
Proceedings of the ACL Interactive Poster and Demonstration Sessions,
pages 93–96, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

The Wild Thing!

Kenneth Church Bo Thiesson

Microsoft Research

Redmond, WA, 98052, USA

{church, thiesson}@microsoft.com

Abstract

Suppose you are on a mobile device with

no keyboard (e.g., a cell or PDA). How

can you enter text quickly? T9? Graffiti?

This demo will show how language model-

ing can be used to speed up data entry, both

in the mobile context, as well as the desk-

top. The Wild Thing encourages users to

use wildcards (*). A language model finds

the k-best expansions. Users quickly figure

out when they can get away with wild-

cards. General purpose trigram language

models are effective for the general case

(unrestricted text), but there are important

special cases like searching over popular

web queries, where more restricted lan-

guage models are even more effective.

1 Motivation: Phone App

Cell phones and PDAs are everywhere. Users love

mobility. What are people doing with their phone?

You’d think they would be talking on their phones,

but a lot of people are typing. It is considered rude

to talk on a cell in certain public places, especially

in Europe and Asia. SMS text messaging enables

people to communicate, even when they can’t talk.

It is bizarre that people are typing on their

phones given how painful it is. “Talking on the

phone” is a collocation, but “typing on the phone”

is not. Slate (slate.msn.com/id/2111773) recently

ran a story titled: “A Phone You Can Actually

Type On” with the lead:

“If you've tried to zap someone a text mes-

sage recently, you've probably discovered

the huge drawback of typing on your cell

phone. Unless you're one of those cyborg

Scandinavian teenagers who was born with

a Nokia in his hand, pecking out even a

simple message is a thumb-twisting chore.”

There are great hopes that speech recognition

will someday make it unnecessary to type on your

phone (for SMS or any other app), but speech rec-

ognition won’t help with the rudeness issue. If

people are typing because they can’t talk, then

speech recognition is not an option. Fortunately,

the speech community has developed powerful

language modeling techniques that can help even

when speech is not an option.

2 K-Best String Matching

Suppose we want to search for MSN using a cell

phone. A standard approach would be to type 6

<pause> 777 <pause> 66, where 6 � M, 777 � S

and 66 � N. (The pauses are necessary for disam-

biguation.) Kids these days are pretty good at typ-

ing this way, but there has to be a better solution.

T9

(www.t9.com) is an interesting alternative.

The user types 676 (for MSN). The system uses a

(unigram) language model to find the k-best

matches. The user selects MSN from this list.

Some users love T9, and some don’t.

The input, 676, can be thought of as short hand

for the regular expression:
/^[6MNOmno][7PRSprs][6MNOmno]$/

using standard Unix notation. Regular expressions

become much more interesting when we consider

wildcards. So-called “word wheeling” can be

thought of as the special case where we add a

wildcard to the end of whatever the user types.

Thus, if the user types 676 (for MSN), we would

find the k-best matches for:

/^[6MNOmno][7PRSprs][6MNOmno].*/

93

See Google Suggests
1
 for a nice example of

word wheeling. Google Suggests makes it easy to

find popular web queries (in the standard non-

mobile desktop context). The user types a prefix.

After each character, the system produces a list of

the k most popular web queries that start with the

specified prefix.

Word wheeling not only helps when you know

what you want to say, but it also helps when you

don’t. Users can’t spell. And things get stuck on

the tip of their tongue. Some users are just brows-

ing. They aren’t looking for anything in particular,

but they’d like to know what others are looking at.

The popular query application is relatively easy

in terms of entropy. About 19 bits are needed to

specify one of the 7 million most popular web que-

ries. That is, if we assign each web query a prob-

ability based on query logs collected at msn.com,

then we can estimate entropy, H, and discover that

H≈19. (About 23 bits would be needed if these

pages were equally likely, but they aren’t.) It is

often said that the average query is between two

and three words long, but H is more meaningful

than query length.

General purpose trigram language models are

effective for the general case (unrestricted text),

but there are important special cases like popular

web queries, where more restricted language mod-

els are even more effective than trigram models.

Our language model for web queries is simply a

list of queries and their probabilities. We consider

queries to be a finite language, unlike unrestricted

text where the trigram language model allows sen-

tences to be arbitrarily long.

Let’s consider another example. The MSN

query was too easy. Suppose we want to find

Condoleezza Rice, but we can’t spell her name.

And even if we could, we wouldn’t want to. Typ-

ing on a phone isn’t fun.

We suggest spelling Condoleezza as 2*, where

2 � [ABCabc2] and * is the wildcard. We then

type ‘#’ for space. Rice is easy to spell: 7423.

Thus, the user types, 2*#7423, and the system

searches over the MSN query log to produce a list

of k-best (most popular) matches (k defaults to 10):

1. Anne Rice

2. Book of Shadows

3. Chris Rice

4. Condoleezza Rice

1 http://www.google.com/webhp?complete=1

5. Ann Rice

…

8. Condoleeza Rice

The letters matching constants in the regular ex-

pression are underlined. The other letters match

wildcards. (An implicit wildcard is appended to

the end of the input string.)

Wildcards are very powerful. Strings with

wildcards are more expressive than prefix match-

ing (word wheeling). As mentioned above, it

should take just 19 bits on average to specify one

of the 7 million most popular queries. The query

2*#7423 contains 7 characters in an 12-character

alphabet (2-9 � [A-Za-z2-9] in the obvious way,

except that 0 � [QZqz0]; # � space; * is wild). 7

characters in a 12 character alphabet is 7 log212 =

25 bits. If the input notation were optimal (which

it isn’t), it shouldn’t be necessary to type much

more than this on average to specify one of the 7

million most popular queries.

Alphabetic ordering causes bizarre behavior.

Yellow Pages are full of company names starting

with A, AA, AAA, etc.. If prefix matching tools like

Google Suggests take off, then it is just a matter of

time before companies start to go after valuable

prefixes: mail, maps, etc. Wildcards can help soci-

ety avoid that non-sense. If you want to find a top

mail site, you can type, “*mail” and you’ll find:

Gmail, Hotmail, Yahoo mail, etc..

3 Collaboration & Personalization

Users quickly learn when they can get away with

wildcards. Typing therefore becomes a collabora-

tive exercise, much like Palm’s approach to hand-

writing recognition. Recognition is hard. Rather

than trying to solve the general case, Palm encour-

ages users to work with the system to write in a

way that is easier to recognize (Graffiti). The sys-

tem isn’t trying to solve the AI problem by itself,

but rather there is a man-machine collaboration

where both parties work together as a team.

Collaboration is even more powerful in the

web context. Users issue lots of queries, making it

clear what’s hot (and what’s not). The system con-

structs a language model based on these queries to

direct users toward good stuff. More and more

users will then go there, causing the hot query to

move up in the language model. In this way, col-

laboration can be viewed as a positive feedback

94

loop. There is a strong herd instinct; all parties

benefit from the follow-the-pack collaboration.

In addition, users want personalization. When

typing names of our friends and family, technical

terms, etc., we should be able to get away with

more wildcards than other users would. There are

obvious opportunities for personalizing the lan-

guage model by integrating the language model

with a desktop search index (Dumais et al, 2003).

4 Modes, Language Models and Apps

The Wild Thing demo has a switch for turning on

and off phone mode to determine whether input

comes from a phone keypad or a standard key-

board. Both with and without phone mode, the

system uses a language model to find the k-best

expansions of the wildcards.

The demo contains a number of different lan-

guage models, including a number of standard tri-

gram language models. Some of the language

models were trained on large quantities (6 Billion

words) of English. Others were trained on large

samples of Spanish and German. Still others were

trained on small sub-domains (such as ATIS,

available from www.ldc.upenn.edu). The demo

also contains two special purpose language models

for searching popular web queries, and popular

web domains.

Different language models are different. With

a trigram language model trained on general Eng-

lish (containing large amounts of newswire col-

lected over the last decade),
pres* rea* *d y* t* it is v*

imp* � President Reagan said

yesterday that it is very impor-

tant

With a Spanish Language Model,
pres* rea* � presidente Reagan

In the ATIS domain,
pres* rea* � <UNK> <UNK>

The tool can also be used to debug language

models. It turns out that some French slipped into

the English training corpus. Consequently, the

English language model expanded the * in en * de

to some common French words that happen to be

English words as well: raison, circulation, oeuvre,

place, as well as <OOV>. After discovering this,

we discovered quite a few more anomalies in the

training corpus such as headers from the AP news.

There may also be ESL (English as a Second

Language) applications for the tool. Many users

have a stronger active vocabulary than passive vo-

cabulary. If the user has a word stuck on the tip of

their tongue, they can type a suggestive context

with appropriate wildcards and there is a good

chance the system will propose the word the user is

looking for.

Similar tricks are useful in monolingual con-

texts. Suppose you aren’t sure how to spell a ce-

lebrity’s name. If you provide a suggestive

context, the language model is likely to get it right:

ron* r*g*n � Ronald Reagan

don* r*g*n � Donald Regan

c* rice � Condoleezza Rice

To summarize, wildcards are helpful in quite a

few apps:

• No keyboard: cell phone, PDA, Tablet PC.

• Speed matters: instant messaging, email.

• Spelling/ESL/tip of the tongue.

• Browsing: direct users toward hot stuff.

5 Indexing and Compression

The k-best string matching problem raises a num-

ber of interesting technical challenges. We have

two types of language models: trigram language

models and long lists (for finite languages such as

the 7 million most popular web queries).

The long lists are indexed with a suffix array.

Suffix arrays
2
 generalize very nicely to phone

mode, as described below. We treat the list of web

queries as a text of N bytes. (Newlines are re-

placed with end-of-string delimiters.) The suffix

array, S, is a sequence of N ints. The array is ini-

tialized with the ints from 0 to N−1. Thus, S[i]=i,

for 0≤i<N. Each of these ints represents a string,

starting at position i in the text and extending to the

end of the string. S is then sorted alphabetically.

Suffix arrays make it easy to find the frequency

and location of any substring. For example, given

the substring “mail,” we find the first and last suf-

fix in S that starts with “mail.” The gap between

these two is the frequency. Each suffix in the gap

points to a super-string of “mail.”

To generalize suffix arrays for phone mode we

replace alphabetical order (strcmp) with phone or-

der (phone-strcmp). Both strcmp and phone-

strcmp consider each character one at a time. In

standard alphabetic ordering, ‘a’<‘b’<‘c’, but in

2 An excellent discussion of suffix arrays including source

code can be found at www.cs.dartmouth.edu/~doug.

95

phone-strcmp, the characters that map to the same

key on the phone keypad are treated as equivalent.

We generalize suffix arrays to take advantage

of popularity weights. We don’t want to find all

queries that contain the substring “mail,” but

rather, just the k-best (most popular). The standard

suffix array method will work, if we add a filter on

the output that searches over the results for the k-

best. However, that filter could take O(N) time if

there are lots of matches, as there typically are for

short queries.

An improvement is to sort the suffix array by

both popularity and alphabetic ordering, alternating

on even and odd depths in the tree. At the first

level, we sort by the first order and then we sort by

the second order and so on, using a construction,

vaguely analogous to KD-Trees (Bentley, 1975).

When searching a node ordered by alphabetical

order, we do what we would do for standard suffix

arrays. But when searching a node ordered by

popularity, we search the more popular half before

the second half. If there are lots of matches, as

there are for short strings, the index makes it very

easy to find the top-k quickly, and we won’t have

to search the second half very often. If the prefix

is rare, then we might have to search both halves,

and therefore, half the splits (those split by popu-

larity) are useless for the worst case, where the

input substring doesn’t match anything in the table.

Lookup is O(sqrt N).
3

Wildcard matching is, of course, a different

task from substring matching. Finite State Ma-

chines (Mohri et al, 2002) are the right way to

think about the k-best string matching problem

with wildcards. In practice, the input strings often

contain long anchors of constants (wildcard free

substrings). Suffix arrays can use these anchors to

generate a list of candidates that are then filtered

by a regex package.

3
 Let F(N) be the work to process N items on the

frequency splits and let A(N) be the work to proc-

ess N items on the alphabetical splits. In the worst

case, F(N) = 2A(N/2) + C1 and A(N) = F(N/2) + C2,

where C1 and C2 are two constants. In other

words, F(N) = 2F(N/4) + C, where C = C1 + 2C2.

We guess that F(N) = α sqrt(N) + β, where α and β

are constant. Substituting this guess into the recur-

rence, the dependencies on N cancel. Thus, we

conclude, F(N) = O(sqrt N).

Memory is limited in many practical applica-

tions, especially in the mobile context. Much has

been written about lossless compression of lan-

guage models. For trigram models, we use a lossy

method inspired by the Unix Spell program (McIl-

roy, 1982). We map each trigram <x, y, z> into a

hash code h = (V
2
 x + V y + z) % P, where V is the

size of the vocabulary and P is an appropriate

prime. P trades off memory for loss. The cost to

store N trigrams is: N [1/loge2 + log2(P/N)] bits.

The loss, the probability of a false hit, is 1/P.

The N trigrams are hashed into h hash codes.

The codes are sorted. The differences, x, are en-

coded with a Golomb code
4
 (Witten et al, 1999),

which is an optimal Huffman code, assuming that

the differences are exponentially distributed, which

they will be, if the hash is Poisson.

6 Conclusions

The Wild Thing encourages users to make use of

wildcards, speeding up typing, especially on cell

phones. Wildcards are useful when you want to

find something you can’t spell, or something stuck

on the tip of your tongue. Wildcards are more

expressive than standard prefix matching, great for

users, and technically challenging (and fun) for us.

References

J. L. Bentley (1975), Multidimensional binary search

trees used for associative searching, Commun. ACM,

18:9, pp 509-517.

S. T. Dumais, E. Cutrell, et al (2003). Stuff I've Seen: A

system for personal information retrieval and re-use,

SIGIR.

M. D. McIlroy (1982), Development of a spelling list,

IEEE Trans. on Communications 30, 91-99.

M. Mohri, F. C. N. Pereira, and M. Riley. Weighted

Finite-State Transducers in Speech Recognition.

Computer Speech and Language, 16(1):69-88, 2002.

I. H. Witten, A. Moffat and T. C. Bell, (1999), Manag-

ing Gigabytes: Compressing and Indexing Docu-

ments and Images, by Morgan Kaufmann Publishing,

San Francisco, ISBN 1-55860-570-3.

4
 In Golomb, x = xq m + xr, where xq = floor(x/m)

and xr = x mod m. Choose m to be a power of two

near ceil(½ E[x])=ceil(½ P/N). Store quotients xq

in unary and remainders xr in binary. z in unary is

a sequence of z−1 zeros followed by a 1. Unary is

an optimal Huffman code when Pr(z)=(½)
z+1
. Stor-

age costs are: xq bits for xq + log2m bits for xr.

96

