node also contains a probability that indicates 
the likelihood of its corresponding object being 
selected by the gesture. Furthermore, the salient 
objects from the prior conversation are also 
included in the referent graph since they could also 
be the potential referents (e.g., the rightmost 
dashed rectangle in Figure 32).  

To create these graphs, we apply a grammar-
based natural language parser to process speech 
inputs and a gesture recognition component to 
process gestures. The details are described in (Chai 
et al. 2004a).  

                                                                 
2 Each node from the conversation context is linked to every 
node corresponding to the first pointing and the second point-
ing.  

Graph-matching Process 

Given these graph representations, interpreting 
multimodal references becomes a graph-matching 
problem. The goal is to find the best match 
between a referring graph (Gs) and a referent graph 
(Gr). Suppose 
• A referring graph Gs = 〈{αm}, {γmn}〉, where {αm} are 

nodes and {γmn} are edges connecting nodes αm and 
αn. Nodes in Gs are named referring nodes. 

• A referent graph Gr = 〈{ax}, {rxy}〉, where {ax} are 
nodes and {rxy} are edges connecting nodes ax and ay. 
Nodes in Gr are named referent nodes. 

   The following equation finds a match that 
achieves the maximum compatibility between Gr 
and Gs:  

),(),(),(
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In Equation (1), Q(Gr,Gs) measures the degree of 
the overall match between the referent graph and 
the referring graph. P(ax,αm) is the matching 
probability between a node ax in the referent graph 
and a node αm in the referring graph. The overall 
compatibility depends on the similarities between 
nodes (NodeSim) and the similarities between 
edges (EdgeSim). The function NodeSim(ax,αm) 
measures the similarity between a referent node ax 
and a referring node αm by combining semantic 
constraints and temporal constraints. The function 
EdgeSim(rxy,γmn) measures the similarity between 
rxy and γmn, which depends on the semantic and 
temporal constraints of the corresponding edges. 
These functions are described in detail in the next 
section.  

We use the graduated assignment algorithm 
(Gold and Rangarajan, 1996) to maximize Q(Gr,Gs) 
in Equation (1). The algorithm first initializes 
P(ax,αm) and then iteratively updates the values of 
P(ax,αm) until it converges. When the algorithm 
converges, P(ax,αm) gives the matching 
probabilities between the referent node ax and the 
referring node αm that maximizes the overall 
compatibility function. Given this probability 
matrix, the system is able to assign the most 
probable referent(s) to each referring expression.  

3.2 Similarity Functions  

As shown in Equation (1), the overall 
compatibility between a referring graph and a 
referent graph depends on the node similarity 

Ossining

Chappaqua
Object ID: MLS2365478
SemanticType: House
Attribute: Color = $Brown
BeginTime: 32244292 ms
SelectionProb: 0.65

… …

Semantic Type Relation: Diff
Temporal relation: Same
Direction: 

Gesture: Point to one position and point to 
another position

First pointing Second pointing Conversation
Context

Figure 3: An example of referent graph 



function and the edge similarity function. Next we 
give a detailed account of how we defined these 
functions. Our focus here is not on the actual 
definitions of those functions (since they may vary 
for different applications), but rather a mechanism 
that leads to competition and ranking of constraints.  

Node Similarity Function 

Given a referring expression (represented as αm 
in the referring graph) and a potential referent 
(represented as ax in the referent graph), the node 
similarity function is defined based on the 
semantic and temporal information captured in ax 
and αm through a set of individual compatibility 
functions: 

   NodeSim(ax,αm) = Id(ax,αm) SemType(ax,αm)  

                               Πk Attrk(ax,αm) Temp(ax,αm) 
Currently, in our system, the specific return 

values for these functions are empirically 
determined through iterative regression tests.  

Id(ax,αm) captures the constraint of the 
compatibilities between identifiers specified in ax 
and αm. It indicates that the identifier of the 
potential referent, as expressed in a referring 
expression, should match the identifier of the true 
referent. This is particularly useful for resolving 
proper nouns. For example, if the referring 
expression is house number eight, then the correct 
referent should have the identifier number eight.  
We currently define this constraint as follows: 
Id(ax,αm) = 0 if the object identities of ax and αm 
are different. Id(ax,αm) = 100 if they are the same. 
Id(ax,αm) = 1 if at least one of the identities of ax 
and αm is unknown. The different return values 
enforce that a large reward is given to the case 
where the identifiers from the referring expressions 
match the identifiers from the potential referents.  

SemType(ax,αm) captures the constraint of 
semantic type compatibility between  ax and αm. It 
indicates that the semantic type of a potential 
referent as expressed in the referring expression 
should match the semantic type of the correct 
referent. We define the following: SemType(ax,αm) 
= 0 if the semantic types of ax and αm are different. 
SemType(ax,αm) = 1 if they are the same. 
SemType(ax,αm) = 0.5 if at least one of the 
semantic types of ax and αm is unknown. Note that 
the return value given to the case where semantic 

types are the same (i.e., “1”) is much lower than 
that given to the case where identifiers are the 
same (i.e., “100”). This was designed to support 
constraint ranking. Our assumption is that the 
constraint on identifiers is more important than the 
constraint on semantic types. Because identifiers 
are usually unique, the corresponding constraint is 
a greater indicator of node matching if the 
identifier expressed from a referring expression 
matches the identifier of a potential referent. 

Attrk(ax,αm) captures the domain specific 
constraint concerning a particular semantic feature 
(indicated by the subscription k). This constraint 
indicates that the expected features of a potential 
referent as expressed in a referring expression 
should be compatible with features associated with 
the true referent. For example, in the referring 
expression the Victorian house, the style feature is 
Victorian.  Therefore, an object can only be a 
possible referent if the style of that object is 
Victorian.  Thus, we define the following: Ak(ax,αm) 
= 1 if both ax and αm share the kth feature with the 
same value. Ak(ax,αm) = 0 if both ax and αm have 
the feature k and the values of the feature k are not 
equal. Otherwise, when the kth feature is not 
present in either ax or αm, then Ak (ax,αm) = 0.1.  
Note that these feature constraints are dependent 
on the specific domain model for a particular 
application.  

Temp(ax,αm) captures the temporal constraint 
between a referring expression αm and a potential 
referent ax. As discussed in Section 2, a hard 
constraint concerning temporal relations between 
referring expressions and gestures will be 
incapable of handling the flexibility of user 
temporal alignment behavior. Thus the temporal 
constraint in our approach is a graded constraint, 
which is defined as follows: 

          

)
2000
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BeginTimeaBeginTimeaTemp αα −
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This constraint indicates that the closer a 
referring expression and a potential referent in 
terms of their temporal alignment (regardless of 
the absolute precedence relationship), the more 
compatible they are.  

Edge Similarity Function 

The edge similarity function measures the 
compatibility of relations held between referring 
expressions (i.e., an edge γmn in the referring graph) 



and relations between the potential referents (i.e., 
an edge rxy in the referent graph). It is defined by 
two individual compatibility functions as follows: 

EdgeSim(rxy, γmn) = SemType(rxy, γmn) Temp(rxy, γmn)   

   SemType(rxy, γmn) encodes the semantic type 
compatibility between an edge in the referring 
graph and an edge in the referent graph. It is 
defined in Table 2. This constraint indicates that 
the relation held between referring expressions 
should be compatible with the relation held 
between two correct referents. For example, 
consider the utterance How much is this green house 
and this blue house. This utterance indicates that the 
referent to the first expression this green house 
should share the same semantic type as the referent 
to the second expression this blue house. As shown 
in Table 2, if the semantic type relations of rxy and 
γmn are the same, SemType(rxy, γmn) returns 1. If 
they are different, SemType(rxy, γmn) returns zero. If 
either rxy or γmn is unknown, then it returns 0.5.  
   Temp(rxy, γmn) captures the temporal 
compatibility between an edge in the referring 
graph and an edge in the referent graph. It is 
defined in Table 3. This constraint indicates that 
the temporal relationship between two referring 
expressions (in one utterance) should be 
compatible with the relations of their 
corresponding referents as they are introduced into 
the context (e.g., through gesture). The temporal 
relation between referring expressions (i.e., γmn) is 
either Precede or Concurrent. If the temporal 
relations of rxy and γmn are the same, then Temp(rxy, 
γmn) returns 1. Because potential references could 
come from prior conversation, even if rxy and γmn 
are not the same, the function does not return zero 
when γmn is Precede.  

Next, we discuss how these definitions and the 
process of graph matching address optimization, in 
particular, with respect to key principles of 
Optimality Theory for natural language 
interpretation.  

3.3 Optimality Theory 

Optimality Theory (OT) is a theory of language 
and grammar, developed by Alan Prince and Paul 
Smolensky (Prince and Smolensky, 1993). In 
Optimality Theory, a grammar consists of a set of 
well-formed constraints. These constraints are 
applied simultaneously to identify linguistic 

structures. Optimality Theory does not restrict the 
content of the constraints (Eisner 1997). An 
innovation of Optimality Theory is the conception 
of these constraints as soft, which means violable 
and conflicting.  The interpretation that arises for 
an utterance within a certain context maximizes the 
degree of constraint satisfaction and is 
consequently the best alternative (hence, optimal 
interpretation) among the set of possible 
interpretations.  

The key principles or components of Optimality 
Theory can be summarized as the following three 
components (Blutner 1998): 1) Given a set of input, 
Generator creates a set of possible outputs for each 
input. 2) From the set of candidate output, Evaluator 
selects the optimal output for that input. 3) There is 
a strict dominance in term of the ranking of constraints. 
Constraints are absolute and the ranking of the 
constraints is strict in the sense that outputs that 
have at least one violation of a higher ranked 
constraint outrank outputs that have arbitrarily 
many violations of lower ranked constraints. 
Although Optimality Theory is a grammar-based 
framework for natural language processing, its key 
principles can be applied to other representations. 
At a surface level, our approach addresses these 
main principles. 

First, in our approach, the matching matrix 
P(ax,αm) captures the probabilities of all the 
possible matches between a referring node αm and 
a referent node ax. The matching process updates 
these probabilities iteratively. This process 
corresponds to the Generator component in 
Optimality Theory.  

Second, in our approach, the satisfaction or 
violation of constraints is implemented via return 
values of compatibility functions. These 

0.50.50.5Unknown

0.510Different

0.501Sameγmn

Unknown DifferentSame

rxySemType(rxy, γmn)

0.50.50.5Unknown

0.510Different

0.501Sameγmn

Unknown DifferentSame

rxySemType(rxy, γmn)

 
Table 2: Definition of SemType(rxy, γmn) 
 

0.5010Concurrent

0.50.70.51Precedeγmn

Unknown Non-concurrentConcurrentPreceding

rxyTemp(rxy, γmn)

0.5010Concurrent

0.50.70.51Precedeγmn

Unknown Non-concurrentConcurrentPreceding

rxyTemp(rxy, γmn)

Table 3: Definition of Temp(rxy, γmn) 



3.4 Evaluation  

We conducted several user studies to evaluate 
the performance of this approach. Users could 
interact with our system using both speech and 
deictic gestures. Each subject was asked to 
complete five tasks. For example, one task was to 
find the cheapest house in the most populated town. 
Data from eleven subjects was collected and 
analyzed. 

Table 4 shows the evaluation results of 219 
inputs. These inputs were categorized in terms of 
the number of referring expressions in the speech 
input and the number of gestures in the gesture 
inputs. Out of the total 219 inputs, 137 inputs had 
their referents correctly interpreted. For the 
remaining 82 inputs in which the referents were 
not correctly identified, the problem did not come 
from the approach itself, but rather from other 
sources such as speech recognition and language 
129(111)
90(26)

20(15),
19(2)

102(91),
65(22)

7(5),
6(2)

Total Num

15(9),
16(1)
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expressions
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Table 4: Evaluation Results. In each entry form “a(b), c(d)”,
“a” indicates the number of inputs in which the referring
expressions were correctly recognized by the speech recog-
nizer; “b” indicates the number of inputs in which the refer-
ring expressions were  correctly recognized and were
correctly resolved; “c” indicates the number of inputs in
which the referring expressions were not correctly recog-
nized; “d” indicates the number of inputs in which the refer-
ring expressions also were not correctly recognized, but
were correctly resolved. The sum of “a” and “c” gives the
total number of inputs with a particular combination of
speech and gesture. 
constraints can be violated during the matching 
process. For example, functions Id(ax,αm), 
SemType(ax,αm), and Attrk(ax,αm) return zero if the 
corresponding intended constraints are violated. In 
this case, the overall similarity function will return 
zero. However, because of the iterative updating 
nature of the matching algorithm, the system will 
still find the most optimal match as a result of the 
matching process even some constraints are 
violated. Furthermore, A function that never 
returns zero such as Temp(ax,αm) in the node 
similarity function implements a gradient 
constraint in Optimality Theory. Given these 
compatibility functions, the graph-matching 
algorithm provides an optimization process to find 
the best match between two graphs. This process 
corresponds to the Evaluator component of 
Optimality Theory.  

Third, in our approach, different compatibility 
functions return different values to address the 
Constraint Ranking component in Optimality Theory. 
For example, as discussed earlier, once ax and αm 
share the same identifier, Id(ax,αm) returns 100. If 
ax and αm share the same semantic type, 
SemType(ax,αm) returns 1. Here, we consider the 
compatibility between identifiers is more important 
than the compatibility between semantic types. 
However, currently we have not yet addressed the 
strict dominance aspect of Optimality Theory. 

understanding errors.  These were two major error 
sources, which were accounted for 55% and 20% 
of total errors respectively (Chai et al. 2004b).    

In our studies, the majority of user references 
were simple in that they involved only one 
referring expression and one gesture as in earlier 
findings (Kehler 2000). It is trivial for our 
approach to handle these simple inputs since the 
size of the graph is usually very small and there is 
only one node in the referring graph. However, we 
did find 23% complex inputs (the row S3 and the 
column G3 in Table 4), which involved multiple 
referring expressions from speech utterances 
and/or multiple gestures. Our optimization 
approach is particularly effective to interpret these 
complex inputs by simultaneously considering 
semantic, temporal, and contextual constraints.  

4 Conclusion 

As in natural language interpretation addressed 
by Optimality Theory, the idea of optimizing 
constraints is beneficial and there is evidence in 
favor of competition and constraint ranking in 
multimodal language interpretation. We developed 
a graph-based approach to address optimization for 
multimodal interpretation; in particular, 
interpreting multimodal references. Our approach 
simultaneously applies temporal, semantic, and 
contextual constraints together and achieves the 
best interpretation among all alternatives. Although 
currently the referent graph corresponds to gesture 



input and conversation context, it can be easily 
extended to incorporate other modalities such as 
gaze inputs.  

We have only taken an initial step to investigate 
optimization for multimodal language processing. 
Although preliminary studies have shown the 
effectiveness of the optimization approach based 
on graph matching, this approach also has its 
limitations.  The graph-matching problem is a NP 
complete problem and it can become intractable 
once the size of the graph is increased. However, 
we have not experienced the delay of system 
responses during real-time user studies. This is 
because most user inputs were relatively concise 
(they contained no more than four referring 
expressions).  This brevity limited the size of the 
graphs and thus provided an opportunity for such 
an approach to be effective. Our future work will 
address how to extend this approach to optimize 
the overall interpretation of user multimodal inputs.  
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